Hepatic Transcriptome Profiling Reveals Lack of Acsm3 Expression in Polydactylous Rats with High-Fat Diet-Induced Hypertriglyceridemia and Visceral Fat Accumulation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
36317
Grantová Agentura, Univerzita Karlova
260516
Charles University Student Scientific Research (SVV)
64165
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33923085
PubMed Central
PMC8147112
DOI
10.3390/nu13051462
PII: nu13051462
Knihovny.cz E-zdroje
- Klíčová slova
- Acsm3, high-fat diet, hypertriglyceridemia, insulin resistance, liver transcriptome, metabolic syndrome, polydactylous rat, spontaneously hypertensive rat,
- MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- exprese genu MeSH
- hypertriglyceridemie krev genetika MeSH
- játra metabolismus MeSH
- koenzym A-ligasy genetika MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- nitrobřišní tuk metabolismus MeSH
- polydaktylie MeSH
- potkani inbrední SHR MeSH
- potkani Wistar MeSH
- stanovení celkové genové exprese metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Acsm3 protein, rat MeSH Prohlížeč
- koenzym A-ligasy MeSH
Metabolic syndrome (MetS) is an important cause of worldwide morbidity and mortality. Its complex pathogenesis includes, on the one hand, sedentary lifestyle and high caloric intake, and, on the other hand, there is a clear genetic predisposition. PD (Polydactylous rat) is an animal model of hypertriglyceridemia, insulin resistance, and obesity. To unravel the genetic and pathophysiologic background of this phenotype, we compared morphometric and metabolic parameters as well as liver transcriptomes among PD, spontaneously hypertensive rat, and Brown Norway (BN) strains fed a high-fat diet (HFD). After 4 weeks of HFD, PD rats displayed marked hypertriglyceridemia but without the expected hepatic steatosis. Moreover, the PD strain showed significant weight gain, including increased weight of retroperitoneal and epididymal fat pads, and impaired glucose tolerance. In the liver transcriptome, we found 5480 differentially expressed genes, which were enriched for pathways involved in fatty acid beta and omega oxidation, glucocorticoid metabolism, oxidative stress, complement activation, triacylglycerol and lipid droplets synthesis, focal adhesion, prostaglandin synthesis, interferon signaling, and tricarboxylic acid cycle pathways. Interestingly, the PD strain, contrary to SHR and BN rats, did not express the Acsm3 (acyl-CoA synthetase medium-chain family member 3) gene in the liver. Together, these results suggest disturbances in fatty acid utilization as a molecular mechanism predisposing PD rats to hypertriglyceridemia and fat accumulation.
Zobrazit více v PubMed
Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P., Loria C.M., Smith S.C., Jr., et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644. PubMed DOI
Vattikuti S., Guo J., Chow C.C. Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet. 2012;8:e1002637. doi: 10.1371/annotation/61bb5924-6688-4ee5-a37f-d48aa09ad66a. PubMed DOI PMC
Torkamani A., Wineinger N.E., Topol E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 2018;19:581–590. doi: 10.1038/s41576-018-0018-x. PubMed DOI
Genin E. Missing heritability of complex diseases: Case solved? Hum. Genet. 2020;139:103–113. doi: 10.1007/s00439-019-02034-4. PubMed DOI
Seda O., Liska F., Krenova D., Kazdova L., Sedova L., Zima T., Peng J., Pelinkova K., Tremblay J., Hamet P., et al. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol. Genom. 2005;21:243–252. doi: 10.1152/physiolgenomics.00230.2004. PubMed DOI
Sedova L., Kazdova L., Seda O., Krenova D., Kren V. Rat inbred PD/cub strain as a model of dyslipidemia and insulin resistance. Folia Biologica. 2000;46:99–106. PubMed
