Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
21-24460S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
20-21581Y
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
649030
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
101001470
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
CZ.02.01.01/00/22_008/0004575
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5103
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
39448580
PubMed Central
PMC11502803
DOI
10.1038/s41467-024-53305-2
PII: 10.1038/s41467-024-53305-2
Knihovny.cz E-zdroje
- MeSH
- cyklin-dependentní kinasy * metabolismus chemie MeSH
- fosforylace MeSH
- kinasa aktivující cyklin dependentní kinasy * MeSH
- lidé MeSH
- prolin metabolismus chemie MeSH
- proteinové domény MeSH
- RNA-polymerasa II * metabolismus chemie MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky * MeSH
- tyrosin metabolismus chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CDK7 protein, human MeSH Prohlížeč
- cyklin-dependentní kinasy * MeSH
- kinasa aktivující cyklin dependentní kinasy * MeSH
- prolin MeSH
- RNA-polymerasa II * MeSH
- tyrosin MeSH
The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD. Here, we generated a systematic array of CTD variants to unravel the sequence-encoded molecular grammar underlying the LLPS of the human CTD. Using in vitro experiments and molecular dynamics simulations, we report that the aromaticity of tyrosine and cis-trans isomerization of prolines govern CTD phase-separation. The cis conformation of prolines and β-turns in the SPXX motif contribute to a more compact CTD ensemble, enhancing interactions among CTD residues. We further demonstrate that prolines and tyrosine in the CTD consensus sequence are required for phosphorylation by Cyclin-dependent kinase 7 (CDK7). Under phase-separation conditions, CDK7 associates with the surface of the CTD droplets, drastically accelerating phosphorylation and promoting the release of hyperphosphorylated CTD from the droplets. Our results highlight the importance of conformationally restricted local structures within spacer regions, separating uniformly spaced tyrosine stickers of the CTD heptads, which are required for CTD phase-separation.
CEITEC Central European Institute of Technology Masaryk University Brno Czechia
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. PubMed DOI
Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. PubMed DOI
Yang, C. & Stiller, J. W. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. PubMed DOI PMC
Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. PubMed DOI
Buratowski, S. The CTD code. PubMed DOI
Buratowski, S. Progression through the RNA polymerase II CTD cycle. PubMed DOI PMC
Jasnovidova, O. & Stefl, R. The CTD code of RNA polymerase II: a structural view. PubMed DOI
Jeronimo, C., Bataille, A. R. & Robert, F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code. PubMed DOI
Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. PubMed DOI
Meinhart, A., Kamenski, T., Hoeppner, S., Baumli, S. & Cramer, P. A structural perspective of CTD function. PubMed DOI
Jasnovidova, O., Krejcikova, M., Kubicek, K. & Stefl, R. Structural insight into recognition of phosphorylated threonine‐4 of RNA polymerase II C‐terminal domain by Rtt103p. PubMed DOI PMC
Jasnovidova, O. et al. Structure and dynamics of the RNAPII CTDsome with Rtt103. PubMed DOI PMC
Kubicek, K. et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. PubMed DOI PMC
Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. PubMed DOI
Cho, E.-J., Kobor, M. S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. PubMed DOI PMC
McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. PubMed DOI
Komarnitsky, P., Cho, E.-J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. PubMed DOI PMC
Ho, C. K. & Shuman, S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. PubMed DOI
Cho, E.-J., Takagi, T., Moore, C. R. & Buratowski, S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. PubMed DOI PMC
Descostes, N. et al. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. PubMed DOI PMC
Brandts, J. F., Halvorson, H. R. & Brennan, M. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. PubMed DOI
Werner-Allen, J. W. et al. cis-proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. PubMed DOI PMC
Xiang, K. et al. Crystal structure of the human symplekin–Ssu72–CTD phosphopeptide complex. PubMed DOI PMC
Schutkowski, M. et al. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. PubMed DOI
Goethel, S. F. & Marahiel, M. A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. PubMed DOI PMC
Schmid, F. X. Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. PubMed DOI
Favretto, F. et al. Catalysis of proline isomerization and molecular chaperone activity in a tug-of-war. PubMed DOI PMC
Zhang, M. et al. Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code. PubMed DOI PMC
Hanes, S. D. Prolyl isomerases in gene transcription. PubMed DOI PMC
Lu, K. P., Finn, G., Lee, T. H. & Nicholson, L. K. Prolyl cis-trans isomerization as a molecular timer. PubMed DOI
Bataille, A. R. et al. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. PubMed DOI
Andreotti, A. H. Native state proline isomerization: an intrinsic molecular switch. PubMed DOI
Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. PubMed DOI
Cramer, P. Organization and regulation of gene transcription. PubMed DOI
Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. PubMed DOI PMC
Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. PubMed DOI PMC
Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. PubMed DOI PMC
Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. PubMed DOI PMC
Alberti, S. Phase separation in biology. PubMed DOI
Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. PubMed DOI PMC
Ginell, G. M. & Holehouse, A. S. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. In: PubMed
Rubinstein, M. & Dobrynin, A. V. Solutions of associative polymers.
