Pharmacological suppression of endogenous glucocorticoid synthesis attenuated blood pressure and heart rate response to acute restraint in Wistar rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32469228
PubMed Central
PMC8648304
DOI
10.33549/physiolres.934432
PII: 934432
Knihovny.cz E-zdroje
- MeSH
- adrenalektomie MeSH
- aminoglutethimid farmakologie MeSH
- antimetabolity farmakologie MeSH
- cévní rezistence účinky léků MeSH
- fyzické omezení fyziologie MeSH
- glukokortikoidy antagonisté a inhibitory biosyntéza MeSH
- inhibitory aromatasy farmakologie MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- metyrapon farmakologie MeSH
- modely nemocí na zvířatech MeSH
- potkani Wistar MeSH
- srdeční frekvence účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminoglutethimid MeSH
- antimetabolity MeSH
- glukokortikoidy MeSH
- inhibitory aromatasy MeSH
- metyrapon MeSH
Glucocorticoids (GCS) are known to modulate cardiovascular response during stress conditions. The present study was aimed to test the hypothesis that permissive and/or stimulating effect of GCs is essential for the maintenance of peripheral vascular resistance and for the adequate response of cardiovascular system to stressor exposure. The effects of acute pharmacological adrenalectomy (PhADX) on humoral and cardiovascular parameters were studied in adult Wistar rats under the basal conditions and during the acute restraint stress. Acute PhADX was performed by the administration of metyrapone and aminoglutethimide (100 mg/kg s.c. of each drug) resulting in a suppression of endogenous glucocorticoid synthesis. Blood pressure (BP), heart rate (HR) and core body temperature were measured using radiotelemetry. BP responses to administration of vasoactive agents were determined in pentobarbital-anesthetized animals. PhADX considerably attenuated stress-induced increase of BP, HR and core body temperature. PhADX did not abolish BP and HR lowering effects of ganglionic blocker pentolinium indicating preserved sympathetic function in PhADX rats. BP response to exogenous norepinephrine administration was attenuated in PhADX rats, suggesting reduced sensitivity of cardiovascular system. Suppression of corticosterone synthesis by PhADX increased basal plasma levels of ACTH, aldosterone and plasma renin activity in unstressed animals but there was no further increase of these hormones following stressor exposure. In conclusion, PhADX attenuated stress-induced rise of blood pressure, heart rate and core body temperature indicating an important permissive and/or stimulating role of glucocorticoids in the maintenance of the adequate response of cardiovascular system and thermoregulation to several stimuli including acute exposure to stressor.
Zobrazit více v PubMed
AYDIN C, GRACE CE, GORDON CJ. Effect of physical restraint on the limits of thermoregulation in telemetered rats. Exp Physiol. 2011;96:1218–1227. doi: 10.1113/expphysiol.2011.060301. PubMed DOI
BEHULIAK M, PINTÉROVÁ M, BENCZE M, PETROVÁ M, LÍŠKOVÁ S, KAREN P, KUNEŠ J, VANĚČKOVÁ I, ZICHA J. Ca2+ sensitization and Ca2+ entry in the control of blood pressure and adrenergic vasoconstriction in conscious Wistar-Kyoto and spontaneously hypertensive rats. J Hypertens. 2013;31:2025–2035. doi: 10.1097/hjh.0b013e328362adb3. PubMed DOI
BEHULIAK M, BENCZE M, POLGÁROVÁ K, KUNEŠ J, VANĚČKOVÁ I, ZICHA J. Hemodynamic response to gabapentin in conscious spontaneously hypertensive rats. Hypertension. 2018;72:676–685. doi: 10.1161/hypertensionaha.118.09909. PubMed DOI
