Effect of iron oxide nanoparticles on vascular function and nitric oxide production in acute stress-exposed rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33129250
PubMed Central
PMC8549880
DOI
10.33549/physiolres.934567
PII: 934567
Knihovny.cz E-zdroje
- MeSH
- cévní endotel účinky léků metabolismus MeSH
- fyziologický stres účinky léků MeSH
- krysa rodu Rattus MeSH
- magnetické nanočástice oxidů železa aplikace a dávkování chemie MeSH
- oxid dusnatý biosyntéza metabolismus MeSH
- potkani inbrední WKY MeSH
- synthasa oxidu dusnatého metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid dusnatý MeSH
- synthasa oxidu dusnatého MeSH
We investigated whether polyethylene glycol-coated Fe3O4 nanoparticles (IONs), acute stress and their combination modifies vascular functions, nitric oxide synthase (NOS) activity, mean arterial pressure (MAP) as well as hepcidin and ferritin H gene expressions in Wistar-Kyoto rats. Rats were divided into control, ION-treated rats (1 mg Fe/kg i.v.), repeated acute air-jet stress-exposed rats and IONs-and-stress co-exposed rats. Maximal acetylcholine (ACh)-induced and sodium nitroprusside (SNP)-induced relaxations in the femoral arteries did not differ among the groups. IONs alone significantly elevated the N?-nitro-L-arginine methyl ester (L-NAME)-sensitive component of ACh-induced relaxation and reduced the sensitivity of vascular smooth muscle cells to SNP. IONs alone also elevated NOS activity in the brainstem and hypothalamus, reduced NOS activity in the kidneys and had no effect in the liver. Acute stress alone failed to affect vascular function and NOS activities in all the tissues investigated but it elevated ferritin H expression in the liver. In the ION-and-stress group, NOS activity was elevated in the kidneys and liver, but reduced in the brainstem and hypothalamus vs. IONs alone. IONs also accentuated air-jet stress-induced MAP responses vs. stress alone. Interestingly, stress reduced ION-originated iron content in blood and liver while it was elevated in the kidneys. In conclusion, the results showed that 1) acute administration of IONs altered vascular function, increased L-NAME-sensitive component of ACh-induced relaxation and had tissue-dependent effects on NOS activity, 2) ION effects were considerably reduced by co-exposure to repeated acute stress, likely related to decrease of ION-originated iron in blood due to elevated decomposition and/or excretion.
Zobrazit více v PubMed
ALMEIDA JP, CHEN AL, FOSTER A, DREZEK R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 2011;6:815–835. doi: 10.2217/nnm.11.79. PubMed DOI
ANDRADE RGD, VELOSO SRS, CASTANHEIRA EMS. Shape anisotropic iron oxide-based magnetic nanoparticles: synthesis and biomedical applications. Int J Mol Sci. 2020;21 doi: 10.3390/ijms21072455. PubMed DOI PMC
ASTANINA K, SIMON Y, CAVELIUS C, PETRY S, KRAEGELOH A, KIEMER AK. Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production. Acta Biomater. 2014;10:4896–4911. doi: 10.1016/j.actbio.2014.07.027. PubMed DOI