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. PubMed DOI PMC
Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. PubMed DOI PMC
Rekhi, S. et al. Expanding the molecular language of protein liquid-liquid phase separation. PubMed DOI PMC
Levitt, M. Conformational preferences of amino acids in globular proteins. PubMed DOI
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. PubMed DOI PMC
Gallardo, R., Ranson, N. A. & Radford, S. E. Amyloid structures: much more than just a cross-β fold. PubMed DOI PMC
Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. PubMed DOI PMC
Eberhardt, E. S., Panasik, N. & Raines, R. T. Inductive effects on the energetics of prolyl peptide bond isomerization: implications for collagen folding and stability. PubMed DOI PMC
Panasik, N., Eberhardt, E. S., Edison, A. S., Powel, D. R. & Raines, R. T. Inductive effects on the structure of proline residues. PubMed DOI
Holmgren, S. K., Taylor, K. M., Bretscher, L. E. & Raines, R. T. Code for collagen’s stability deciphered. PubMed DOI
Buechter, D. D. et al. Co-translational Incorporation of Trans-4-Hydroxyproline into Recombinant Proteins in Bacteria. PubMed DOI
Cook, P. R. The organization of replication and transcription. PubMed
Wang, P. & Heitman, J. The cyclophilins. PubMed DOI PMC
Song, F. et al. Cyclophilin A (CyPA) induces chemotaxis independent of its peptidylprolyl cis-trans isomerase activity. PubMed DOI PMC
Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T. & Noel, J. P. Structural basis for phosphoserine-proline recognition by group IV WW domains. PubMed DOI
Wang, J. et al. Allosteric breakage of the hydrogen bond within the dual-histidine motif in the active site of human Pin1 PPIase. PubMed DOI
Behrsin, C. D. et al. Functionally important residues in the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution. PubMed DOI
Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and Tau proteins. PubMed DOI
Song, B., Bomar, M. G., Kibler, P., Kodukula, K. & Galande, A. K. The serine-proline turn: a novel hydrogen-bonded template for designing peptidomimetics. PubMed DOI
Trevino, S. R., Schaefer, S., Scholtz, J. M. & Pace, C. N. Increasing protein conformational stability by optimizing β-turn sequence. PubMed DOI PMC
Düster, R. et al. Structural basis of Cdk7 activation by dual T-loop phosphorylation. PubMed DOI PMC
Bao, Z. Q., Jacobsen, D. M. & Young, M. A. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. PubMed DOI PMC
Kato, M. & McKnight, S. L. A solid-state conceptualization of information transfer from gene to message to protein. PubMed DOI
Akhtar, M. S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. PubMed DOI PMC
Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. PubMed DOI PMC
Mikhaleva, S. & Lemke, E. A. Beyond the transport function of import receptors: what’s All the FUS about? PubMed DOI PMC
O’Flynn, B. G. & Mittag, T. The role of liquid–liquid phase separation in regulating enzyme activity. PubMed DOI PMC
López-Palacios, T. P. & Andersen, J. L. Kinase regulation by liquid–liquid phase separation. PubMed DOI PMC
Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. PubMed DOI
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. PubMed DOI PMC
Theillet, F.-X. et al. The alphabet of intrinsic disorder. PubMed DOI PMC
Semenov, A. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. DOI
Lin, Y., Currie, S. L. & Rosen, M. K. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. PubMed DOI PMC
Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. PubMed DOI
Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. PubMed DOI PMC
Flores-Solis, D. et al. Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II. PubMed DOI PMC
Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. PubMed DOI PMC
An, Y., Bloom, J. W. G. & Wheeler, S. E. Quantifying the π-stacking interactions in nitroarene binding sites of proteins. PubMed DOI
Joseph, J. A. et al. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. PubMed DOI PMC
