Effects of Iron Nanoparticles Administration on Ischemia/Reperfusion Injury in Isolated Hearts of Male Wistar Rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
37294119
PubMed Central
PMC10292812
DOI
10.33549/physiolres.935112
PII: 935112
Knihovny.cz E-zdroje
- MeSH
- ischemické přivykání * MeSH
- krysa rodu Rattus MeSH
- myokard metabolismus MeSH
- potkani Wistar MeSH
- přivykání k ischémii * metody MeSH
- reperfuzní poškození myokardu * metabolismus MeSH
- srdce MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- železo MeSH
Iron is an essential mineral participating in numerous biological processes in the organism under physiological conditions. However, it may be also involved in the pathological mechanisms activated in various cardiovascular diseases including myocardial ischemia/reperfusion (I/R) injury, due to its involvement in reactive oxygen species (ROS) production. Furthermore, iron has been reported to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". On the other hand, iron may be also involved in the adaptive processes of ischemic preconditioning (IPC). This study aimed to elucidate whether small amounts of iron may modify the cardiac response to I/R in isolated perfused rat hearts and their protection by IPC. Pretreatment of the hearts with iron nanoparticles 15 min prior to sustained ischemia (iron preconditioning, Fe-PC) did not attenuate post-I/R contractile dysfunction. Recovery of left ventricular developed pressure (LVDP) was significantly improved only in the group with combined pretreatment with iron and IPC. Similarly, the rates of contraction and relaxation [+/-(dP/dt)max] were almost completely restored in the group preconditioned with a combination of iron and IPC but not with iron alone. In addition, the severity of reperfusion arrhythmias was reduced only in the iron+IPC group. No changes in protein levels of "survival" kinases of the RISK pathway (Reperfusion Injury Salvage Kinase) were found except for reduced caspase 3 levels in both preconditioned groups. The results indicate that a failure to precondition rat hearts with iron may be associated with the absent upregulation of RISK proteins and the pro-ferroptotic effect manifested by reduced glutathione peroxidase 4 (GPX4) levels. However, combination with IPC suppressed the negative effects of iron resulting in cardioprotection.
Zobrazit více v PubMed
Hirst J. Mitochondrial complex I. Annu Rev Biochem. 2013;82:551–575. doi: 10.1146/annurev-biochem-070511-103700. PubMed DOI
Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19:164–174. PubMed PMC
von Haehling S, Ebner N, Evertz R, Ponikowski P, Anker SD. Iron deficiency in heart failure: an overview. JACC Heart Fail. 2019;7:36–46. doi: 10.1016/j.jchf.2018.07.015. PubMed DOI
González-Gómez MA, Belderbos S, Yañez-Vilar S, Piñeiro Y, Cleeren F, Bormans G, Deroose CM, Gsell W, Himmelreich U, Rivas J. Development of superparamagnetic nanoparticles coated with polyacrylic acid and aluminum hydroxide as an efficient contrast agent for multimodal imaging. Nanomaterials (Basel) 2019;9:1626. doi: 10.3390/nano9111626. PubMed DOI PMC
Rego GNA, Nucci MP, Mamani JB, Oliveira FA, Marti LC, Filgueiras IS, Ferreira JM, et al. Therapeutic efficiency of multiple applications of magnetic hyperthermia technique in glioblastoma using aminosilane coated iron oxide nanoparticles: in vitro and in vivo study. Int J Mol Sci. 2020;21:958. doi: 10.3390/ijms21030958. PubMed DOI PMC
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. doi: 10.1016/j.addr.2015.09.012. PubMed DOI PMC