BENCZE M, BEHULIAK M, ZICHA J. The impact of four different classes of anesthetics on the mechanisms of blood pressure regulation in normotensive and spontaneously hypertensive rats. Physiol Res. 2013;62:471–478. PubMed
BERTINIERI G, Di RIENZO M, CAVALLAZZI A, FERRARI AU, PEDOTTI A, MANCIA G. A new approach to analysis of the arterial baroreflex. J Hypertens. 1985;3(Suppl):S79–S81. PubMed
BROWN MR, FISHER LA. Glucocorticoid suppression of the sympathetic nervous system and adrenal medulla. Life Sci. 1986;39:1003–1012. doi: 10.1016/0024-3205(86)90289-4. PubMed DOI
DAILEY JW, WESTFALL TC. Effects of adrenalectomy and adrenal steroids on norepinephrine synthesis and monamine oxidase activity. Eur J Pharmacol. 1978;48:383–391. doi: 10.1016/0014-2999(78)90165-6. PubMed DOI
DARLINGTON DN, KASHIP K, KEIL LC, DALLMAN MF. Vascular responsiveness in adrenalectomized rats with corticosterone replacement. Am J Physiol. 1989;256:H1274–H1281. doi: 10.1152/ajpheart.1989.256.5.h1274. PubMed DOI
De KLOET ER, KARST H, JOËLS M. Corticosteroid hormones in the central stress response: quick-and-slow. Front Neuroendocrinol. 2008;29:268–272. doi: 10.1016/j.yfrne.2007.10.002. PubMed DOI
Dos REIS DG, FORTALEZA EA, TAVARES RF, CORRÊA FM. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats. Stress. 2014;17:362–372. doi: 10.3109/10253890.2014.930429. PubMed DOI
FRITZ I, LEVINE R. Action of adrenal cortical steroids and nor-epinephrine on vascular responses of stress in adrenalectomized rats. Am J Physiol. 1951;165:456–465. doi: 10.1152/ajplegacy.1951.165.2.456. PubMed DOI
GAO B, KIKUCHI-UTSUMI K, OHINATA H, HASHIMOTO M, KUROSHIMA A. Repeated immobilization stress increases uncoupling protein 1 expression and activity in Wistar rats. Jpn J Physiol. 2003;53:205–213. doi: 10.2170/jjphysiol.53.205. PubMed DOI
GOLDSTEIN DS. Adrenal responses to stress. Cell Mol Neurobiol. 2010;30:1433–1440. doi: 10.1007/s10571-010-9606-9. PubMed DOI PMC
HAIGH RM, JONES CT. Effect of glucocorticoids on alpha 1-adrenergic receptor binding in rat vascular smooth muscle. J Mol Endocrinol. 1990;5:41–48. doi: 10.1677/jme.0.0050041. PubMed DOI
HARRISON-BERNARD LM. The renal renin-angiotensin system. Adv Physiol Educ. 2009;33:270–274. doi: 10.1152/advan.00049.2009. PubMed DOI
HATTANGADY NG, OLALA LO, BOLLAG WB, RAINEY WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol. 2012;350:151–162. doi: 10.1016/j.mce.2011.07.034. PubMed DOI PMC
HAUGER-KLEVENE JH, BROWN H, FLEISCHER N. ACTH stimulation and glucocorticoid inhibition of renin release in the rat. Proc Soc Exp Biol Med. 1969;131:539–542. doi: 10.3181/00379727-131-33920. PubMed DOI
KOOLHAAS JM, BARTOLOMUCCI A, BUWALDA B, De BOER SF, FLÜGGE G, KORTE SM, MEERLO P, MURISON R, OLIVIER B, PALANZA P, RICHTER-LEVIN G, SGOIFO A, STEIMER T, STIEDL O, Van DIJK G, WÖHR M, FUCHS E. Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev. 2011;35:1291–1301. doi: 10.1016/j.neubiorev.2011.02.003. PubMed DOI
KVETŇANSKÝ R, FUKUHARA K, PACÁK K, CIZZA G, GOLDSTEIN DS, KOPIN IJ. Endogenous glucocorticoids restrain catecholamine synthesis and release at rest and during immobilization stress in rats. Endocrinology. 1993;133:1411–1419. doi: 10.1210/endo.133.3.8396019. PubMed DOI
McDOUGALL SJ, PAULL JR, WIDDOP RE, LAWRENCE AJ. Restraint stress: differential cardiovascular responses in Wistar-Kyoto and spontaneously hypertensive rats. Hypertension. 2000;35:126–129. doi: 10.1161/01.hyp.35.1.126. PubMed DOI
McEWEN BS. Protective and damaging effects of stress mediators. N Engl J Med. 1998;338:171–179. doi: 10.1056/NEJM199801153380307. PubMed DOI
MORRISON SF, NAKAMURA K, MADDEN CJ. Central control of thermogenesis in mammals. Exp Physiol. 2008;93:773–797. doi: 10.1113/expphysiol.2007.041848. PubMed DOI PMC