BARATLI Y, CHARLES AL, WOLFF V, BEN TAHAR L, SMIRI L, BOUITBIR J, ZOLL J, PIQUARD F, TEBOURBI O, SAKLY M, ABDELMELEK H, GENY B. Impact of iron oxide nanoparticles on brain, heart, lung, liver and kidneys mitochondrial respiratory chain complexes activities and coupling. Toxicol In Vitro. 2013;27:2142–2148. doi: 10.1016/j.tiv.2013.09.006. PubMed DOI
BEHULIAK M, PINTEROVA M, BENCZE M, PETROVA M, LISKOVA S, KAREN P, KUNES J, VANECKOVA I, ZICHA J. Ca2+ sensitization and Ca2+ entry in the control of blood pressure and adrenergic vasoconstriction in conscious Wistar-Kyoto and spontaneously hypertensive rats. J Hypertens. 2013;31:2025–2035. doi: 10.1097/HJH.0b013e328362adb3. PubMed DOI
BENCZE M, VAVŘÍNOVÁ A, ZICHA J, BEHULIAK M. Pharmacological suppression of endogenous glucocorticoid synthesis attenuated blood pressure and heart rate response to acute restraint in wistar rats. Physiol Res. 2020;69:415–426. doi: 10.33549/physiolres.934432. PubMed DOI PMC
BENCZE M, BEHULIAK M, VAVRINOVA A, ZICHA J. Broad-range TRP channel inhibitors (2-APB, flufenamic acid, SKF-96365) affect differently contraction of resistance and conduit femoral arteries of rat. Eur J Pharmacol. 2015;765:533–540. doi: 10.1016/j.ejphar.2015.09.014. PubMed DOI
BERNATOVA I. Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? Biomed Res Int. 2014;2014:598271. doi: 10.1155/2014/598271. PubMed DOI PMC
BERNATOVA I, BALIS P, GOGA R, BEHULIAK M, ZICHA J, SEKAJ I. Lack of reactive oxygen species deteriorates blood pressure regulation in acute stress. Physiol Res. 2016;65:S381–S390. doi: 10.33549/physiolres.933433. PubMed DOI
BOSTAN HB, REZAEE R, VALOKALA MG, TSAROUHAS K, GOLOKHVAST K, TSATSAKIS AM, KARIMI G. Cardiotoxicity of nano-particles. Life Sci. 2016;165:91–99. doi: 10.1016/j.lfs.2016.09.017. PubMed DOI
COURTOIS A, ANDUJAR P, LADEIRO Y, DUCRET T, ROGERIEUX F, LACROIX G, BAUDRIMONT I, GUIBERT C, ROUX E, CANAL-RAFFIN M, BROCHARD P, MARANO F, MARTHAN R, MULLER B. Effect of engineered nanoparticles on vasomotor responses in rat intrapulmonary artery. Toxicol Appl Pharmacol. 2010;245:203–210. doi: 10.1016/j.taap.2010.03.002. PubMed DOI
DALZON B, TORRES A, REYMOND S, GALLET B, SAINT-ANTONIN F, COLLIN-FAURE V, MORISCOT C, FENEL D, SCHOEHN G, AUDE-GARCIA C, RABILLOUD T. Influences of nanoparticles characteristics on the cellular responses: the example of iron oxide and macrophages. Nanomaterials (Basel) 2020;10 doi: 10.3390/nano10020266. PubMed DOI PMC
De DOMENICO I, ZHANG TY, KOENING CL, BRANCH RW, LONDON N, LO E, DAYNES RA, KUSHNER JP, LI D, WARD DM, KAPLAN J. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest. 2010;120:2395–2405. doi: 10.1172/JCI42011. PubMed DOI PMC
DOBIAS L, PETROVA M, VOJTKO R, KRISTOVA V. Long-term treatment with hesperidin improves endothelium-dependent vasodilation in femoral artery of spontaneously hypertensive rats: the involvement of NO-synthase and Kv channels. Phytother Res. 2016;30:1665–1671. doi: 10.1002/ptr.5670. PubMed DOI
DRÁBKOVÁ N, HOJNÁ S, ZICHA J, VANĚČKOVÁ I. Contribution of selected vasoactive systems to blood pressure regulation in two models of chronic kidney disease. Physiol Res. 2020;69:405–414. doi: 10.33549/physiolres.934392. PubMed DOI PMC
