Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7

. 2024 Oct 24 ; 15 (1) : 9163. [epub] 20241024

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39448580

Grantová podpora
21-24460S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
20-21581Y Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
649030 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
101001470 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
CZ.02.01.01/00/22_008/0004575 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5103 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2023042 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 39448580
PubMed Central PMC11502803
DOI 10.1038/s41467-024-53305-2
PII: 10.1038/s41467-024-53305-2
Knihovny.cz E-zdroje

The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD. Here, we generated a systematic array of CTD variants to unravel the sequence-encoded molecular grammar underlying the LLPS of the human CTD. Using in vitro experiments and molecular dynamics simulations, we report that the aromaticity of tyrosine and cis-trans isomerization of prolines govern CTD phase-separation. The cis conformation of prolines and β-turns in the SPXX motif contribute to a more compact CTD ensemble, enhancing interactions among CTD residues. We further demonstrate that prolines and tyrosine in the CTD consensus sequence are required for phosphorylation by Cyclin-dependent kinase 7 (CDK7). Under phase-separation conditions, CDK7 associates with the surface of the CTD droplets, drastically accelerating phosphorylation and promoting the release of hyperphosphorylated CTD from the droplets. Our results highlight the importance of conformationally restricted local structures within spacer regions, separating uniformly spaced tyrosine stickers of the CTD heptads, which are required for CTD phase-separation.

Zobrazit více v PubMed

Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science292, 1863–1876 (2001). PubMed

Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol.18, 263–273 (2017). PubMed

Yang, C. & Stiller, J. W. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. Proc. Natl Acad. Sci. USA111, 5920–5925 (2014). PubMed PMC

Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev.113, 8456–8490 (2013). PubMed

Buratowski, S. The CTD code. Nat. Struct. Mol. Biol.10, 679–680 (2003). PubMed

Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell36, 541–546 (2009). PubMed PMC

Jasnovidova, O. & Stefl, R. The CTD code of RNA polymerase II: a structural view. Wiley Interdiscip. Rev. RNA4, 1–16 (2013). PubMed

Jeronimo, C., Bataille, A. R. & Robert, F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code. Chem. Rev.113, 8491–8522 (2013). PubMed

Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet.24, 280–288 (2008). PubMed

Meinhart, A., Kamenski, T., Hoeppner, S., Baumli, S. & Cramer, P. A structural perspective of CTD function. Genes Dev.19, 1401–1415 (2005). PubMed

Jasnovidova, O., Krejcikova, M., Kubicek, K. & Stefl, R. Structural insight into recognition of phosphorylated threonine‐4 of RNA polymerase II C‐terminal domain by Rtt103p. EMBO Rep.18, 906–913 (2017). PubMed PMC

Jasnovidova, O. et al. Structure and dynamics of the RNAPII CTDsome with Rtt103. Proc. Natl Acad. Sci. USA114, 11133–11138 (2017). PubMed PMC

Kubicek, K. et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev.26, 1891–1896 (2012). PubMed PMC

Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science336, 1723–1725 (2012). PubMed

Cho, E.-J., Kobor, M. S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev.15, 3319–3329 (2001). PubMed PMC

McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature385, 357–361 (1997). PubMed

Komarnitsky, P., Cho, E.-J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev.14, 2452–2460 (2000). PubMed PMC

Ho, C. K. & Shuman, S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell3, 405–411 (1999). PubMed

Cho, E.-J., Takagi, T., Moore, C. R. & Buratowski, S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev.11, 3319–3326 (1997). PubMed PMC

Descostes, N. et al. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. Elife3, 1–19 (2014). PubMed PMC

Brandts, J. F., Halvorson, H. R. & Brennan, M. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry14, 4953–4963 (1975). PubMed

Werner-Allen, J. W. et al. cis-proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J. Biol. Chem.286, 5717 (2011). PubMed PMC

Xiang, K. et al. Crystal structure of the human symplekin–Ssu72–CTD phosphopeptide complex. Nature467, 729–733 (2010). PubMed PMC

Schutkowski, M. et al. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry37, 5566–5575 (1998). PubMed