Oleksa V, Bernátová I, Patsula V, Líšková S, Bališ P, Radošinská J, et al. Poly(ethylene glycol)-alendronate-coated magnetite nanoparticles do not alter cardiovascular functions and red blood cells' properties in hypertensive rats. Nanomaterials (Basel) 2021;11:1238. doi: 10.3390/nano11051238. PubMed DOI PMC
Líšková S, Bališ P, Mičurová A, Kluknavský M, Okuliarová M, Puzserová A, Škrátek M, et al. Effect of iron oxide nanoparticles on vascular function and nitric oxide production in acute stress-exposed rats. Physiol Res. 2020;69:1067–1083. doi: 10.33549/physiolres.934567. PubMed DOI PMC
Laubertova L, Dvorakova M, Balis P, Puzserova A, Zitnanova I, Bernatova I. preliminary findings on the effect of ultrasmall superparamagnetic iron oxide nanoparticles and acute stress on selected markers of oxidative stress in normotensive and hypertensive rats. Antioxidants (Basel) 2022;11:751. doi: 10.3390/antiox11040751. PubMed DOI PMC
Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res. 2003;531:81–92. doi: 10.1016/j.mrfmmm.2003.08.004. PubMed DOI
Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90:1–37. doi: 10.1007/s00204-015-1579-5. PubMed DOI
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:88. doi: 10.1038/s41419-020-2298-2. PubMed DOI PMC
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–1072. doi: 10.1016/j.cell.2012.03.042. PubMed DOI PMC
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79. doi: 10.1038/cdd.2015.158. PubMed DOI PMC
Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019;19:e1800311. doi: 10.1002/pmic.201800311. PubMed DOI
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116:2672–680. doi: 10.1073/pnas.1821022116. PubMed DOI PMC
Ravingerová T, Kindernay L, Barteková M, Ferko M, Adameová A, Zohdi V, Bernátová I, Ferenczyová K, Lazou A. The molecular mechanisms of iron metabolism and its role in cardiac dysfunction and cardioprotection. Int J Mol Sci. 2020;21:7889. doi: 10.3390/ijms21217889. PubMed DOI PMC
Berenshtein E, Vaisman B, Goldberg-Langerman C, Kitrossky N, Konijn AM, Chevion M. Roles of ferritin and iron in ischemic preconditioning of the heart. Mol Cell Biochem. 2002;234–235:283–92. doi: 10.1023/A:1015923202082. PubMed DOI
Munoz JP, Chiong M, García L, Troncoso R, Toro B, Pedrozo Z, Diaz-Elizondo J, Salas D, et al. Iron induces protection and necrosis in cultured cardiomyocytes: Role of reactive oxygen species and nitric oxide. Free Radic Biol Med. 2010;48:526–534. doi: 10.1016/j.freeradbiomed.2009.11.017. PubMed DOI
Galleano M, Tapia G, Puntarulo S, Varela P, Videla LA, Fernández V. Liver preconditioning induced by iron in a rat model of ischemia/reperfusion. Life Sci. 2011;89:221–28. doi: 10.1016/j.lfs.2011.06.005. PubMed DOI
Chevion M, Leibowitz S, Aye NN, Novogrodsky O, Singer A, Avizemer O, Bulvik B, Konijn AM, Berenshtein E. Heart protection by ischemic preconditioning: a novel pathway initiated by iron and mediated by ferritin. J Mol Cell Cardiol. 2008;45:839–845. doi: 10.1016/j.yjmcc.2008.08.011. PubMed DOI
Bulluck H, Yellon DM, Hausenloy DJ. Reducing myocardial infarct size: challenges and future opportunities. Heart. 2016;102:341–348. doi: 10.1136/heartjnl-2015-307855. PubMed DOI PMC
Végh A, Parratt JR. The role of mitochondrial K(ATP) channels in antiarrhythmic effects of ischaemic preconditioning in dogs. Br J Pharmacol. 2002;137:1107–1115. doi: 10.1038/sj.bjp.0704966. PubMed DOI PMC
Cave AC. Preconditioning induced protection against post-ischaemic contractile dysfunction: characteristics and mechanisms. J Mol Cell Cardiol. 1995;27:969–979. doi: 10.1016/0022-2828(95)90066-7. PubMed DOI
Matejíková J, Kucharská J, Pintérová M, Pancza D, Ravingerová T. Protection against ischemia-induced ventricular arrhythmias and myocardial dysfunction conferred by preconditioning in the rat heart: involvement of mitochondrial K(ATP) channels and reactive oxygen species. Physiol Res. 2009;58:9–19. doi: 10.33549/physiolres.931317. PubMed DOI
Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev. 2007;12:217–34. doi: 10.1007/s10741-007-9026-1. PubMed DOI
Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535–1549. doi: 10.1172/JCI19906. PubMed DOI PMC
Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015;116:674–699. doi: 10.1161/CIRCRESAHA.116.305348. PubMed DOI
Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol. 2011;50:940–950. doi: 10.1016/j.yjmcc.2011.02.018. PubMed DOI
Watanabe M, Okada T. Langendorff perfusion method as an ex vivo model to evaluate heart function in rats. Methods Mol Biol. 2018;1816:107–116. doi: 10.1007/978-1-4939-8597-5_8. PubMed DOI
Walker MJ, Curtis MJ, Hearse DJ, Campbell RW, Janse MJ, Yellon DM, Cobbe SM, et al. The Lambeth Conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Res. 1988;22:447–455. doi: 10.1093/cvr/22.7.447. PubMed DOI
Curtis MJ, Walker MJ. Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovasc Res. 1988;22:656–665. doi: 10.1093/cvr/22.9.656. PubMed DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Chevion M, Jiang Y, Har-El R, Berenshtein E, Uretzky G, Kitrossky N. Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury. Proc Natl Acad Sci U S A. 1993;90:1102–106. doi: 10.1073/pnas.90.3.1102. PubMed DOI PMC
Kramer JH, Lightfoot FG, Weglicki WB. Cardiac tissue iron: effects on post-ischemic function and free radical production, and its possible role during preconditioning. Cell Mol Biol (Noisy-le-grand) 2000;46:1313–1327. PubMed
Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol. 2017;57:535–565. doi: 10.1146/annurev-pharmtox-010715-103335. PubMed DOI PMC
Chan S, Lian Q, Chen M-P, Jiang D, Ho JTK, Cheung Y-F, Chan GC-F. Deferiprone inhibits iron overload-induced tissue factor bearing endothelial microparticle generation by inhibition oxidative stress induced mitochondrial injury, and apoptosis. Toxicol Appl Pharmacol. 2018;338:148–158. doi: 10.1016/j.taap.2017.11.005. PubMed DOI
Lecour S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J Mol Cell Cardiol. 2009;47:32–0. doi: 10.1016/j.yjmcc.2009.03.019. PubMed DOI
Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH. Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase) Circulation. 2005;112:3911–3918. doi: 10.1161/CIRCULATIONAHA.105.581058. PubMed DOI
Suleman N, Somers S, Smith R, Opie LH, Lecour SC. Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res. 2008;79:127–133. doi: 10.1093/cvr/cvn067. PubMed DOI
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85. doi: 10.1016/j.cell.2017.09.021. PubMed DOI PMC
Andelová E, Barteková M, Pancza D, Styk J, Ravingerová T. The role of NO in ischemia/reperfusion injury in isolated rat heart. Gen Physiol Biophys. 2005;24:411–426. PubMed
Griecsová L, Farkašová V, Gáblovský I, Khandelwal VK, Bernátová I, Tatarková Z, Kaplan P, Ravingerová T. Effect of maturation on the resistance of rat hearts against ischemia. Study of potential molecular mechanisms. Physiol Res. 2015;64(Suppl 5):S685–S696. doi: 10.33549/physiolres.933222. PubMed DOI
Lonek L, Puhova A, Griecsova-Kindernay L, Patel SP, Zohdi V, Jezova D, Ravingerova T. Voluntary exercise may activate components of pro-survival risk pathway in the rat heart and potentially modify cell proliferation in the myocardium. Physiol Res. 2019;68:581–588. doi: 10.33549/physiolres.934182. PubMed DOI
Kindernay L, Farkasova V, Neckar J, Hrdlicka J, Ytrehus K, Ravingerova T. Impact of maturation on myocardial response to ischemia and the effectiveness of remote preconditioning in male rats. Int J Mol Sci. 2021;22:11009. doi: 10.3390/ijms222011009. PubMed DOI PMC