DUKHINOVA MS, PRILEPSKII AY, SHTIL AA, VINOGRADOV VV. Metal oxide nanoparticles in therapeutic regulation of macrophage functions. Nanomaterials (Basel) 2019;9 doi: 10.3390/nano9111631. PubMed DOI PMC
EL HADI H, Di VINCENZO A, VETTOR R, ROSSATO M. Relationship between heart disease and liver disease: a two-way street. Cells. 2020;9 doi: 10.3390/cells9030567. PubMed DOI PMC
IVERSEN NK, FRISCHE S, THOMSEN K, LAUSTSEN C, PEDERSEN M, HANSEN PB, BIE P, FRESNAIS J, BERRET JF, BAATRUP E, WANG T. Superparamagnetic iron oxide polyacrylic acid coated gamma-Fe2O3 nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice. Toxicol Appl Pharmacol. 2013;266:276–288. doi: 10.1016/j.taap.2012.10.014. PubMed DOI
KANBAR R, OREA V, CHAPUIS B, BARRES C, JULIEN C. A transfer function method for the continuous assessment of baroreflex control of renal sympathetic nerve activity in rats. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1938–R1946. doi: 10.1152/ajpregu.00374.2007. PubMed DOI
KENZAOUI BH, BERNASCONI CC, HOFMANN H, JUILLERAT-JEANNERET L. Evaluation of uptake and transport of ultrasmall superparamagnetic iron oxide nanoparticles by human brain-derived endothelial cells. Nanomedicine (Lond) 2012;7:39–53. doi: 10.2217/nnm.11.85. PubMed DOI
KISHI T. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension. Hypertens Res. 2013;36:845–851. doi: 10.1038/hr.2013.73. PubMed DOI
KLUKNAVSKY M, BALIS P, SKRATEK M, MANKA J, BERNATOVA I. (−)-Epicatechin reduces the blood pressure of young borderline hypertensive rats during the post-treatment period. Antioxidants (Basel) 2020;9 doi: 10.3390/antiox9020096. PubMed DOI PMC
KUMAGAI H, OSHIMA N, MATSUURA T, IIGAYA K, IMAI M, ONIMARU H, SAKATA K, OSAKA M, ONAMI T, TAKIMOTO C, KAMAYACHI T, ITOH H, SARUTA T. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens Res. 2012;35:132–141. doi: 10.1038/hr.2011.208. PubMed DOI PMC
LEE GK, MAHESHRI N, KASPAR B, SCHAFFER DV. PEG conjugation moderately protects adeno-associated viral vectors against antibody neutralization. Biotechnol Bioeng. 2005;92:24–34. doi: 10.1002/bit.20562. PubMed DOI
LISKOVA S, KUNES J, ZICHA J. Nifedipine-sensitive vascular reactivity of femoral arteries in WKY: the effects of pertussis toxin pretreatment and endothelium removal. Physiol Res. 2007;56:663–666. PubMed
LISKOVA S, PETROVA M, KAREN P, BEHULIAK M, ZICHA J. Contribution of Ca(2+)-dependent Cl(−) channels to norepinephrine-induced contraction of femoral artery is replaced by increasing EDCF contribution during ageing. Biomed Res Int. 2014;2014:289361. doi: 10.1155/2014/289361. PubMed DOI PMC
LISKOVA S, PETROVA M, KAREN P, KUNES J, ZICHA J. Effects of aging and hypertension on the participation of endothelium-derived constricting factor (EDCF) in norepinephrine-induced contraction of rat femoral artery. Eur J Pharmacol. 2011;667:265–270. doi: 10.1016/j.ejphar.2011.05.031. PubMed DOI
LISKOVA S, PETROVA M, KAREN P, KUNES J, ZICHA J. Influence of calcium-dependent potassium channel blockade and nitric oxide inhibition on norepinephrine-induced contractions in two forms of genetic hypertension. J Am Soc Hypertens. 2010;4:128–134. doi: 10.1016/j.jash.2010.02.006. PubMed DOI
