Impact of Maturation on Myocardial Response to Ischemia and the Effectiveness of Remote Preconditioning in Male Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-19-0540
Agentúra na Podporu Výskumu a Vývoja
APVV-20-0242
Agentúra na Podporu Výskumu a Vývoja
2/0141/18
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
1/0016/20
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
MAD SAV-AVCR-18-27
MAD SAV-AVCR
NU21J-02-00039
Agentura Pro Zdravotnický Výzkum České Republiky
26230120009
IT Monitoring System (ITMS)
PubMed
34681669
PubMed Central
PMC8540346
DOI
10.3390/ijms222011009
PII: ijms222011009
Knihovny.cz E-zdroje
- Klíčová slova
- ischemia/reperfusion injury, maturation, protective cell signaling, remote ischemic preconditioning,
- MeSH
- fosforylace MeSH
- hemodynamika MeSH
- ischemické přivykání * MeSH
- kinasa glykogensynthasy 3beta genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- myokard metabolismus MeSH
- potkani Wistar MeSH
- proteinkinasa C-epsilon genetika metabolismus MeSH
- protoonkogenní proteiny c-akt genetika metabolismus MeSH
- reperfuzní poškození myokardu metabolismus patologie MeSH
- stárnutí MeSH
- synthasa oxidu dusnatého, typ III genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kinasa glykogensynthasy 3beta MeSH
- proteinkinasa C-epsilon MeSH
- protoonkogenní proteiny c-akt MeSH
- synthasa oxidu dusnatého, typ III MeSH
Aging attenuates cardiac tolerance to ischemia/reperfusion (I/R) associated with defects in protective cell signaling, however, the onset of this phenotype has not been completely investigated. This study aimed to compare changes in response to I/R and the effects of remote ischemic preconditioning (RIPC) in the hearts of younger adult (3 months) and mature adult (6 months) male Wistar rats, with changes in selected proteins of protective signaling. Langendorff-perfused hearts were exposed to 30 min I/120 min R without or with prior three cycles of RIPC (pressure cuff inflation/deflation on the hind limb). Infarct size (IS), incidence of ventricular arrhythmias and recovery of contractile function (LVDP) served as the end points. In both age groups, left ventricular tissue samples were collected prior to ischemia (baseline) and after I/R, in non-RIPC controls and in RIPC groups to detect selected pro-survival proteins (Western blot). Maturation did not affect post-ischemic recovery of heart function (Left Ventricular Developed Pressure, LVDP), however, it increased IS and arrhythmogenesis accompanied by decreased levels and activity of several pro-survival proteins and by higher levels of pro-apoptotic proteins in the hearts of elder animals. RIPC reduced the occurrence of reperfusion-induced ventricular arrhythmias, IS and contractile dysfunction in younger animals, and this was preserved in the mature adults. RIPC did not increase phosphorylated protein kinase B (p-Akt)/total Akt ratio, endothelial nitric oxide synthase (eNOS) and protein kinase Cε (PKCε) prior to ischemia but only after I/R, while phosphorylated glycogen synthase kinase-3β (GSK3β) was increased (inactivated) before and after ischemia in both age groups coupled with decreased levels of pro-apoptotic markers. We assume that resistance of rat heart to I/R injury starts to already decline during maturation, and that RIPC may represent a clinically relevant cardioprotective intervention in the elder population.