NAGASAKA T, HIRATA K, SUGANO Y, SHIBATA H. Heat balance during physical restraint in rats. Jpn J Physiol. 1979;29:383–392. doi: 10.2170/jjphysiol.29.383. PubMed DOI
OOTSUKA Y, BLESSING WW, NALIVAIKO E. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats. Stress. 2008;11:125–133. doi: 10.1080/10253890701638303. PubMed DOI
PLOTSKY PM, OTTO S, SAPOLSKY RM. Inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation by delayed glucocorticoid feedback. Endocrinology. 1986;119:1126–1130. doi: 10.1210/endo-119-3-1126. PubMed DOI
PLOTSKY PM, SAWCHENKO PE. Hypophysial-portal plasma levels, median eminence content, and immunohistochemical staining of corticotropin-releasing factor, arginine vasopressin, and oxytocin after pharmacological adrenalectomy. Endocrinology. 1987;120:1361–1369. doi: 10.1210/endo-120-4-1361. PubMed DOI
PRAGER EM, JOHNSON LR. Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci Signal. 2009;2:re5. doi: 10.1126/scisignal.286re5. PubMed DOI
ROTLLANT D, ONS S, CARRASCO J, ARMARIO A. Evidence that metyrapone can act as a stressor: effect on pituitary-adrenal hormones, plasma glucose and brain c-fos induction. Eur J Neurosci. 2002;16:693–700. doi: 10.1046/j.1460-9568.2002.02120.x. PubMed DOI
SAMPATH-KUMAR R, YU M, KHALIL MW, YANG K. Metyrapone is a competitive inhibitor of 11beta-hydroxysteroid dehydrogenase type 1 reductase. J Steroid Biochem Mol Biol. 1997;62:195–199. doi: 10.1016/s0960-0760(97)00027-7. PubMed DOI
SANTEN RJ, MISBIN RI. Aminoglutethimide: review of pharmacology and clinical use. Pharmacotherapy. 1981;1:95–120. doi: 10.1002/j.1875-9114.1981.tb03557.x. PubMed DOI
SAPOLSKY RM, ROMERO LM, MUNCK AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21:55–89. doi: 10.1210/er.21.1.55. PubMed DOI
SHIBATA H, NAGASAKA T. Role of sympathetic nervous system in immobilization- and cold-induced brown adipose tissue thermogenesis in rats. Jpn J Physiol. 1984;34:103–111. doi: 10.2170/jjphysiol.34.103. PubMed DOI
STAUSS HM. Identification of blood pressure control mechanisms by power spectral analysis. Clin Exp Pharmacol Physiol. 2007;34:362–368. doi: 10.1111/j.1440-1681.2007.04588.x. PubMed DOI
TASKER JG, DI S, MALCHER-LOPES R. Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology. 2006;147:5549–5556. doi: 10.1210/en.2006-0981. PubMed DOI PMC
ULLIAN ME. The role of corticosteriods in the regulation of vascular tone. Cardiovasc Res. 1999;41:55–64. PubMed
Van den BUUSE M, Van ACKER SA, FLUTTERT MF, De KLOET ER. Involvement of corticosterone in cardiovascular responses to an open-field novelty stressor in freely moving rats. Physiol Behav. 2002;75:207–215. doi: 10.1016/s0031-9384(01)00642-4. PubMed DOI
VAVŘÍNOVÁ A, BEHULIAK M, BENCZE M, VODIČKA M, ERGANG P, VANĚČKOVÁ I, ZICHA J. Sympathectomy-induced blood pressure reduction in adult normotensive and hypertensive rats is counteracted by enhanced cardiovascular sensitivity to vasoconstrictors. Hypertens Res. 2019;42:1872–1882. doi: 10.1038/s41440-019-0319-2. PubMed DOI
WU XY, HU YT, GUO L, LU J, ZHU QB, YU E, WU JL, SHI LG, HUANG ML, BAO AM. Effect of pentobarbital and isoflurane on acute stress response in rat. Physiol Behav. 2015;145:118–121. doi: 10.1016/j.physbeh.2015.04.003. PubMed DOI
YAGIL Y, KRAKOFF LR. The differential effect of aldosterone and dexamethasone on pressor responses in adrenalectomized rats. Hypertension. 1988;11:174–178. doi: 10.1161/01.hyp.11.2.174. PubMed DOI
YANG S, ZHANG L. Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol. 2004;2:1–12. doi: 10.2174/1570161043476483. PubMed DOI