Cardiometabolic Parameters and Transcription Factors in Rat Models of Prehypertension With or Without Hypertriglyceridemia: Focus on NRF2 and PPARalpha Gene Expression

. 2025 Dec 31 ; 74 (Suppl 2) : S245-S257.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41532631

This study investigated selected cardiovascular, hepatic, and metabolic parameters, including Nfe2l2, Hmox1 (an NRF2 target gene), and Ppara gene expression, in adult male normotensive Wistar-Kyoto (WKY), borderline hypertensive (BHR) and hereditary hypertriglyceridemic (HTG) rats. BHR and HTG rats exhibited increased blood pressure vs. WKY, but there were no differences in blood pressure of BHR and HTG rats. In contrast, HTG had elevated hematocrit, triacylglycerol levels, glycemia and atherogenic index of plasma, and decreased total cholesterol and HDL-cholesterol compared to BHR rats. In addition, nitric oxide synthase activity in the heart and liver was significantly reduced in HTG vs. BHR. Gene expressions of Nfe2l2, Ppara, and Hmox1 were significantly elevated in the hearts of HTG rats compared to both WKY and BHR. In contrast, hepatic expression levels of Nfe2l2 and Hmox1 were significantly reduced in BHR and HTG compared to WKY, while Ppara expression in the liver was significantly reduced in HTG vs. both BHR and WKY. Vascular studies revealed that endothelium-dependent relaxation was reduced in HTG rats vs. BHR, suggesting a dominant effect of hypertriglyceridemia, while endothelium-independent relaxation was reduced in both HTG and BHR rats vs. WKY, suggesting a dominant effect of prehypertension in this vascular bed. Contraction responses were also more pronounced in HTG rats vs. BHR. Overall, this study showed that inherited hypertriglyceridemia (combined with prehypertension) alters vascular function and redox-metabolic balance in a tissue-dependent manner and represents a more significant cardiometabolic risk in later periods of life than prehypertension itself.

Zobrazit více v PubMed

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16:223–237. doi: 10.1038/s41581-019-0244-2. PubMed DOI PMC

Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DW, Materson BJ, Oparil S, Wright JT, Roccella EJ. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289:2560–2571. doi: 10.1001/jama.289.19.2560. PubMed DOI

Zuin M, Tognola C, Maloberti A, Parati G, Di Fusco SA, Gil Ad V, Armata D, Valle CD, Colivicchi F, Bilato C, Grimaldi M, Oliva F, Temporelli PL. Advances in hypertension management: insights from the latest European guidelines. J Cardiovasc Dev Dis. 2025;12:155. doi: 10.3390/jcdd12040155. PubMed DOI PMC

McEvoy JW, McCarthy CP, Bruno RM, Kahan T, Kjeldsen SE, Redon J, Schmieder RE, Tsioufis K, Williams B, Mancia G. 2024 ESC guidelines for the management of elevated blood pressure and hypertension: developed by the task force on the management of elevated blood pressure and hypertension of the European Society of Cardiology (ESC) and endorsed by the European Society of Endocrinology (ESE) and the European Stroke Organisation (ESO) Eur Heart J. 2024;45:3912–4018. doi: 10.1093/eurheartj/ehae178. PubMed DOI

Brnoliakova Z, Knezl V, Sotnikova R, Gasparova Z. Metabolic syndrome in hypertriglyceridemic rats: effects of antioxidants. Physiol Res. 2023;72:S31–S35. doi: 10.33549/physiolres.935021. PubMed DOI PMC

Bernatova I, Puzserova A, Balis P, Sestakova N, Kluknavsky M. Chronic stress produces persistent increases in plasma corticosterone, reductions in brain and cardiac nitric oxide production, and delayed alterations in endothelial function in young prehypertensive rats. Front Physiol. 2018;9:1179. doi: 10.3389/fphys.2018.01179. PubMed DOI PMC

Zicha J, Pechanova O, Cacanyiova S, Cebova M, Kristek F, Török J, Simko F, Dobešová Z, Kuneš J. Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res. 2006;55(Suppl 1):S49–63. doi: 10.33549/physiolres.930000.55.S1.49. PubMed DOI

Savic B, Brkljacic J, Glumac S, Brkic L, Markelic M, Milinkovic D, Korac A, Korac B. Effects of salt and stress on blood pressure parameters and antioxidant enzyme function in the heart and aorta of borderline hypertensive rats. Exp Physiol. 2023;108:946–960. doi: 10.1113/EP090714. PubMed DOI PMC

Shimoda H, Tanaka J, Kikuchi M, Fukuda T, Ito H, Hatano T. Effect of polyphenol-rich extract from walnut on diet-induced hypertriglyceridemia in mice via enhancement of fatty acid oxidation in the liver. J Agric Food Chem. 2009;57:1786–1792. doi: 10.1021/jf803441c. PubMed DOI

Hao Y, Miao J, Liu W, Peng L, Chen Y, Zhong Q. Formononetin protects against cisplatin-induced acute kidney injury through activation of the PPARα/Nrf2/HO-1/NQO1 pathway. Int J Mol Med. 2021;47:511–522. doi: 10.3892/ijmm.2020.4805. PubMed DOI PMC