Zobrazit více v PubMed
Khan M.A., Hashim M.J., Mustafa H., Baniyas M.Y., Al Suwaidi S.K.B.M., AlKatheeri R., Alblooshi F.M.K., Almatrooshi M.E.A.H., Alzaabi M.E.H., Al Darmaki R.S., et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus. 2020;12:e934. doi: 10.7759/cureus.9349. PubMed DOI PMC
Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136. doi: 10.1161/01.CIR.74.5.1124. PubMed DOI
Cheung M.M.H., Kharbanda R.K., Konstantinov I.E., Shimizu M., Frndova H., Li J., Holtby H.M., Cox P.N., Smallhorn J.F., Van Arsdell G.S., et al. Randomized Controlled Trial of the Effects of Remote Ischemic Preconditioning on Children Undergoing Cardiac Surgery. J. Am. Coll. Cardiol. 2006;47:2277–2282. doi: 10.1016/j.jacc.2006.01.066. PubMed DOI
Hausenloy D.J., Mwamure P.K., Venugopal V., Harris J., Barnard M., Grundy E., Ashley E., Vichare S., Di Salvo C., Kolvekar S., et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: A randomised controlled trial. Lancet. 2007;370:575–579. doi: 10.1016/S0140-6736(07)61296-3. PubMed DOI
Albrecht M., Zitta K., Bein B., Wennemuth G., Broch O., Renner J., Schuett T., Lauer F., Maahs D., Hummitzsch L., et al. Remote ischemic preconditioning regulates HIF-1α levels, apoptosis and inflammation in heart tissue of cardiosurgical patients: A pilot experimental study. Basic Res. Cardiol. 2013;108:314. doi: 10.1007/s00395-012-0314-0. PubMed DOI
Venugopal V., Hausenloy D.J., Ludman A., Di Salvo C., Kolvekar S., Yap J., Lawrence D., Bognolo J., Yellon D.M. Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: A randomised controlled trial. Heart. 2009;95:1567–1571. doi: 10.1136/hrt.2008.155770. PubMed DOI
White S.K., Frohlich G.M., Sado D.M., Maestrini V., Fontana M., Treibel T.A., Tehrani S., Flett A.S., Meier P., Ariti C., et al. Remote Ischemic Conditioning Reduces Myocardial Infarct Size and Edema in Patients With ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc. Interv. 2015;8:178–188. doi: 10.1016/j.jcin.2014.05.015. PubMed DOI
Ferdinandy P., Hausenloy D.J., Heusch G., Baxter G.F., Schulz R. Interaction of Risk Factors, Comorbidities, and Comedications with Ischemia/Reperfusion Injury and Cardioprotection by Preconditioning, Postconditioning, and Remote Conditioning. Pharmacol. Rev. 2014;66:1142–1174. doi: 10.1124/pr.113.008300. PubMed DOI
Obas V., Vasan R.S. The aging heart. Clin. Sci. 2018;132:1367–1382. doi: 10.1042/CS20171156. PubMed DOI
Ruiz-Meana M., Boengler K., Garcia-Dorado D., Hausenloy D.J., Kaambre T., Kararigas G., Perrino C., Schulz R., Ytrehus K. Ageing, sex, and cardioprotection. Br. J. Pharmacol. 2020;177:5270–5286. doi: 10.1111/bph.14951. PubMed DOI PMC
Hausenloy D.J., Garcia-Dorado D., Bøtker H.E., Davidson S.M., Downey J., Engel F.B., Jennings R., Lecour S., Leor J., Madonna R., et al. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc. Res. 2017;113:564–585. doi: 10.1093/cvr/cvx049. PubMed DOI
Hausenloy D.J., Yellon D.M. Reperfusion injury salvage kinase signalling: Taking a RISK for cardioprotection. Heart Fail. Rev. 2007;12:217–234. doi: 10.1007/s10741-007-9026-1. PubMed DOI
Juhaszova M., Zorov D.B., Kim S.-H., Pepe S., Fu Q., Fishbein K.W., Ziman B.D., Wang S., Ytrehus K., Antos C.L., et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Investig. 2004;113:1535–1549. doi: 10.1172/JCI19906. PubMed DOI PMC
Rossello X., Riquelme J.A., Davidson S.M., Yellon D.M. Role of PI3K in myocardial ischaemic preconditioning: Mapping pro-survival cascades at the trigger phase and at reperfusion. J. Cell. Mol. Med. 2017;22:926–935. doi: 10.1111/jcmm.13394. PubMed DOI PMC
Griecsová L., Farkašová V., Gáblovský I., Khandelwal V.K.M., Bernátová I., Tatarková Z., Kaplan P., Ravingerová T. Effect of Maturation on the Resistance of Rat Hearts Against Ischemia. Study of Potential Molecular Mechanisms. Physiol. Res. 2015;64:S685–S696. doi: 10.33549/physiolres.933222. PubMed DOI