Coan P.M., Hummel O., Garcia Diaz A., Barrier M., Alfazema N., Norsworthy P.J., Pravenec M., Petretto E., Hubner N., Aitman T.J. Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat. Dis. Models Mech. 2017;10:297–306. doi: 10.1242/dmm.026716. PubMed DOI PMC
Pravenec M., Kren V., Landa V., Mlejnek P., Musilova A., Silhavy J., Simakova M., Zidek V. Recent progress in the genetics of spontaneously hypertensive rats. Physiol. Res. 2014;63:S1–S8. doi: 10.33549/physiolres.932622. PubMed DOI
Kren V. Genetics of the polydactyly-luxate syndrome in the Norway rat, Rattus norvegicus. Acta Univ. Carol. Med. Monogr. 1975:1–103. PubMed
Iwai N., Mannami T., Tomoike H., Ono K., Iwanaga Y. An acyl-CoA synthetase gene family in chromosome 16p12 may contribute to multiple risk factors. Hypertension. 2003;41:1041–1046. doi: 10.1161/01.HYP.0000064944.60569.87. PubMed DOI
Okamoto K., Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 1963;27:282–293. doi: 10.1253/jcj.27.282. PubMed DOI
Billingham R.E., Silvers W.K. Inbred animals and tissue transplantation immunity, with an index of some inbred strains other than mice. Transplant. Bull. 1959;6:399–406. doi: 10.1097/00006534-195904000-00028. PubMed DOI
Seda O., Sedova L., Kazdova L., Krenova D., Kren V. Metabolic characterization of insulin resistance syndrome feature loci in three brown Norway-derived congenic strains. Folia Biol. 2002;48:81–88. PubMed
Okazaki M., Yamashita S. Recent Advances in Analytical Methods on Lipoprotein Subclasses: Calculation of Particle Numbers from Lipid Levels by Gel Permeation HPLC Using “Spherical Particle Model”. J. Oleo Sci. 2016;65:265–282. doi: 10.5650/jos.ess16020. PubMed DOI
Huttl M., Markova I., Miklankova D., Makovicky P., Pelikanova T., Seda O., Sedova L., Malinska H. Adverse Effects of Methylglyoxal on Transcriptome and Metabolic Changes in Visceral Adipose Tissue in a Prediabetic Rat Model. Antioxidants. 2020;9:803. doi: 10.3390/antiox9090803. PubMed DOI PMC
Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Galaxy. [(accessed on 8 February 2021)]; Available online: https://usegalaxy.org.
Picard. [(accessed on 8 February 2021)]; Available online: http://broadinstitute.github.io/picard.
Garrison E. Haplotype-based variant detection from short-read sequencing. arXiv. 20121207.3907
ImageJ. [(accessed on 8 February 2021)]; Available online: https://imagej.nih.gov/ij/
Huang da W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Huang da W., Sherman B.T., Lempicki R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. doi: 10.1093/nar/gkn923. PubMed DOI PMC
Hulsen T., de Vlieg J., Alkema W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 2008;9:488. doi: 10.1186/1471-2164-9-488. PubMed DOI PMC
Igumenova T.I. Dynamics and Membrane Interactions of Protein Kinase C. Biochemistry. 2015;54:4953–4968. doi: 10.1021/acs.biochem.5b00565. PubMed DOI PMC
Powell D.J., Hajduch E., Kular G., Hundal H.S. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol. Cell. Biol. 2003;23:7794–7808. doi: 10.1128/MCB.23.21.7794-7808.2003. PubMed DOI PMC
Arrese M., Cabrera D., Kalergis A.M., Feldstein A.E. Innate Immunity and Inflammation in NAFLD/NASH. Dig. Dis. Sci. 2016;61:1294–1303. doi: 10.1007/s10620-016-4049-x. PubMed DOI PMC
Farrell G.C., Haczeyni F., Chitturi S. Pathogenesis of NASH: How Metabolic Complications of Overnutrition Favour Lipotoxicity and Pro-Inflammatory Fatty Liver Disease. Adv. Exp. Med. Biol. 2018;1061:19–44. doi: 10.1007/978-981-10-8684-7_3. PubMed DOI
Ainslie D.A., Proietto J., Fam B.C., Thorburn A.W. Short-term, high-fat diets lower circulating leptin concentrations in rats. Am. J. Clin. Nutr. 2000;71:438–442. doi: 10.1093/ajcn/71.2.438. PubMed DOI