Goethel, S. F. & Marahiel, M. A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol. Life Sci.55, 423–436 (1999). PubMed PMC

Schmid, F. X. Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu Rev. Biophys. Biomol. Struct.22, 123–142 (1993). PubMed

Favretto, F. et al. Catalysis of proline isomerization and molecular chaperone activity in a tug-of-war. Nat. Commun.11, 6046 (2020). PubMed PMC

Zhang, M. et al. Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code. ACS Chem. Biol.7, 1462–1470 (2012). PubMed PMC

Hanes, S. D. Prolyl isomerases in gene transcription. Biochim. Biophys. Acta1850, 2017–2034 (2015). PubMed PMC

Lu, K. P., Finn, G., Lee, T. H. & Nicholson, L. K. Prolyl cis-trans isomerization as a molecular timer. Nat. Chem. Biol.3, 619–629 (2007). PubMed

Bataille, A. R. et al. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell45, 158–170 (2012). PubMed

Andreotti, A. H. Native state proline isomerization: an intrinsic molecular switch. Biochemistry42, 9515–9524 (2003). PubMed

Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol.25, 833–840 (2018). PubMed

Cramer, P. Organization and regulation of gene transcription. Nature573, 45–54 (2019). PubMed

Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science361, 412–415 (2018). PubMed PMC

Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science361, eaar3958 (2018). PubMed PMC

Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell155, 1049–1060 (2013). PubMed PMC

Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature572, 543–548 (2019). PubMed PMC

Alberti, S. Phase separation in biology. Curr. Biol.27, R1097–R1102 (2017). PubMed

Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science367, 694–699 (2020). PubMed PMC

Ginell, G. M. & Holehouse, A. S. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. In: Phase-Separated Biomolecular Condensates. Methods in Molecular Biology (eds Zhou, H. X., Spille, J. H., Banerjee, P. R.). Humana, New York, 2563, 95–116 (2023). PubMed

Rubinstein, M. & Dobrynin, A. V. Solutions of associative polymers. Trends Polym. Sci.5, 181–186 (1997).

Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell174, 688–699.e16 (2018). PubMed PMC

Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife6, 1–37 (2017). PubMed PMC

Rekhi, S. et al. Expanding the molecular language of protein liquid-liquid phase separation. Nat. Chem.16, 1113–1124 (2024). PubMed PMC

Levitt, M. Conformational preferences of amino acids in globular proteins. Biochemistry17, 4277–4285 (1978). PubMed

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). PubMed PMC

Gallardo, R., Ranson, N. A. & Radford, S. E. Amyloid structures: much more than just a cross-β fold. Curr. Opin. Struct. Biol.60, 7–16 (2020). PubMed

Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature435, 773–778 (2005). PubMed PMC

Eberhardt, E. S., Panasik, N. & Raines, R. T. Inductive effects on the energetics of prolyl peptide bond isomerization: implications for collagen folding and stability. J. Am. Chem. Soc.118, 12261–12266 (1996). PubMed PMC

Panasik, N., Eberhardt, E. S., Edison, A. S., Powel, D. R. & Raines, R. T. Inductive effects on the structure of proline residues. Int J. Pept. Protein Res44, 262–269 (2009). PubMed

Holmgren, S. K., Taylor, K. M., Bretscher, L. E. & Raines, R. T. Code for collagen’s stability deciphered. Nature392, 666–667 (1998). PubMed

Buechter, D. D. et al. Co-translational Incorporation of Trans-4-Hydroxyproline into Recombinant Proteins in Bacteria. J. Biol. Chem.278, 645–650 (2003). PubMed

Cook, P. R. The organization of replication and transcription. Science284, 1790–1795 (1999). PubMed

Wang, P. & Heitman, J. The cyclophilins. Genome Biol.6, 226 (2005). PubMed PMC

Song, F. et al. Cyclophilin A (CyPA) induces chemotaxis independent of its peptidylprolyl cis-trans isomerase activity. J. Biol. Chem.286, 8197–8203 (2011). PubMed PMC

Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T. & Noel, J. P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol.7, 639–643 (2000). PubMed

Wang, J. et al. Allosteric breakage of the hydrogen bond within the dual-histidine motif in the active site of human Pin1 PPIase. Biochemistry54, 5242–5253 (2015). PubMed