González-Mañán D, D’Espessailles A, Dossi CG, San Martín M, Mancilla RA, Tapia GS. Rosa mosqueta oil prevents oxidative stress and inflammation through the upregulation of PPAR-α and NRF2 in C57BL/6J mice fed a high-fat diet. J Nutr. 2017;147:579–588. doi: 10.3945/jn.116.243261. PubMed DOI

Cacanyiova S, Berenyiova A, Malinska H, Kluknavsky M, Micurova A, Dovinova I, Bernatova I. Female prediabetic rats are protected from vascular dysfunction: the role of nitroso and sulfide signaling. Biol Res. 2024;57:91. doi: 10.1186/s40659-024-00575-1. PubMed DOI PMC

Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, Leon R, Lopez MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Schmidt H, Vega M, Vijayan V, Wildemann B, Guney E. Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev. 2018;70:348–383. doi: 10.1124/pr.117.014753. PubMed DOI

Cuadrado A, Cazalla E, Bach A, Reuter S, Lapchak PH, Cuadrado A, Robledinos-Antón N, Abbas K, Dinkova-Kostova AT, Zhang DD. Health position paper and redox perspectives - bench to bedside transition for pharmacological regulation of NRF2 in noncommunicable diseases. Redox Biol. 2025;81:103569. doi: 10.1016/j.redox.2025.103569. PubMed DOI PMC

Kluknavsky M, Micurova A, Cebova M, Saman E, Cacanyiova S, Bernatova I. MLN-4760 induces oxidative stress without blood pressure and behavioural alterations in SHRs: roles of Nfe2l2 gene, nitric oxide and hydrogen sulfide. Antioxidants. 2022;11:2385. doi: 10.3390/antiox11122385. PubMed DOI PMC

Hu ML, Frankel EN, Leibovitz BE, Tappel AL. Effect of dietary lipids and vitamin E on in vitro lipid peroxidation in rat liver and kidney homogenates. J Nutr. 1989;119:1574–1582. doi: 10.1093/jn/119.11.1574. PubMed DOI

Liskova S, Balis P, Micurova A, Gazova A, Cacanyiova S, Bernatova I. Effect of iron oxide nanoparticles on vascular function and nitric oxide production in acute stress-exposed rats. Physiol Res. 2020;69:1067–1083. doi: 10.33549/physiolres.934567. PubMed DOI PMC

Berenyiova A, Bernatova I, Zemancikova A, Cacanyiova S, Kluknavsky M, Puzserova A. Vascular effects of low-dose ACE2 inhibitor MLN-4760-benefit or detriment in essential hypertension? Biomedicines. 2022;10:38. doi: 10.3390/biomedicines10010038. PubMed DOI PMC

Balis P, Berenyiova A, Radosinska J, Kvandova M, Bernatova I, Puzserova A. High concentration of uric acid failed to affect endothelial function of small mesenteric arteries, femoral arteries and aortas from aged Wistar-Kyoto rats. J Physiol Pharmacol. 2020;71:3. PubMed

Bernatova I. Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? Biomed Res Int. 2014;2014:598271. doi: 10.1155/2014/598271. PubMed DOI PMC

Kunes J, Hojna S, Mrazikova L, Montezano A, Touyz RM, Maletinska L. Obesity, cardiovascular and neurodegenerative diseases: potential common mechanisms. Physiol Res. 2023;72(Suppl 2):S73–S90. doi: 10.33549/physiolres.935109. PubMed DOI PMC

Torok J. Participation of nitric oxide in different models of experimental hypertension. Physiol Res. 2008;57:813–825. doi: 10.33549/physiolres.931581. PubMed DOI

Ueno T, Tremblay J, Kunes J, Zicha J, Dobesova Z, Pravenec M, Hamet P. Gender-specific genetic determinants of blood pressure and organ weight: pharmacogenetic approach. Physiol Res. 2003;52:689–700. doi: 10.33549/physiolres.930000.52.689. PubMed DOI

Trnovska J, Svoboda P, Pelantova H, Huttl M, Janovska P, Malinska H, Kazdova L. Complex positive effects of SGLT-2 inhibitor empagliflozin in the liver, kidney and adipose tissue of hereditary hypertriglyceridemic rats: possible contribution of attenuation of cell senescence and oxidative stress. Int J Mol Sci. 2021;22:10606. doi: 10.3390/ijms221910606. PubMed DOI PMC

Bernatova I, Csizmadiova Z, Kopincova J, Puzserova A. Vascular function and nitric oxide production in chronic social-stress-exposed rats with various family history of hypertension. J Physiol Pharmacol. 2007;58:487–501. PubMed

Puzserova A, Kopincova J, Slezak P, Balis P, Bernatova I. Endothelial dysfunction in femoral artery of the hypertensive rats is nitric oxide independent. Physiol Res. 2013;62:615–629. doi: 10.33549/physiolres.932517. PubMed DOI

Berenyiova A, Balis P, Kluknavsky M, Bernatova I, Cacanyiova S, Puzserova A. Age- and hypertension-related changes in NOS/NO/sGC-derived vasoactive control of rat thoracic aortae. Oxid Med Cell Longev. 2022;2022:7742509. doi: 10.1155/2022/7742509. PubMed DOI PMC