LONGMIRE M, CHOYKE PL, KOBAYASHI H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 2008;3:703–717. doi: 10.2217/17435889.3.5.703. PubMed DOI PMC
McBRYDE FD, LIU BH, ROLOFF EV, KASPAROV S, PATON JFR. Hypothalamic paraventricular nucleus neuronal nitric oxide synthase activity is a major determinant of renal sympathetic discharge in conscious Wistar rats. Exp Physiol. 2018;103:419–428. doi: 10.1113/EP086744. PubMed DOI
MEWISSEN MW. Stenting in the femoropopliteal arterial segment. Tech Vasc Interv Radiol. 2005;8:146–149. doi: 10.1053/j.tvir.2006.05.003. PubMed DOI
NAKAMOTO M, OHYA Y, SAKIMA A, YAMAZATO M, TAKISHITA S. Azelnidipine attenuates cardiovascular and sympathetic responses to air jet stress in genetically hypertensive rats. Hypertens Res. 2007;30:359–366. doi: 10.1291/hypres.30.359. PubMed DOI
NUNES AD, RAMALHO LS, SOUZA AP, MENDES EP, COLUGNATI DB, ZUFELATO N, SOUSA MH, BAKUZIS AF, CASTRO CH. Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects. Int J Nanomedicine. 2014;9:3299–3312. doi: 10.2147/IJN.S64254. PubMed DOI PMC
OH N, PARK JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9 Suppl. 2014;1:51–63. doi: 10.2147/IJN.S26592. PubMed DOI PMC
PECHANOVA O, MATUSKOVA J, CAPIKOVA D, JENDEKOVA L, PAULIS L, SIMKO F. Effect of spironolactone and captopril on nitric oxide and S-nitrosothiol formation in kidney of L-NAME-treated rats. Kidney Int. 2006;70:170–176. doi: 10.1038/sj.ki.5001513. PubMed DOI
POLLER WC, PIEBER M, BOEHM-STURM P, RAMBERGER E, KARAMPELAS V, MOLLER K, SCHLEICHER M, WIEKHORST F, LOWA N, WAGNER S, SCHNORR J, TAUPITZ M, STANGL K, STANGL V, LUDWIG A. Very small superparamagnetic iron oxide nanoparticles: Long-term fate and metabolic processing in atherosclerotic mice. Nanomedicine. 2018;14:2575–2586. doi: 10.1016/j.nano.2018.07.013. PubMed DOI
PUZSEROVA A, BERNATOVA I. Blood pressure regulation in stress: focus on nitric oxide-dependent mechanisms. Physiol Res. 2016;65(Suppl 3):S309–S342. doi: 10.33549/physiolres.933442. PubMed DOI
PUZSEROVA A, KOPINCOVA J, SLEZAK P, BALIS P, BERNATOVA I. Endothelial dysfunction in femoral artery of the hypertensive rats is nitric oxide independent. Physiol Res. 2013;62:615–629. doi: 10.33549/physiolres.932517. PubMed DOI
RAUCHOVÁ H, PECHÁNOVÁ O, KUNES J, VOKURKOVÁ M, DOBESOVÁ Z, ZICHA J. Chronic N-acetylcysteine administration prevents development of hypertension in N(omega)-nitro-L-arginine methyl ester-treated rats: the role of reactive oxygen species. Hypertens Res. 2005;28:475–482. doi: 10.1291/hypres.28.475. PubMed DOI
SKŘÁTEK M, DVUREČENSKIJ A, KLUKNAVSKÝ M, BARTA A, BALIŠ P, MIČUROVÁ A, CIGÁŇ A, ECKSTEIN-ANDICSOVÁ A, MAŇKA J, BERNÁTOVÁ I. Sensitive SQUID bio-magnetometry for determination and differentiation of biogenic iron and iron oxide nanoparticles in biological samples. Nanomaterials. 2020;10:1993. doi: 10.3390/nano10101993. PubMed DOI PMC
SLEZAK P, PUZSEROVA A, BALIS P, SESTAKOVA N, MAJZUNOVA M. Genotype-related effect of crowding stress on blood pressure and vascular function in young female rats. Biomed Res Int. 2014;2014:413629. doi: 10.1155/2014/413629. PubMed DOI PMC