Behrsin, C. D. et al. Functionally important residues in the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution. J. Mol. Biol.365, 1143–1162 (2007). PubMed

Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and Tau proteins. Mol. Cell6, 873–883 (2000). PubMed

Song, B., Bomar, M. G., Kibler, P., Kodukula, K. & Galande, A. K. The serine-proline turn: a novel hydrogen-bonded template for designing peptidomimetics. Org. Lett.14, 732–735 (2012). PubMed

Trevino, S. R., Schaefer, S., Scholtz, J. M. & Pace, C. N. Increasing protein conformational stability by optimizing β-turn sequence. J. Mol. Biol.373, 211–218 (2007). PubMed PMC

Düster, R. et al. Structural basis of Cdk7 activation by dual T-loop phosphorylation. Nat. Commun.15, 1–15 (2024). PubMed PMC

Bao, Z. Q., Jacobsen, D. M. & Young, M. A. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Structure19, 675–690 (2011). PubMed PMC

Kato, M. & McKnight, S. L. A solid-state conceptualization of information transfer from gene to message to protein. Annu Rev. Biochem87, 351–390 (2018). PubMed

Akhtar, M. S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell34, 387–393 (2009). PubMed PMC

Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol.17, 693–702 (2021). PubMed PMC

Mikhaleva, S. & Lemke, E. A. Beyond the transport function of import receptors: what’s All the FUS about? Cell173, 549–553 (2018). PubMed PMC

O’Flynn, B. G. & Mittag, T. The role of liquid–liquid phase separation in regulating enzyme activity. Curr. Opin. Cell Biol.69, 70–79 (2021). PubMed PMC

López-Palacios, T. P. & Andersen, J. L. Kinase regulation by liquid–liquid phase separation. Trends Cell Biol.33, 649–666 (2023). PubMed PMC

Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell149, 768–779 (2012). PubMed

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol.18, 285–298 (2017). PubMed PMC

Theillet, F.-X. et al. The alphabet of intrinsic disorder. Intrinsically Disord. Proteins1, e24360 (2013). PubMed PMC

Semenov, A. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics Macromol.31, 1373–1385 (1998).

Lin, Y., Currie, S. L. & Rosen, M. K. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J. Biol. Chem.292, 19110–19120 (2017). PubMed PMC

Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science314, 815–817 (2006). PubMed

Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu Rev. Phys. Chem.71, 53–75 (2020). PubMed PMC

Flores-Solis, D. et al. Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II. Nat. Commun.14, 5979 (2023). PubMed PMC

Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem.14, 196–207 (2022). PubMed PMC

An, Y., Bloom, J. W. G. & Wheeler, S. E. Quantifying the π-stacking interactions in nitroarene binding sites of proteins. J. Phys. Chem. B119, 14441–14450 (2015). PubMed

Joseph, J. A. et al. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput Sci.1, 732–743 (2021). PubMed PMC

Schuster, B. S. et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl Acad. Sci. USA117, 11421–11431 (2020). PubMed PMC

Rana, U. et al. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility. Nat. Chem.16, 1073–1082 (2024). PubMed PMC

Welles, R. M. et al. Determinants that enable disordered protein assembly into discrete condensed phases. Nat. Chem.16, 1062–1072 (2024). PubMed

Souza, P. C. T. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods18, 382–388 (2021). PubMed

Thomasen, F. E. et al. Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution. Nat. Commun.15, 6645 (2024). PubMed PMC

Thomasen, F. E., Pesce, F., Roesgaard, M. A., Tesei, G. & Lindorff-Larsen, K. Improving Martini 3 for disordered and multidomain proteins. J. Chem. Theory Comput.18, 2033–2041 (2022). PubMed

Zerze, G. H. Optimizing the Martini 3 force field reveals the effects of the intricate balance between protein–water interaction strength and salt concentration on biomolecular condensate formation. J. Chem. Theory Comput.20, 1646–1655 (2024). PubMed

van Teijlingen, A., Smith, M. C. & Tuttle, T. Short peptide self-assembly in the martini coarse-grain force field family. Acc. Chem. Res56, 644–654 (2023). PubMed PMC