Schuster, B. S. et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. PubMed DOI PMC
Rana, U. et al. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility. PubMed DOI PMC
Welles, R. M. et al. Determinants that enable disordered protein assembly into discrete condensed phases. PubMed DOI PMC
Souza, P. C. T. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. PubMed DOI PMC
Thomasen, F. E. et al. Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution. PubMed DOI PMC
Thomasen, F. E., Pesce, F., Roesgaard, M. A., Tesei, G. & Lindorff-Larsen, K. Improving Martini 3 for disordered and multidomain proteins. PubMed DOI
Zerze, G. H. Optimizing the Martini 3 force field reveals the effects of the intricate balance between protein–water interaction strength and salt concentration on biomolecular condensate formation. PubMed DOI
van Teijlingen, A., Smith, M. C. & Tuttle, T. Short peptide self-assembly in the martini coarse-grain force field family. PubMed DOI PMC
Sasselli, I. R. & Coluzza, I. Assessment of the MARTINI 3 performance for short peptide self-assembly. PubMed DOI PMC
Regy, R. M., Thompson, J., Kim, Y. C. & Mittal, J. Improved coarse‐grained model for studying sequence dependent phase separation of disordered proteins. PubMed DOI PMC
Tesei, G. & Lindorff-Larsen, K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. PubMed DOI PMC
Murray, K. A. et al. Identifying amyloid-related diseases by mapping mutations in low-complexity protein domains to pathologies. PubMed DOI PMC
Ridgway, Z. et al. Analysis of proline substitutions reveals the plasticity and sequence sensitivity of human IAPP amyloidogenicity and toxicity. PubMed DOI PMC
Theillet, F.-X. et al. The alphabet of intrinsic disorder: I. Act like a Pro: on the abundance and roles of proline residues in intrinsically disordered proteins. PubMed DOI PMC
Rousseau, F., Serrano, L. & Schymkowitz, J. W. H. How evolutionary pressure against protein aggregation shaped chaperone specificity. PubMed DOI
Zhao, G. et al. Peptidyl-prolyl isomerase Cyclophilin71 promotes SERRATE phase separation and miRNA processing in PubMed PMC
Babu, M., Favretto, F., Rankovic, M. & Zweckstetter, M. Peptidyl prolyl isomerase A modulates the liquid–liquid phase separation of proline-Rich IDPs. PubMed DOI PMC
Eichner, T., Kutter, S., Labeikovsky, W., Buosi, V. & Kern, D. Molecular mechanism of Pin1-Tau recognition and catalysis. PubMed DOI
Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. PubMed DOI PMC
Corden, J. L. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. PubMed DOI PMC
Kornberg, R. D. Mediator and the mechanism of transcriptional activation. PubMed DOI
Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. PubMed DOI PMC
Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. PubMed DOI PMC
Kwak, H. & Lis, J. T. Control of transcriptional elongation. PubMed DOI PMC
Zhou, Q., Li, T. & Price, D. H. RNA polymerase II elongation control. PubMed DOI PMC
Palacio, M. & Taatjes, D. J. Merging established mechanisms with new insights: condensates, hubs, and the regulation of RNA polymerase II transcription. PubMed DOI PMC
Stortz, M., Presman, D. M. & Levi, V. Transcriptional condensates: a blessing or a curse for gene regulation? PubMed DOI PMC
Richter, W. F., Nayak, S., Iwasa, J. & Taatjes, D. J. The mediator complex as a master regulator of transcription by RNA polymerase II. PubMed DOI PMC
Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. PubMed DOI PMC
Sang, D. et al. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. PubMed DOI PMC
Gradia, S. D. et al. MacroBac: new technologies for robust and efficient large-scale production of recombinant multi-protein complexes. PubMed DOI PMC
Shis, D. L. & Bennett, M. R. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. PubMed DOI PMC
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. PubMed DOI PMC
Lamprecht, M. R., Sabatini, D. M. & Carpenter, A. E. CellProfiler PubMed DOI
Otsu, N. A. Threshold selection method from gray-level histograms.