Ravingerova T., Farkasova V., Griecsova L., Carnicka S., Murarikova M., Barlaka E., Kolar F., Bartekova M., Lonek L., Slezak J., et al. Remote Preconditioning as a Novel “Conditioning” Approach to Repair the Broken Heart: Potential Mechanisms and Clinical Applications. Physiol. Res. 2016;65:S55–S64. doi: 10.33549/physiolres.933392. PubMed DOI
Schmidt M.R., Støttrup N.B., Michelsen M.M., Contractor H., Sørensen K.E., Kharbanda R.K., Redington A.N., Bøtker H.E. Remote ischemic preconditioning impairs ventricular function and increases infarct size after prolonged ischemia in the isolated neonatal rabbit heart. J. Thorac. Cardiovasc. Surg. 2014;147:1049–1055. doi: 10.1016/j.jtcvs.2013.05.022. PubMed DOI
Behmenburg F., Heinen A., Vom Bruch L., Hollmann M.W., Huhn R. Cardioprotection by Remote Ischemic Preconditioning is Blocked in the Aged Rat Heart in Vivo. J. Cardiothorac. Vasc. Anesth. 2017;31:1223–1226. doi: 10.1053/j.jvca.2016.07.005. PubMed DOI
Turcato S., Turnbull L., Wang G.-Y., Honbo N., Simpson P.C., Karliner J.S., Baker A.J. Ischemic preconditioning depends on age and gender. Basic Res. Cardiol. 2006;101:235–243. doi: 10.1007/s00395-006-0585-4. PubMed DOI
Ledvenyiova V., Pancza D., Matejiková J., Ferko M., Bernatova I., Ravingerova T. Impact of age and sex on response to ischemic preconditioning in the rat heart: Differential role of the PI3K–AKT pathway. Can. J. Physiol. Pharmacol. 2013;91:640–647. doi: 10.1139/cjpp-2012-0414. PubMed DOI
Sengupta P. The Laboratory Rat: Relating Its Age with Human’s. Int. J. Prev. Med. 2013;4:624–630. PubMed PMC
Boengler K., Schulz R., Heusch G. Loss of cardioprotection with ageing. Cardiovasc. Res. 2009;83:247–261. doi: 10.1093/cvr/cvp033. PubMed DOI
Kostyak J., Hunter J., Korzick D. Acute PKCδ inhibition limits ischaemia–reperfusion injury in the aged rat heart: Role of GSK-3β. Cardiovasc. Res. 2006;70:325–334. doi: 10.1016/j.cardiores.2006.02.009. PubMed DOI
Korzick D.H., Kostyak J.C., Hunter J.C., Saupe K.W. Local delivery of PKCε-activating peptide mimics ischemic preconditioning in aged hearts through GSK-3β but not F1-ATPase inactivation. Am. J. Physiol. Circ. Physiol. 2007;293:H2056–H2063. doi: 10.1152/ajpheart.00403.2007. PubMed DOI
Heinen N.M., Pütz V.E., Görgens J.I., Huhn R., Grüber Y., Barthuber C., Preckel B., Pannen B.H., Bauer I. Cardioprotection by Remote Ischemic Preconditioning Exhibits a Signaling Pattern Different from Local Ischemic Preconditioning. Shock. 2011;36:45–53. doi: 10.1097/SHK.0b013e31821d8e77. PubMed DOI
Singh B., Randhawa P.K., Singh N., Jaggi A.S. Investigations on the role of leukotrienes in remote hind limb preconditioning-induced cardioprotection in rats. Life Sci. 2016;152:238–243. doi: 10.1016/j.lfs.2016.04.005. PubMed DOI
Sharma R., Randhawa P.K., Singh N., Jaggi A.S. Possible role of thromboxane A2 in remote hind limb preconditioning-induced cardioprotection. Naunyn. Schmiedebergs. Arch. Pharmacol. 2016;389:1–9. doi: 10.1007/s00210-015-1186-2. PubMed DOI
Galagudza M.M., Sonin D.L., Vlasov T.D., Kurapeev D.I., Shlyakhto E.V. Remote vs. local ischaemic preconditioning in the rat heart: Infarct limitation, suppression of ischaemic arrhythmia and the role of reactive oxygen species. Int. J. Exp. Pathol. 2016;97:66–74. doi: 10.1111/iep.12170. PubMed DOI PMC
Donato M., Goyeneche M.A., Garces M., Marchini T., Pérez V., del Mauro J., Höcht C., Rodríguez M., Evelson P., Gelpi R.J. Myocardial triggers involved in activation of remote ischaemic preconditioning. Exp. Physiol. 2016;101:708–716. doi: 10.1113/EP085535. PubMed DOI
Jang Y.-H., Kim J.-H., Lee Y.-C. Mitochondrial ATP-Sensitive Potassium Channels Play a Role in Reducing Both Myocardial Infarction and Reperfusion Arrhythmia in Remote Ischemic Preconditioned Hearts. Anesthesiol. Pain Med. 2017;7:e42505. doi: 10.5812/aapm.42505. PubMed DOI PMC