Sasselli, I. R. & Coluzza, I. Assessment of the MARTINI 3 performance for short peptide self-assembly. J. Chem. Theory Comput20, 224–238 (2024). PubMed PMC

Regy, R. M., Thompson, J., Kim, Y. C. & Mittal, J. Improved coarse‐grained model for studying sequence dependent phase separation of disordered proteins. Protein Sci.30, 1371–1379 (2021). PubMed PMC

Tesei, G. & Lindorff-Larsen, K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. Open Res. Eur.2, 94 (2023). PubMed PMC

Murray, K. A. et al. Identifying amyloid-related diseases by mapping mutations in low-complexity protein domains to pathologies. Nat. Struct. Mol. Biol.29, 529–536 (2022). PubMed PMC

Ridgway, Z. et al. Analysis of proline substitutions reveals the plasticity and sequence sensitivity of human IAPP amyloidogenicity and toxicity. Biochemistry59, 742–754 (2020). PubMed PMC

Theillet, F.-X. et al. The alphabet of intrinsic disorder: I. Act like a Pro: on the abundance and roles of proline residues in intrinsically disordered proteins. Intrinsically Disord. Proteins1, e24360 (2013). PubMed PMC

Rousseau, F., Serrano, L. & Schymkowitz, J. W. H. How evolutionary pressure against protein aggregation shaped chaperone specificity. J. Mol. Biol.355, 1037–1047 (2006). PubMed

Zhao, G. et al. Peptidyl-prolyl isomerase Cyclophilin71 promotes SERRATE phase separation and miRNA processing in Arabidopsis. Proc. Natl Acad. Sci. USA120, e2305244120 (2023). PubMed PMC

Babu, M., Favretto, F., Rankovic, M. & Zweckstetter, M. Peptidyl prolyl isomerase A modulates the liquid–liquid phase separation of proline-Rich IDPs. J. Am. Chem. Soc.144, 16157–16163 (2022). PubMed PMC

Eichner, T., Kutter, S., Labeikovsky, W., Buosi, V. & Kern, D. Molecular mechanism of Pin1-Tau recognition and catalysis. J. Mol. Biol.428, 1760–1775 (2016). PubMed

Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature558, 318–323 (2018). PubMed PMC

Corden, J. L. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem. Rev.113, 8423–8455 (2013). PubMed PMC

Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci.30, 235–239 (2005). PubMed

Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol.16, 167–177 (2015). PubMed PMC

Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev.33, 960–982 (2019). PubMed PMC

Kwak, H. & Lis, J. T. Control of transcriptional elongation. Annu Rev. Genet.47, 483–508 (2013). PubMed PMC

Zhou, Q., Li, T. & Price, D. H. RNA polymerase II elongation control. Annu Rev. Biochem.81, 119–143 (2012). PubMed PMC

Palacio, M. & Taatjes, D. J. Merging established mechanisms with new insights: condensates, hubs, and the regulation of RNA polymerase II transcription. J. Mol. Biol.434, 167216 (2022). PubMed PMC

Stortz, M., Presman, D. M. & Levi, V. Transcriptional condensates: a blessing or a curse for gene regulation? Commun. Biol.7, 187 (2024). PubMed PMC

Richter, W. F., Nayak, S., Iwasa, J. & Taatjes, D. J. The mediator complex as a master regulator of transcription by RNA polymerase II. Nat. Rev. Mol. Cell Biol.23, 732–749 (2022). PubMed PMC

Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol.32, 1011–1018 (2014). PubMed PMC

Sang, D. et al. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. Mol. Cell82, 3693–3711.e10 (2022). PubMed PMC

Gradia, S. D. et al. MacroBac: new technologies for robust and efficient large-scale production of recombinant multi-protein complexes. Methods Enzymol.592, 1 (2017). PubMed PMC

Shis, D. L. & Bennett, M. R. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proc. Natl Acad. Sci. USA110, 5028–5033 (2013). PubMed PMC

Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res.50, D543–D552 (2022). PubMed PMC

Lamprecht, M. R., Sabatini, D. M. & Carpenter, A. E. CellProfilerTM: free, versatile software for automated biological image analysis. Biotechniques42, 71–75 (2007). PubMed

Otsu, N. A. Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern9, 62–66.

