The Regulatory Role of Nuclear Factor Kappa B in the Heart of Hereditary Hypertriglyceridemic Rat
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27148433
PubMed Central
PMC4842370
DOI
10.1155/2016/9814038
Knihovny.cz E-zdroje
- MeSH
- exprese genu účinky léků MeSH
- fenylendiaminy farmakologie MeSH
- glutathion analýza MeSH
- hyperlipoproteinemie typ IV patologie veterinární MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- myokard metabolismus MeSH
- oxid dusnatý metabolismus MeSH
- oxidační stres účinky léků MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- srdeční komory metabolismus MeSH
- superoxiddismutasa genetika metabolismus MeSH
- synthasa oxidu dusnatého, typ III genetika metabolismus MeSH
- synthasa oxidu dusnatého genetika metabolismus MeSH
- tělesná hmotnost účinky léků MeSH
- transkripční faktor RelA genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4-methyl-N1-(3-phenylpropyl)benzene-1,2-diamine MeSH Prohlížeč
- fenylendiaminy MeSH
- glutathion MeSH
- oxid dusnatý MeSH
- reaktivní formy kyslíku MeSH
- superoxiddismutasa MeSH
- synthasa oxidu dusnatého, typ III MeSH
- synthasa oxidu dusnatého MeSH
- transkripční faktor RelA MeSH
Activation of nuclear factor-κB (NF-κB) by increased production of reactive oxygen species (ROS) might induce transcription and expression of different antioxidant enzymes and also of nitric oxide synthase (NOS) isoforms. Thus, we aimed at studying the effect of NF-κB inhibition, caused by JSH-23 (4-methyl-N (1)-(3-phenyl-propyl)-benzene-1,2-diamine) injection, on ROS and NO generation in hereditary hypertriglyceridemic (HTG) rats. 12-week-old, male Wistar and HTG rats were treated with JSH-23 (bolus, 10 μmol, i.v.). After one week, blood pressure (BP), superoxide dismutase (SOD) activity, SOD1, endothelial NOS (eNOS), and NF-κB (p65) protein expressions were higher in the heart of HTG rats compared to control rats. On the other hand, NOS activity was decreased. In HTG rats, JSH-23 treatment increased BP and heart conjugated dienes (CD) concentration (measured as the marker of tissue oxidative damage). Concomitantly, SOD activity together with SOD1 expression was decreased, while NOS activity and eNOS protein expression were increased significantly. In conclusion, NF-κB inhibition in HTG rats led to decreased ROS degradation by SOD followed by increased oxidative damage in the heart and BP elevation. In these conditions, increased NO generation may represent rather a counterregulatory mechanism activated by ROS. Nevertheless, this mechanism was not sufficient enough to compensate BP increase in HTG rats.
Zobrazit více v PubMed
Liu H., Colavitti R., Rovira I. I., Finkel T. Redox-dependent transcriptional regulation. Circulation Research. 2005;97(10):967–974. doi: 10.1161/01.RES.0000188210.72062.10. PubMed DOI
Bar-Shai M., Carmeli E., Ljubuncic P., Reznick A. Z. Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-κB activation. Free Radical Biology and Medicine. 2008;44(2):202–214. doi: 10.1016/j.freeradbiomed.2007.03.019. PubMed DOI
Kwak J.-H., Jung J.-K., Lee H. Nuclear factor-kappa B inhibitors; a patent review (2006–2010) Expert Opinion on Therapeutic Patents. 2011;21(12):1897–1910. doi: 10.1517/13543776.2011.638285. PubMed DOI
Grumbach I. M., Chen W., Mertens S. A., Harrison D. G. A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. Journal of Molecular and Cellular Cardiology. 2005;39(4):595–603. doi: 10.1016/j.yjmcc.2005.06.012. PubMed DOI
Morgan M. J., Liu Z.-G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research. 2011;21(1):103–115. doi: 10.1038/cr.2010.178. PubMed DOI PMC
Tranter M., Ren X., Forde T., et al. NF-ΚB driven cardioprotective gene programs; Hsp70.3 and cardioprotection after late ischemic preconditioning. Journal of Molecular and Cellular Cardiology. 2010;49(4):664–672. doi: 10.1016/j.yjmcc.2010.07.001. PubMed DOI PMC
Napetschnig J., Wu H. Molecular basis of NF-κB signaling. Annual Review of Biophysics. 2013;42(1):443–468. doi: 10.1146/annurev-biophys-083012-130338. PubMed DOI PMC
Sen C. K., Khanna S., Reznick A. Z., Roy S., Packer L. Glutathione regulation of tumor necrosis factor-α-induced NF-κB activation in skeletal muscle-derived L6 cells. Biochemical and Biophysical Research Communications. 1997;237(3):645–649. doi: 10.1006/bbrc.1997.7206. PubMed DOI
Chen F., Castranova V., Li Z., Karin M., Shi X. Inhibitor of nuclear factor kappa B kinase deficiency enhances oxidative stress and prolongs c-Jun NH2-terminal kinase activation induced by arsenic. Cancer Research. 2003;63:7689–7693. PubMed
Vrána A., Kazdová L. The hereditary hypertriglyceridemic nonobese rat: an experimental model of human hypertriglyceridemia. Transplantation Proceedings. 1990;22(6):p. 2579. PubMed
Zicha J., Pecháňová O., Čačányiová S., et al. Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiological Research. 2006;55(supplement 1):S49–S63. PubMed
Kazdová L., Žák A., Vrána A. Increased lipoprotein oxidability and aortic lipid peroxidation in an experimental model of insulin resistance syndrome. Annals of the New York Academy of Sciences. 1997;827:521–525. doi: 10.1111/j.1749-6632.1997.tb51863.x. PubMed DOI
Shin H.-M., Kim M.-H., Kim B. H., et al. Inhibitory action of novel aromatic diamine compound on lipopolysaccharide-induced nuclear translocation of NF-κB without affecting IκB degradation. FEBS Letters. 2004;571(1–3):50–54. doi: 10.1016/j.febslet.2004.06.056. PubMed DOI
Kogure K., Watson B. D., Busto R., Abe K. Potentiation of lipid peroxides by ischemia in rat brain. Neurochemical Research. 1982;7(4):437–454. doi: 10.1007/bf00965496. PubMed DOI
Ellman G. L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 1959;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. PubMed DOI
Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(2):682–685. doi: 10.1073/pnas.87.2.682. PubMed DOI PMC
Pecháňová O., Bernátová I., Pelouch V., Šimko F. Protein remodelling of the heart in NO-deficient hypertension: the effect of captopril. Journal of Molecular and Cellular Cardiology. 1997;29(12):3365–3374. doi: 10.1006/jmcc.1997.0566. PubMed DOI
Pecháňová O., Zicha J., Kojšová S., Dobešová Z., Jendeková L., Kuneš J. Effect of chronic N-acetylcysteine treatment on the development of spontaneous hypertension. Clinical Science. 2006;110(2):235–242. doi: 10.1042/cs20050227. PubMed DOI
Simko F., Luptak I., Matuskova J., et al. Heart remodeling in the hereditary hypertriglyceridemic rat: Effect of captopril and nitric oxide deficiency. Annals of the New York Academy of Sciences. 2002;967:454–462. PubMed
Kuneš J., Dobešová Z., Zicha J. Altered balance of main vasopressor and vasodepressor systems in rats with genetic hypertension and hypertriglyceridaemia. Clinical Science. 2002;102(3):269–277. doi: 10.1042/CS20010214. PubMed DOI
Žourek M., Kyselová P., Mudra J., et al. The relationship between glycemia, insulin and oxidative stress in hereditary hypertriglyceridemic rat. Physiological Research. 2008;57(4):531–538. PubMed
Škottová N., Kazdová L., Oliyarnyk O., Večeřa R., Sobolová L., Ulrichová J. Phenolics-rich extracts from Silybum marianum and Prunella vulgaris reduce a high-sucrose diet induced oxidative stress in hereditary hypertriglyceridemic rats. Pharmacological Research. 2004;50(2):123–130. doi: 10.1016/j.phrs.2003.12.013. PubMed DOI
Vranková S., Parohová J., Barta A., Janega P., Šimko F., Pecháňová O. Effect of nuclear factor kappa B inhibition on L-NAME-induced hypertension and cardiovascular remodelling. Journal of Hypertension. 2010;28(1):S45–S49. doi: 10.1097/01.hjh.0000388494.58707.0f. PubMed DOI
Lee M. H., Hyun D.-H., Jenner P., Halliwell B. Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. Journal of Neurochemistry. 2001;78(1):32–41. doi: 10.1046/j.1471-4159.2001.00416.x. PubMed DOI
Ward N. C., Croft K. D. Hypertension and oxidative stress. Clinical and Experimental Pharmacology and Physiology. 2006;33(9):872–876. doi: 10.1111/j.1440-1681.2006.04457.x. PubMed DOI
Kojšová S., Jendeková L., Zicha J., Kuneš J., Andriantsitohaina R., Pecháňová O. The effect of different antioxidants on nitric oxide production in hypertensive rats. Physiological Research. 2006;55(supplement 1):S3–S16. PubMed
Wilcox C. S., Pearlman A. Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacological Reviews. 2008;60(4):418–469. doi: 10.1124/pr.108.000240. PubMed DOI PMC
Skibska B., Goraca A. The protective effect of lipoic acid on selected cardiovascular diseases caused by age-related oxidative stress. Oxidative Medicine and Cellular Longevity. 2015;2015:11. doi: 10.1155/2015/313021.313021 PubMed DOI PMC
Shaw P. X., Werstuck G., Chen Y. Oxidative stress and aging diseases. Oxidative Medicine and Cellular Longevity. 2014;2014:2. doi: 10.1155/2014/569146.569146 PubMed DOI PMC
Valko M., Leibfritz D., Moncol J., Cronin M. T. D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology. 2007;39(1):44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI
Woodward M., Croft K. D., Mori T. A., et al. Association between both lipid and protein oxidation and the risk of fatal or non-fatal coronary heart disease in a human population. Clinical Science. 2009;116(1):53–60. doi: 10.1042/CS20070404. PubMed DOI
Dröge W., Schulze-Osthoff K., Mihm S., et al. Functions of glutathione and glutathione disulfide in immunology and immunopathology. The FASEB Journal. 1994;8(14):1131–1138. PubMed
Cho M.-L., Moon Y.-M., Heo Y.-J., et al. NF-κB inhibition leads to increased synthesis and secretion of MIF in human CD4+ T cells. Immunology Letters. 2009;123(1):21–30. doi: 10.1016/j.imlet.2009.01.010. PubMed DOI
Sasazuki T., Okazaki T., Tada K., et al. Genome wide analysis of TNF-inducible genes reveals that antioxidant enzymes are induced by TNF and responsible for elimination of ROS. Molecular Immunology. 2004;41(5):547–551. doi: 10.1016/j.molimm.2004.03.030. PubMed DOI
Townsend D. M., Tew K. D., Tapiero H. The importance of glutathione in human disease. Biomedicine and Pharmacotherapy. 2003;57(3):145–155. doi: 10.1016/S0753-3322(03)00043-X. PubMed DOI PMC
Santos-Silva M. C., Freitas M. S. D., Assreuy J. Involvement of NF-κB and glutathione in cytotoxic effects of nitric oxide and taxol on human leukemia cells. Leukemia Research. 2006;30(2):145–152. doi: 10.1016/j.leukres.2005.06.021. PubMed DOI
Zhang S., Ong C.-N., Shen H.-M. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Letters. 2004;208(2):143–153. doi: 10.1016/j.canlet.2003.11.028. PubMed DOI
Orr J. G., Leel V., Cameron G. A., et al. Mechanism of action of the antifibrogenic compound gliotoxin in rat liver cells. Hepatology. 2004;40(1):232–242. doi: 10.1002/hep.20254. PubMed DOI