Zourek M, Kyselova P, Mudra J, Kristek F, Kazdova L, Kopecky J. The relationship between glycemia, insulin and oxidative stress in hereditary hypertriglyceridemic rat. Physiol Res. 2008;57:531–538. doi: 10.33549/physiolres.931255. PubMed DOI

Koenig W, Sund M, Ernst E, Keil U, Rosenthal J, Hombach V. Association between plasma viscosity and blood pressure. Results from the MONICA-project Augsburg. Am J Hypertens. 1991;4:529–536. doi: 10.1093/ajh/4.6.529. PubMed DOI

Eslami Z, Moghanlou AE, Kandi YMNP, Arabi MS, Norouzi A, Joshaghani H. Atorvastatin and flaxseed effects on biochemical indices and hepatic fat of NAFLD model in rats. Adv Biomed Res. 2023;12:98. doi: 10.4103/abr.abr_21_22. PubMed DOI PMC

Liu C, Xu X, He X, Li X, Liu X, Xie Y, Hu C, Zhou Z. Activation of the Nrf-2/HO-1 signaling axis can alleviate metabolic syndrome in cardiovascular disease. Ann Med. 2023;55:2284890. doi: 10.1080/07853890.2023.2284890. PubMed DOI PMC

Haluzík MM, Haluzík M. PPAR-alpha and insulin sensitivity. Physiol Res. 2006;55:115–122. doi: 10.33549/physiolres.930744. PubMed DOI

Huttl M, Markova I, Miklankova D, Placha I, Haluzik M, Malinska H. Hypolipidemic and insulin sensitizing effects of salsalate beyond suppressing inflammation in a prediabetic rat model. Front Pharmacol. 2023;14:1117683. doi: 10.3389/fphar.2023.1117683. PubMed DOI PMC

Soukop J, Kazdova L, Huttl M, Malinska H, Miklankova D, Buresova J, Drahota Z, Oliyarnyk O, Cajka T, Bardova K, Kopecky J. Beneficial effect of fenofibrate in combination with silymarin on parameters of hereditary hypertriglyceridemia-induced disorders in an animal model of metabolic syndrome. Biomedicines. 2025;13:212. doi: 10.3390/biomedicines13010212. PubMed DOI PMC

Kaimoto S, Hoshino A, Ariyoshi M, Okawa Y, Tateishi S, Ono K, Saito T, Hara H, Akazawa H, Toko H, Minamino T, Nagai T, Komuro I. Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am J Physiol Heart Circ Physiol. 2017;312:H399–H407. doi: 10.1152/ajpheart.00553.2016. PubMed DOI

Cho YE, Kim DK, Seo W, Gao B, Yoo SH, Song BJ. Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1-mediated oxidative and nitrative stress. Hepatology. 2021;73:2180–2195. doi: 10.1002/hep.30652. PubMed DOI PMC

Cunningham RP, Sheldon RD, Rector RS. The emerging role of hepatocellular eNOS in non-alcoholic fatty liver disease development. Front Physiol. 2020;11:767. doi: 10.3389/fphys.2020.00767. PubMed DOI PMC

Cacanyiova S, Golas S, Zemancikova A, Tothova L, Dovinova I, Bernatova I. The vasoactive role of perivascular adipose tissue and the sulfide signaling pathway in a nonobese model of metabolic syndrome. Biomolecules. 2021;11:108. doi: 10.3390/biom11010108. PubMed DOI PMC

Vrankova S, Barta A, Klimentova J, Drabikova K, Dovinova I, Janega P, Pechanova O, Bernatova I. The regulatory role of nuclear factor kappa B in the heart of hereditary hypertriglyceridemic rat. Oxid Med Cell Longev. 2016;2016:9814038. doi: 10.1155/2016/9814038. PubMed DOI PMC

Kristek F, Edelsteinova S, Sebokova E, Kyselovic J, Klimes I. Structural changes in the aorta of the hereditary hypertriglyceridemic rat. Ann N Y Acad Sci. 1997;827:514–520. doi: 10.1111/j.1749-6632.1997.tb51862.x. PubMed DOI

Zicha J, Vaněčková I. Altered balance between vasoconstrictor and vasodilator systems in experimental hypertension. Physiol Res. 2024;73:901–928. doi: 10.33549/physiolres.935523. PubMed DOI PMC

Banos G, Carvajal K, Cardoso G, Zamora J, Franco M. Vascular reactivity and effect of serum in a rat model of hypertriglyceridemia and hypertension. Am J Hypertens. 1997;10:379–388. https://doi.org/10.1016/S0895-7061(97)90520-3, https://doi.org/10.1016/S0895-7061(96)00400-1. PubMed DOI

Kusterer K, Pohl T, Fortmeyer HP, Schwaninger M, Heininger K, Lemmer B. Chronic selective hypertriglyceridemia impairs endothelium-dependent vasodilatation in rats. Cardiovasc Res. 1999;42:783–793. doi: 10.1016/S0008-6363(98)00331-9. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...