R Core Team (2021): A language and environment for statistical computing. Vienna, Austria. https://posit.co/.

Team, Rs. RStudio: Integrated Development Environment for R (2022). https://posit.co/.

Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw.4, 1686 (2019).

Wickham, H. ggplot2, Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016)

Clarke, E., Sherrill-Mix, S. & Dawson, C. Package ‘ggbeeswarm (2017). https://CRAN.R-project.org/package=ggbeeswarm.

Wilke, C. O. Tools for visualizing uncertainty with ggplot2 (2021). https://github.com/wilkelab/ungeviz.

Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. https://rpkgs.datanovia.com/ggpubr/.

Welch, B. L. The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika34, 28–35 (1947). PubMed

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). PubMed PMC

Linhartova, K. & Falginella, F. L. Raw data and MD simulations files for the paper: “Sequence and Structural Determinants of RNAPII CTD Phase-separation and Phosphorylation by CDK7”. 10.5281/zenodo.10696484 (2024). PubMed

Zeiss Microscopy GmbH, C. Super-Resolution Imaging by Dual Iterative Structured Illumination Microscopy Classic SIM SIM22.

The PyMOL Molecular Graphics System. Version 2.0. Schrödinger, LLC.

Case, D. A. et al. AmberTools. J. Chem. Inf. Model63, 6183–6191 (2023). PubMed PMC

Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX1–2, 19–25 (2015).

Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun.185, 604–613 (2014).

Kroon, P. C. et al. Martinize2 and Vermouth: unified framework for topology generation. Elife12, 1–7 (2023).

Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C. & Mittal, J. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA115, 9929–9934 (2018). PubMed PMC

de Jong, D. H., Baoukina, S., Ingólfsson, H. I. & Marrink, S. J. Martini straight: boosting performance using a shorter cutoff and GPUs. Comput. Phys. Commun.199, 1–7 (2016).

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.81, 3684–3690 (1984).

Shabane, P. S., Izadi, S. & Onufriev, A. V. General purpose water model can improve atomistic simulations of intrinsically disordered proteins. J. Chem. Theory Comput.15, 2620–2634 (2019). PubMed

Hornak, V. et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct., Bioinforma.65, 712–725 (2006). PubMed PMC

Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. J. Phys. Chem. Lett.5, 3863–3871 (2014). PubMed PMC

Homeyer, N., Horn, A. H. C., Lanig, H. & Sticht, H. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model12, 281–289 (2006). PubMed

Park, S., Radmer, R. J., Klein, T. E. & Pande, V. S. A new set of molecular mechanics parameters for hydroxyproline and its use in molecular dynamics simulations of collagen‐like peptides. J. Comput Chem.26, 1612–1616 (2005). PubMed

Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys.126, 014101 (2007). PubMed

Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys.52, 7182–7190 (1981).

Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys.98, 10089–10092 (1993).

Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput.4, 116–122 (2008). PubMed

Michaud‐Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput Chem.32, 2319–2327 (2011). PubMed PMC

Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph14, 33–38 (1996). PubMed

Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L. & Pappu, R. V. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA107, 8183–8188 (2010). PubMed PMC

Flory, P. J. The configuration of real polymer chains. J. Chem. Phys.17, 303–310 (1949).

Dima, R. I. & Thirumalai, D. Asymmetry in the shapes of folded and denatured states of proteins. J. Phys. Chem. B108, 6564–6570 (2004).

Shapovalov, M., Vucetic, S. & Dunbrack, R. L. A new clustering and nomenclature for beta turns derived from high-resolution protein structures. PLoS Comput. Biol.15, e1006844 (2019). PubMed PMC

Smith, P., Ziolek, R. M., Gazzarrini, E., Owen, D. M. & Lorenz, C. D. On the interaction of hyaluronic acid with synovial fluid lipid membranes. Phys. Chem. Chem. Phys.21, 9845–9857 (2019). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7

. 2024 Oct 24 ; 15 (1) : 9163. [epub] 20241024

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...