Randhawa P.K., Jaggi A.S. Investigating the involvement of glycogen synthase kinase-3β and gap junction signaling in TRPV1 and remote hind preconditioning-induced cardioprotection. Eur. J. Pharmacol. 2017;814:9–17. doi: 10.1016/j.ejphar.2017.07.045. PubMed DOI
Zhang J., Zhang J., Yu P., Chen M., Peng Q., Wang Z., Dong N. Remote Ischaemic Preconditioning and Sevoflurane Postconditioning Synergistically Protect Rats from Myocardial Injury Induced by Ischemia and Reperfusion Partly via Inhibition TLR4/MyD88/NF-κB Signaling Pathway. Cell. Physiol. Biochem. 2017;41:22–32. doi: 10.1159/000455815. PubMed DOI
You L., Pan Y.-Y., An M.-Y., Chen W.-H., Zhang Y., Wu Y.-N., Li Y., Sun K., Yin Y.-Q., Lou J.-S. The Cardioprotective Effects of Remote Ischemic Conditioning in a Rat Model of Acute Myocardial Infarction. Med. Sci. Monit. 2019;25:1769–1779. doi: 10.12659/MSM.914916. PubMed DOI PMC
Heinen A., Behmenburg F., Aytulun A., Dierkes M., Zerbin L., Kaisers W., Schaefer M., Meyer-Treschan T., Feit S., Bauer I., et al. The release of cardioprotective humoral factors after remote ischemic preconditioning in humans is age- and sex-dependent. J. Transl. Med. 2018;16:112. doi: 10.1186/s12967-018-1480-0. PubMed DOI PMC
Whittington H.J., Harding I., Stephenson C.I.M., Bell R., Hausenloy D.J., Mocanu M.M., Yellon D.M. Cardioprotection in the aging, diabetic heart: The loss of protective Akt signalling. Cardiovasc. Res. 2013;99:694–704. doi: 10.1093/cvr/cvt140. PubMed DOI PMC
Tani M., Suganuma Y., Hasegawa H., Shinmura K., Hayashi Y., Guo X., Nakamura Y. Changes in Ischemic Tolerance and Effects of Ischemic Preconditioning in Middle-aged Rat Hearts. Circulation. 1997;95:2559–2566. doi: 10.1161/01.CIR.95.11.2559. PubMed DOI
Abete P., Testa G., Ferrara N., De Santis D., Capaccio P., Viati L., Calabrese C., Cacciatore F., Longobardi G., Condorelli M., et al. Cardioprotective effect of ischemic preconditioning is preserved in food-restricted senescent rats. Am. J. Physiol. Heart Circ. Physiol. 2002;282:H1978–H1987. doi: 10.1152/ajpheart.00929.2001. PubMed DOI
Hu Z., Hu S., Yang S., Chen M., Zhang P., Liu J., Abbott G.W. Remote Liver Ischemic Preconditioning Protects against Sudden Cardiac Death via an ERK/GSK-3β-Dependent Mechanism. PLoS ONE. 2016;11:e0165123. doi: 10.1371/journal.pone.0165123. PubMed DOI PMC
Hu Z., Chen M., Zhang P., Liu J., Abbott G.W. Remote ischemic preconditioning differentially attenuates post-ischemic cardiac arrhythmia in streptozotocin-induced diabetic versus nondiabetic rats. Cardiovasc. Diabetol. 2017;16:57. doi: 10.1186/s12933-017-0537-3. PubMed DOI PMC
Iemitsu M., Maeda S., Jesmin S., Otsuki T., Miyauchi T. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am. J. Physiol. Circ. Physiol. 2006;291:H1290–H1298. doi: 10.1152/ajpheart.00820.2005. PubMed DOI
Ren J., Dong F., Cai G.-J., Zhao P., Nunn J.M., Wold L.E., Pei J. Interaction between Age and Obesity on Cardiomyocyte Contractile Function: Role of Leptin and Stress Signaling. PLoS ONE. 2010;5:e10085. doi: 10.1371/journal.pone.0010085. PubMed DOI PMC
Rybin V.O., Steinberg S.F. Protein kinase C isoform expression and regulation in the developing rat heart. Circ. Res. 1994;74:299–309. doi: 10.1161/01.RES.74.2.299. PubMed DOI
Hunter J.C., Korzick D.H. Age- and sex-dependent alterations in protein kinase C (PKC) and extracellular regulated kinase 1/2 (ERK1/2) in rat myocardium. Mech. Ageing Dev. 2005;126:535–550. doi: 10.1016/j.mad.2004.11.003. PubMed DOI
Zhu J., Rebecchi M.J., Glass P.S.A., Brink P.R., Liu L. Interactions of GSK-3 with Mitochondrial Permeability Transition Pore Modulators during Preconditioning: Age-Associated Differences. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2013;68:395–403. doi: 10.1093/gerona/gls205. PubMed DOI