R Core Team (2021): A language and environment for statistical computing. Vienna, Austria. https://posit.co/.
Team, Rs. RStudio: Integrated Development Environment for R (2022). https://posit.co/.
Wickham, H. et al. Welcome to the tidyverse. DOI
Wickham, H. ggplot2, Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016)
Clarke, E., Sherrill-Mix, S. & Dawson, C. Package ‘ggbeeswarm (2017). https://CRAN.R-project.org/package=ggbeeswarm.
Wilke, C. O. Tools for visualizing uncertainty with ggplot2 (2021). https://github.com/wilkelab/ungeviz.
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. https://rpkgs.datanovia.com/ggpubr/.
Welch, B. L. The generalization of ‘Student’s’ problem when several different population variances are involved. PubMed
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. PubMed DOI PMC
Linhartova, K. & Falginella, F. L. Raw data and MD simulations files for the paper: “Sequence and Structural Determinants of RNAPII CTD Phase-separation and Phosphorylation by CDK7”. 10.5281/zenodo.10696484 (2024). PubMed
Zeiss Microscopy GmbH, C.
The PyMOL Molecular Graphics System. Version 2.0. Schrödinger, LLC.
Case, D. A. et al. AmberTools. PubMed DOI PMC
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. DOI
Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. DOI
Kroon, P. C. et al. Martinize2 and Vermouth: unified framework for topology generation.
Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C. & Mittal, J. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. PubMed DOI PMC
de Jong, D. H., Baoukina, S., Ingólfsson, H. I. & Marrink, S. J. Martini straight: boosting performance using a shorter cutoff and GPUs. DOI
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. DOI
Shabane, P. S., Izadi, S. & Onufriev, A. V. General purpose water model can improve atomistic simulations of intrinsically disordered proteins. PubMed DOI
Hornak, V. et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. PubMed DOI PMC
Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. PubMed DOI PMC
Homeyer, N., Horn, A. H. C., Lanig, H. & Sticht, H. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. PubMed DOI
Park, S., Radmer, R. J., Klein, T. E. & Pande, V. S. A new set of molecular mechanics parameters for hydroxyproline and its use in molecular dynamics simulations of collagen‐like peptides. PubMed DOI
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. PubMed
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. DOI
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An DOI
Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. PubMed DOI
Michaud‐Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. PubMed DOI PMC
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. PubMed DOI
Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L. & Pappu, R. V. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. PubMed DOI PMC
Flory, P. J. The configuration of real polymer chains. DOI
Dima, R. I. & Thirumalai, D. Asymmetry in the shapes of folded and denatured states of proteins. DOI
Shapovalov, M., Vucetic, S. & Dunbrack, R. L. A new clustering and nomenclature for beta turns derived from high-resolution protein structures. PubMed DOI PMC
Smith, P., Ziolek, R. M., Gazzarrini, E., Owen, D. M. & Lorenz, C. D. On the interaction of hyaluronic acid with synovial fluid lipid membranes. PubMed DOI
Off-pore Nup98 condensates mobilize heterochromatic breaks and exclude Rad51
Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7