STEFANO GB, FRICCHIONE GL, ESCH T. Relaxation: molecular and physiological significance. Med Sci Monit. 2006;12:Hy21–Hy31. PubMed
STOJICIĆ S, MILUTINOVIĆ-SMILJANIĆ S, SARENAC O, MILOSAVLJEVIĆ S, PATON JF, MURPHY D, JAPUNDZIĆ-ZIGON N. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats. Neuropharmacology. 2008;54:824–836. doi: 10.1016/j.neuropharm.2007.12.013. PubMed DOI
SU L, HAN L, GE F, ZHANG SL, ZHANG Y, ZHAO BX, ZHAO J, MIAO JY. The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro and in vivo. J Hazard Mater. 2012;235–236:316–325. doi: 10.1016/j.jhazmat.2012.08.003. PubMed DOI
SUK JS, XU Q, KIM N, HANES J, ENSIGN LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51. doi: 10.1016/j.addr.2015.09.012. PubMed DOI PMC
SUN J, WANG S, ZHAO D, HUN FH, WENG L, LIU H. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Cell Biol Toxicol. 2011;27:333–342. doi: 10.1007/s10565-011-9191-9. PubMed DOI
TORTI FM, TORTI SV. Regulation of ferritin genes and protein. Blood. 2002;99:3505–3516. doi: 10.1182/blood.V99.10.3505. PubMed DOI
VUKOVA TI, DIMITROV SD, GAGOV HS, DIMITROVA DZ. In focus: Fe3O4 nanoparticles and human mesenteric artery interaction in vitro. Nanomedicine (Lond) 2016;11:921–932. doi: 10.2217/nnm.16.25. PubMed DOI
WANG J, RAO H, WETMORE GS, FURLAN PM, KORCZYKOWSKI M, DINGES DF, DETRE JA. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc Natl Acad Sci U S A. 2005;102:17804–17809. doi: 10.1073/pnas.0503082102. PubMed DOI PMC
WANG YX. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg. 2011;1:35–40. PubMed PMC
WSOL A, WOJNO O, PUCHALSKA L, WRZESIEN R, SZCZEPANSKA-SADOWSKA E, CUDNOCH-JEDRZEJEWSKA A. Impaired hypotensive effects of centrally acting oxytocin in SHR and WKY rats exposed to chronic mild stress. Am J Physiol Regul Integr Comp Physiol. 2020;318:R160–r172. doi: 10.1152/ajpregu.00050.2019. PubMed DOI
XIONG F, WANG H, FENG Y, LI Y, HUA X, PANG X, ZHANG S, SONG L, ZHANG Y, GU N. Cardioprotective activity of iron oxide nanoparticles. Sci Rep. 2015;5:8579. doi: 10.1038/srep08579. PubMed DOI PMC
YAMAZATO M, OHYA Y, NAKAMOTO M, SAKIMA A, TAGAWA T, HARADA Y, NABIKA T, TAKISHITA S. Sympathetic hyperreactivity to air jet stress in the chromosome 1 blood pressure quantitative trait locus congenic rats. Am J Physiol Regul Integr Comp Physiol. 2006;290:R709–714. doi: 10.1152/ajpregu.00610.2005. PubMed DOI
YARJANLI Z, GHAEDI K, ESMAEILI A, RAHGOZAR S, ZARRABI A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neuroscience. 2017;18:51. doi: 10.1186/s12868-017-0369-9. PubMed DOI PMC
YOFFE S, LESHUK T, EVERETT P, GU F. Superparamagnetic iron oxide nanoparticles (SPIONs): synthesis and surface modification techniques for use with MRI and other biomedical applications. Curr Pharm Des. 2013;19:493–509. doi: 10.2174/138161213804143707. PubMed DOI
ZHANG YN, POON W, TAVARES AJ, McGILVRAY ID, CHAN WCW. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–348. doi: 10.1016/j.jconrel.2016.01.020. PubMed DOI
ZHU MT, WANG Y, FENG WY, WANG B, WANG M, OUYANG H, CHAI ZF. Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. J Nanosci Nanotechnol. 2010;10:8584–8590. doi: 10.1166/jnn.2010.2488. PubMed DOI