Li J., Xuan W., Yan R., Tropak M.B., Jean-St-Michel E., Liang W., Gladstone R., Backx P.H., Kharbanda R.K., Redington A.N. Remote preconditioning provides potent cardioprotection via PI3K/Akt activation and is associated with nuclear accumulation of β-catenin. Clin. Sci. 2011;120:451–462. doi: 10.1042/CS20100466. PubMed DOI
Liu P., Xu B., Cavalieri T.A., Hock C.E. Age-related difference in myocardial function and inflammation in a rat model of myocardial ischemia-reperfusion. Cardiovasc. Res. 2002;56:443–453. doi: 10.1016/S0008-6363(02)00603-X. PubMed DOI
Phaneuf S., Leeuwenburgh C. Cytochrome c release from mitochondria in the aging heart: A possible mechanism for apoptosis with age. Am. J. Physiol. Integr. Comp. Physiol. 2002;282:R423–R430. doi: 10.1152/ajpregu.00296.2001. PubMed DOI
Kwak H., Song W., Lawler J.M. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J. 2006;20:791–793. doi: 10.1096/fj.05-5116fje. PubMed DOI
Wang C., Li H., Wang S., Mao X., Yan D., Wong S.S., Xia Z., Irwin M.G. Repeated Non-Invasive Limb Ischemic Preconditioning Confers Cardioprotection Through PKC-ε/STAT3 Signaling in Diabetic Rats. Cell. Physiol. Biochem. 2018;45:2107–2121. doi: 10.1159/000488047. PubMed DOI
Chen K., Yan M., Wu P., Qing Y., Li S., Li Y., Dong Z., Xia H., Huang D., Xin P., et al. Combination of remote ischemic perconditioning and remote ischemic postconditioning fails to increase protection against myocardial ischemia/reperfusion injury, compared with either alone. Mol. Med. Rep. 2016;13:197–205. doi: 10.3892/mmr.2015.4533. PubMed DOI PMC
Ma L.-L., Kong F.-J., Guo J.-J., Zhu J.-B., Shi H.-T., Li Y., Sun R.-H., Ge J.-B. Hypercholesterolemia Abrogates Remote Ischemic Preconditioning-Induced Cardioprotection. Shock. 2017;47:363–369. doi: 10.1097/SHK.0000000000000737. PubMed DOI
Yang S., Abbott G.W., Gao W.D., Liu J., Luo C., Hu Z. Involvement of glycogen synthase kinase-3β in liver ischemic conditioning induced cardioprotection against myocardial ischemia and reperfusion injury in rats. J. Appl. Physiol. 2017;122:1095–1105. doi: 10.1152/japplphysiol.00862.2016. PubMed DOI PMC
Hausenloy D.J., Iliodromitis E.K., Andreadou I., Papalois A., Gritsopoulos G., Anastasiou-Nana M., Kremastinos D.T., Yellon D.M. Investigating the Signal Transduction Pathways Underlying Remote Ischemic Conditioning in the Porcine Heart. Cardiovasc. Drugs Ther. 2012;26:87–93. doi: 10.1007/s10557-011-6364-y. PubMed DOI
Andreadou I., Bibli S.I., Mastromanolis E., Zoga A., Efentakis P., Papaioannou N., Farmakis D., Kremastinos D.T., Iliodromitis E.K. Transient carotid ischemia as a remote conditioning stimulus for myocardial protection in anesthetized rabbits: Insights into intracellular signaling. Int. J. Cardiol. 2015;184:140–151. doi: 10.1016/j.ijcard.2015.01.079. PubMed DOI
Yu Y., Jia X.-J., Zong Q.-F., Zhang G.-J., Ye H.-W., Hu J., Gao Q., Guan S.-D. Remote ischemic postconditioning protects the heart by upregulating ALDH2 expression levels through the PI3K/Akt signaling pathway. Mol. Med. Rep. 2014;10:536–542. doi: 10.3892/mmr.2014.2156. PubMed DOI
An M.Y., Li Y., Chen W.H., Zhang Y., Wu Y.N., Sun K., Pan Y.Y., Yin Y.Q., Lou J.S. Effects of non-invasive remote ischemic conditioning on rehabilitation after myocardial infarction. Biochem. Biophys. Res. Commun. 2017;488:278–284. doi: 10.1016/j.bbrc.2017.05.014. PubMed DOI
Curtis M.J., Walker M.J.A. Quantification of arrhythmias using scoring systems: An examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovasc. Res. 1988;22:656–665. doi: 10.1093/cvr/22.9.656. PubMed DOI
Ravingerová T., Matejíková J., Neckář J., Andelová E., Kolář F. Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart. Mol. Cell. Biochem. 2007;297:111–120. doi: 10.1007/s11010-006-9335-z. PubMed DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI