Hepatic Transcriptome Profiling Reveals Lack of Acsm3 Expression in Polydactylous Rats with High-Fat Diet-Induced Hypertriglyceridemia and Visceral Fat Accumulation

. 2021 Apr 25 ; 13 (5) : . [epub] 20210425

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33923085

Grantová podpora
36317 Grantová Agentura, Univerzita Karlova
260516 Charles University Student Scientific Research (SVV)
64165 Ministerstvo Zdravotnictví Ceské Republiky

Metabolic syndrome (MetS) is an important cause of worldwide morbidity and mortality. Its complex pathogenesis includes, on the one hand, sedentary lifestyle and high caloric intake, and, on the other hand, there is a clear genetic predisposition. PD (Polydactylous rat) is an animal model of hypertriglyceridemia, insulin resistance, and obesity. To unravel the genetic and pathophysiologic background of this phenotype, we compared morphometric and metabolic parameters as well as liver transcriptomes among PD, spontaneously hypertensive rat, and Brown Norway (BN) strains fed a high-fat diet (HFD). After 4 weeks of HFD, PD rats displayed marked hypertriglyceridemia but without the expected hepatic steatosis. Moreover, the PD strain showed significant weight gain, including increased weight of retroperitoneal and epididymal fat pads, and impaired glucose tolerance. In the liver transcriptome, we found 5480 differentially expressed genes, which were enriched for pathways involved in fatty acid beta and omega oxidation, glucocorticoid metabolism, oxidative stress, complement activation, triacylglycerol and lipid droplets synthesis, focal adhesion, prostaglandin synthesis, interferon signaling, and tricarboxylic acid cycle pathways. Interestingly, the PD strain, contrary to SHR and BN rats, did not express the Acsm3 (acyl-CoA synthetase medium-chain family member 3) gene in the liver. Together, these results suggest disturbances in fatty acid utilization as a molecular mechanism predisposing PD rats to hypertriglyceridemia and fat accumulation.

Zobrazit více v PubMed

Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P., Loria C.M., Smith S.C., Jr., et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644. PubMed DOI

Vattikuti S., Guo J., Chow C.C. Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet. 2012;8:e1002637. doi: 10.1371/annotation/61bb5924-6688-4ee5-a37f-d48aa09ad66a. PubMed DOI PMC

Torkamani A., Wineinger N.E., Topol E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 2018;19:581–590. doi: 10.1038/s41576-018-0018-x. PubMed DOI

Genin E. Missing heritability of complex diseases: Case solved? Hum. Genet. 2020;139:103–113. doi: 10.1007/s00439-019-02034-4. PubMed DOI

Seda O., Liska F., Krenova D., Kazdova L., Sedova L., Zima T., Peng J., Pelinkova K., Tremblay J., Hamet P., et al. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol. Genom. 2005;21:243–252. doi: 10.1152/physiolgenomics.00230.2004. PubMed DOI

Sedova L., Kazdova L., Seda O., Krenova D., Kren V. Rat inbred PD/cub strain as a model of dyslipidemia and insulin resistance. Folia Biologica. 2000;46:99–106. PubMed

Coan P.M., Hummel O., Garcia Diaz A., Barrier M., Alfazema N., Norsworthy P.J., Pravenec M., Petretto E., Hubner N., Aitman T.J. Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat. Dis. Models Mech. 2017;10:297–306. doi: 10.1242/dmm.026716. PubMed DOI PMC

Pravenec M., Kren V., Landa V., Mlejnek P., Musilova A., Silhavy J., Simakova M., Zidek V. Recent progress in the genetics of spontaneously hypertensive rats. Physiol. Res. 2014;63:S1–S8. doi: 10.33549/physiolres.932622. PubMed DOI

Kren V. Genetics of the polydactyly-luxate syndrome in the Norway rat, Rattus norvegicus. Acta Univ. Carol. Med. Monogr. 1975:1–103. PubMed

Iwai N., Mannami T., Tomoike H., Ono K., Iwanaga Y. An acyl-CoA synthetase gene family in chromosome 16p12 may contribute to multiple risk factors. Hypertension. 2003;41:1041–1046. doi: 10.1161/01.HYP.0000064944.60569.87. PubMed DOI

Okamoto K., Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 1963;27:282–293. doi: 10.1253/jcj.27.282. PubMed DOI

Billingham R.E., Silvers W.K. Inbred animals and tissue transplantation immunity, with an index of some inbred strains other than mice. Transplant. Bull. 1959;6:399–406. doi: 10.1097/00006534-195904000-00028. PubMed DOI

Seda O., Sedova L., Kazdova L., Krenova D., Kren V. Metabolic characterization of insulin resistance syndrome feature loci in three brown Norway-derived congenic strains. Folia Biol. 2002;48:81–88. PubMed

Okazaki M., Yamashita S. Recent Advances in Analytical Methods on Lipoprotein Subclasses: Calculation of Particle Numbers from Lipid Levels by Gel Permeation HPLC Using “Spherical Particle Model”. J. Oleo Sci. 2016;65:265–282. doi: 10.5650/jos.ess16020. PubMed DOI

Huttl M., Markova I., Miklankova D., Makovicky P., Pelikanova T., Seda O., Sedova L., Malinska H. Adverse Effects of Methylglyoxal on Transcriptome and Metabolic Changes in Visceral Adipose Tissue in a Prediabetic Rat Model. Antioxidants. 2020;9:803. doi: 10.3390/antiox9090803. PubMed DOI PMC

Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC

Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC

Galaxy. [(accessed on 8 February 2021)]; Available online: https://usegalaxy.org.

Picard. [(accessed on 8 February 2021)]; Available online: http://broadinstitute.github.io/picard.

Garrison E. Haplotype-based variant detection from short-read sequencing. arXiv. 20121207.3907

ImageJ. [(accessed on 8 February 2021)]; Available online: https://imagej.nih.gov/ij/

Huang da W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI

Huang da W., Sherman B.T., Lempicki R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. doi: 10.1093/nar/gkn923. PubMed DOI PMC

Hulsen T., de Vlieg J., Alkema W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 2008;9:488. doi: 10.1186/1471-2164-9-488. PubMed DOI PMC

Igumenova T.I. Dynamics and Membrane Interactions of Protein Kinase C. Biochemistry. 2015;54:4953–4968. doi: 10.1021/acs.biochem.5b00565. PubMed DOI PMC

Powell D.J., Hajduch E., Kular G., Hundal H.S. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol. Cell. Biol. 2003;23:7794–7808. doi: 10.1128/MCB.23.21.7794-7808.2003. PubMed DOI PMC

Arrese M., Cabrera D., Kalergis A.M., Feldstein A.E. Innate Immunity and Inflammation in NAFLD/NASH. Dig. Dis. Sci. 2016;61:1294–1303. doi: 10.1007/s10620-016-4049-x. PubMed DOI PMC

Farrell G.C., Haczeyni F., Chitturi S. Pathogenesis of NASH: How Metabolic Complications of Overnutrition Favour Lipotoxicity and Pro-Inflammatory Fatty Liver Disease. Adv. Exp. Med. Biol. 2018;1061:19–44. doi: 10.1007/978-981-10-8684-7_3. PubMed DOI

Ainslie D.A., Proietto J., Fam B.C., Thorburn A.W. Short-term, high-fat diets lower circulating leptin concentrations in rats. Am. J. Clin. Nutr. 2000;71:438–442. doi: 10.1093/ajcn/71.2.438. PubMed DOI

Benjafield A.V., Iwai N., Ishikawa K., Wang W.Y., Morris B.J. Overweight, but not hypertension, is associated with SAH polymorphisms in Caucasians with essential hypertension. Hypertens. Res. 2003;26:591–595. doi: 10.1291/hypres.26.591. PubMed DOI

Van der Sluis R. Analyses of the genetic diversity and protein expression variation of the acyl: CoA medium-chain ligases, ACSM2A and ACSM2B. Mol. Genet. Genom. 2018;293:1279–1292. doi: 10.1007/s00438-018-1460-3. PubMed DOI