Benjafield A.V., Iwai N., Ishikawa K., Wang W.Y., Morris B.J. Overweight, but not hypertension, is associated with SAH polymorphisms in Caucasians with essential hypertension. Hypertens. Res. 2003;26:591–595. doi: 10.1291/hypres.26.591. PubMed DOI
Van der Sluis R. Analyses of the genetic diversity and protein expression variation of the acyl: CoA medium-chain ligases, ACSM2A and ACSM2B. Mol. Genet. Genom. 2018;293:1279–1292. doi: 10.1007/s00438-018-1460-3. PubMed DOI
Van der Sluis R., Erasmus E. Xenobiotic/medium chain fatty acid: CoA ligase—A critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin. Expert Opin. Drug Metab. Toxicol. 2016;12:1169–1179. doi: 10.1080/17425255.2016.1206888. PubMed DOI
St Lezin E., Liu W., Wang J.M., Yang Y., Qi N., Kren V., Zidek V., Kurtz T.W., Pravenec M. Genetic analysis of rat chromosome 1 and the Sa gene in spontaneous hypertension. Hypertension. 2000;35:225–230. doi: 10.1161/01.HYP.35.1.225. PubMed DOI
Walsh V., Somody L., Farrell A., Zhang B., Brown J., Pritchard C., Vincent M., Samani N.J. Analysis of the role of the SA gene in blood pressure regulation by gene targeting. Hypertension. 2003;41:1212–1218. doi: 10.1161/01.HYP.0000069010.28143.5C. PubMed DOI
Fujino T., Takei Y.A., Sone H., Ioka R.X., Kamataki A., Magoori K., Takahashi S., Sakai J., Yamamoto T.T. Molecular identification and characterization of two medium-chain acyl-CoA synthetases, MACS1 and the Sa gene product. J. Biol. Chem. 2001;276:35961–35966. doi: 10.1074/jbc.M106651200. PubMed DOI
Den Besten G., Lange K., Havinga R., van Dijk T.H., Gerding A., van Eunen K., Muller M., Groen A.K., Hooiveld G.J., Bakker B.M., et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;305:G900–G910. doi: 10.1152/ajpgi.00265.2013. PubMed DOI
Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012. PubMed DOI PMC
Ellis J.M., Bowman C.E., Wolfgang M.J. Metabolic and tissue-specific regulation of acyl-CoA metabolism. PLoS ONE. 2015;10:e0116587. doi: 10.1371/journal.pone.0116587. PubMed DOI PMC
Iwai N., Katsuya T., Mannami T., Higaki J., Ogihara T., Kokame K., Ogata J., Baba S. Association between SAH, an acyl-CoA synthetase gene, and hypertriglyceridemia, obesity, and hypertension. Circulation. 2002;105:41–47. doi: 10.1161/hc0102.101780. PubMed DOI
Telgmann R., Brand E., Nicaud V., Hagedorn C., Beining K., Schonfelder J., Brink-Spalink V., Schmidt-Petersen K., Matanis T., Vischer P., et al. SAH gene variants are associated with obesity-related hypertension in Caucasians: The PEGASE Study. J Hypertens. 2007;25:557–564. doi: 10.1097/HJH.0b013e3280144779. PubMed DOI
Guenard F., Bouchard-Mercier A., Rudkowska I., Lemieux S., Couture P., Vohl M.C. Genome-Wide Association Study of Dietary Pattern Scores. Nutrients. 2017;9:649. doi: 10.3390/nu9070649. PubMed DOI PMC
Hubner N., Wallace C.A., Zimdahl H., Petretto E., Schulz H., Maciver F., Mueller M., Hummel O., Monti J., Zidek V., et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 2005;37:243–253. doi: 10.1038/ng1522. PubMed DOI
GeneNetwork. [(accessed on 23 February 2021)]; Available online: http://www.genenetwork.org/
Gopal R., Selvarasu K., Pandian P.P., Ganesan K. Integrative transcriptome analysis of liver cancer profiles identifies upstream regulators and clinical significance of ACSM3 gene expression. Cell. Oncol. 2017;40:219–233. doi: 10.1007/s13402-017-0321-0. PubMed DOI
Ruan H.Y., Yang C., Tao X.M., He J., Wang T., Wang H., Wang C., Jin G.Z., Jin H.J., Qin W.X. Downregulation of ACSM3 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Am. J. Cancer Res. 2017;7:543–553. PubMed PMC
Seda O. (Charles University, Prague, Czech Republic). Personal communication. 2021.