Van der Sluis R., Erasmus E. Xenobiotic/medium chain fatty acid: CoA ligase—A critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin. Expert Opin. Drug Metab. Toxicol. 2016;12:1169–1179. doi: 10.1080/17425255.2016.1206888. PubMed DOI

St Lezin E., Liu W., Wang J.M., Yang Y., Qi N., Kren V., Zidek V., Kurtz T.W., Pravenec M. Genetic analysis of rat chromosome 1 and the Sa gene in spontaneous hypertension. Hypertension. 2000;35:225–230. doi: 10.1161/01.HYP.35.1.225. PubMed DOI

Walsh V., Somody L., Farrell A., Zhang B., Brown J., Pritchard C., Vincent M., Samani N.J. Analysis of the role of the SA gene in blood pressure regulation by gene targeting. Hypertension. 2003;41:1212–1218. doi: 10.1161/01.HYP.0000069010.28143.5C. PubMed DOI

Fujino T., Takei Y.A., Sone H., Ioka R.X., Kamataki A., Magoori K., Takahashi S., Sakai J., Yamamoto T.T. Molecular identification and characterization of two medium-chain acyl-CoA synthetases, MACS1 and the Sa gene product. J. Biol. Chem. 2001;276:35961–35966. doi: 10.1074/jbc.M106651200. PubMed DOI

Den Besten G., Lange K., Havinga R., van Dijk T.H., Gerding A., van Eunen K., Muller M., Groen A.K., Hooiveld G.J., Bakker B.M., et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;305:G900–G910. doi: 10.1152/ajpgi.00265.2013. PubMed DOI

Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012. PubMed DOI PMC

Ellis J.M., Bowman C.E., Wolfgang M.J. Metabolic and tissue-specific regulation of acyl-CoA metabolism. PLoS ONE. 2015;10:e0116587. doi: 10.1371/journal.pone.0116587. PubMed DOI PMC

Iwai N., Katsuya T., Mannami T., Higaki J., Ogihara T., Kokame K., Ogata J., Baba S. Association between SAH, an acyl-CoA synthetase gene, and hypertriglyceridemia, obesity, and hypertension. Circulation. 2002;105:41–47. doi: 10.1161/hc0102.101780. PubMed DOI

Telgmann R., Brand E., Nicaud V., Hagedorn C., Beining K., Schonfelder J., Brink-Spalink V., Schmidt-Petersen K., Matanis T., Vischer P., et al. SAH gene variants are associated with obesity-related hypertension in Caucasians: The PEGASE Study. J Hypertens. 2007;25:557–564. doi: 10.1097/HJH.0b013e3280144779. PubMed DOI

Guenard F., Bouchard-Mercier A., Rudkowska I., Lemieux S., Couture P., Vohl M.C. Genome-Wide Association Study of Dietary Pattern Scores. Nutrients. 2017;9:649. doi: 10.3390/nu9070649. PubMed DOI PMC

Hubner N., Wallace C.A., Zimdahl H., Petretto E., Schulz H., Maciver F., Mueller M., Hummel O., Monti J., Zidek V., et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 2005;37:243–253. doi: 10.1038/ng1522. PubMed DOI

GeneNetwork. [(accessed on 23 February 2021)]; Available online: http://www.genenetwork.org/

Gopal R., Selvarasu K., Pandian P.P., Ganesan K. Integrative transcriptome analysis of liver cancer profiles identifies upstream regulators and clinical significance of ACSM3 gene expression. Cell. Oncol. 2017;40:219–233. doi: 10.1007/s13402-017-0321-0. PubMed DOI

Ruan H.Y., Yang C., Tao X.M., He J., Wang T., Wang H., Wang C., Jin G.Z., Jin H.J., Qin W.X. Downregulation of ACSM3 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Am. J. Cancer Res. 2017;7:543–553. PubMed PMC

Seda O. (Charles University, Prague, Czech Republic). Personal communication. 2021.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace