Hypertension after the Menopause: What Can We Learn from Experimental Studies?
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
37565415
PubMed Central
PMC10660576
DOI
10.33549/physiolres.935151
PII: 935151
Knihovny.cz E-zdroje
- MeSH
- hormonální substituční terapie MeSH
- hypertenze * MeSH
- kardiovaskulární nemoci * epidemiologie MeSH
- krevní tlak fyziologie MeSH
- krysa rodu Rattus MeSH
- menopauza fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Hypertension is the most prevalent cardiovascular disease of the adult population and is closely associated with serious cardiovascular events. The burden of hypertension with respect to vascular and other organ damage is greater in women. These sex differences are not fully understood. The unique feature in women is their transition to menopause accompanied by profound hormonal changes that affect the vasculature that are also associated with changes of blood pressure. Results from studies of hormone replacement therapy and its effects on the cardiovascular system are controversial, and the timing of treatment after menopause seems to be important. Therefore, revealing potential sex- and sex hormone-dependent pathophysiological mechanisms of hypertension in experimental studies could provide valuable information for better treatment of hypertension and vascular impairment, especially in postmenopausal women. The experimental rat models subjected to ovariectomy mimicking menopause could be useful tools for studying the mechanisms of blood pressure regulation after menopause and during subsequent therapy.
Zobrazit více v PubMed
Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, White IR, Caulfield MJ, Deanfield JE, Smeeth L, Williams B, Hingorani A, Hemingway H. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet. 2014;383:1899–1911. doi: 10.1016/S0140-6736(14)60685-1. PubMed DOI PMC
GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–1994. doi: 10.1016/S0140-6736(18)32225-6. PubMed DOI PMC
Gerdts E, Izzo R, Mancusi C, Losi MA, Manzi MV, Canciello G, De Luca N, Trimarco B, de Simone G. Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network) Int J Cardiol. 2018;258:257–261. doi: 10.1016/j.ijcard.2017.12.086. PubMed DOI
Masubuchi Y, Kumai T, Uematsu A, Komoriyama K, Hirai M. Gonadectomy-induced reduction of blood pressure in adult spontaneously hypertensive rats. Acta Endocrinol (Copenh) 1982;101:154–160. doi: 10.1530/acta.0.1010154. PubMed DOI
Elmarakby AA, Sullivan JC. Sex differences in hypertension: lessons from spontaneously hypertensive rats (SHR) Clin Sci (Lond) 2021;135:1791–1804. doi: 10.1042/CS20201017. PubMed DOI PMC
Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol. 1996;270:E919–E29. doi: 10.1152/ajpendo.1996.270.6.E919. PubMed DOI
Opočenský M, Dvořák P, Malý J, Kramer HJ, Bäcker A, Kopkan L, Vernerová Z, Tesař V, Zima T, Bader M, Ganten D, Janda J, Vaněčková I. Chronic endothelin receptor blockade reduces end-organ damage independently of blood pressure effects in salt-loaded heterozygous Ren-2 transgenic rats. Physiol Res. 2004;53:581–93. doi: 10.33549/physiolres.930569. PubMed DOI
Dahl LK, Knudsen KD, Ohanian EV, Muirhead M, Tuthill R. Role of the gonads in hypertension-prone rats. J Exp Med. 1975;142:748–759. doi: 10.1084/jem.142.3.748. PubMed DOI PMC
Zicha J, Dobešová Z, Vokurková M, Rauchová H, Hojná S, Kadlecová M, Behuliak M, Vaněčková I, Kuneš J. Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res. 2012;61(Suppl 1):S35–S87. doi: 10.33549/physiolres.932363. PubMed DOI
Crofton JT, Share L, Brooks DP. Gonadectomy abolishes the sexual dimorphism in DOC-salt hypertension in the rat. Clin Exp Hypertens A. 1989;11:1249–1261. doi: 10.3109/10641968909038168. PubMed DOI
Sáinz J, Osuna A, Wangensteen R, de Dios Luna J, Rodríguez-Gómez I, Duarte J, Moreno JM, Vargas F. Role of sex, gonadectomy and sex hormones in the development of nitric oxide inhibition-induced hypertension. Exp Physiol. 2004;89:155–162. doi: 10.1113/expphysiol.2003.002652. PubMed DOI
Kuneš J, Dobešová Z, Zicha J. Altered balance of main vasopressor and vasodepressor systems in rats with genetic hypertension and hypertriglyceridaemia. Clin Sci (Lond) 2002;102:269–277. doi: 10.1042/cs1020269. PubMed DOI
Kadlecová M, Dobešová Z, Zicha J, Kuneš J. Abnormal Igf2 gene in Prague hereditary hypertriglyceridemic rats: its relation to blood pressure and plasma lipids. Mol Cell Biochem. 2008;314:37–43. doi: 10.1007/s11010-008-9762-0. PubMed DOI
Zicha J, Pecháňová O, Čačányiová S, Cebová M, Kristek F, Török J, Šimko F, Dobešová Z, Kuneš J. Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res. 2006;55(Suppl 1):S49–S63. doi: 10.33549/physiolres.930000.55.S1.49. PubMed DOI
Ganten U, Schröder G, Witt M, Zimmermann F, Ganten D, Stock G. Sexual dimorphism of blood pressure in spontaneously hypertensive rats: effects of anti-androgen treatment. J Hypertens. 1989;7:721–726. doi: 10.1097/00004872-198909000-00005. PubMed DOI
Chen YF, Meng QC. Sexual dimorphism of blood pressure in spontaneously hypertensive rats is androgen dependent. Life Sci. 1991;48:85–96. doi: 10.1016/0024-3205(91)90428-E. PubMed DOI
Maris ME, Melchert RB, Joseph J, Kennedy RH. Gender differences in blood pressure and heart rate in spontaneously hypertensive and Wistar-Kyoto rats. Clin Exp Pharmacol Physiol. 2005;32:35–39. doi: 10.1111/j.1440-1681.2005.04156.x. PubMed DOI
Sullivan JC, Semprun-Prieto L, Boesen EI, Pollock DM, Pollock JS. Sex and sex hormones influence the development of albuminuria and renal macrophage infiltration in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1573–R1579. doi: 10.1152/ajpregu.00429.2007. PubMed DOI
Loukotová J, Bačáková L, Zicha J, Kuneš J. The influence of angiotensin II on sex-dependent proliferation of aortic VSMC isolated from SHR. Physiol Res. 1998;47:501–505. PubMed
Loukotová J, Kuneš J, Zicha J. Gender-dependent difference in cell calcium handling in VSMC isolated from SHR: the effect of angiotensin II. J Hypertens. 2002;20:2213–2219. doi: 10.1097/00004872-200211000-00021. PubMed DOI
Gong G, Johnson ML, Pettinger WA. Testosterone regulation of renal α2B-adrenergic receptor mRNA levels. Hypertension. 1995;25:350–355. doi: 10.1161/01.HYP.25.3.350. PubMed DOI
Caplea A, Seachrist D, Daneshvar H, Dunphy G, Ely D. Noradrenergic content and turnover rate in kidney and heart shows gender and strain differences. J Appl Physiol. 2002;92:567–571. doi: 10.1152/japplphysiol.00557.2001. PubMed DOI
Berg T. α2-adrenoreceptor constraint of catecholamine release and blood pressure is enhanced in female spontaneously hypertensive rats. Front Neurosci. 2016;10:130. doi: 10.3389/fnins.2016.00130. PubMed DOI PMC
Chen YF, Naftilan AJ, Oparil S. Androgen-dependent angiotensinogen and renin messenger RNA expression in hypertensive rats. Hypertension. 1992;19:456–463. doi: 10.1161/01.HYP.19.5.456. PubMed DOI
Reckelhoff JF, Zhang H, Srivastava K. Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system. Hypertension. 2000;35:480–483. doi: 10.1161/01.HYP.35.1.480. PubMed DOI
Silva-Antonialli MM, Tostes RC, Fernandes L, Fior-Chadi DR, Akamine EH, Carvalho MH, Fortes ZB, Nigro D. A lower ratio of AT1/AT2 receptors of angiotensin II is found in female than in male spontaneously hypertensive rats. Cardiovasc Res. 2004;62:587–593. doi: 10.1016/j.cardiores.2004.01.020. PubMed DOI
Sullivan JC, Sasser JM, Pollock JS. Sexual dimorphism in oxidant status in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2007;292:R764–R768. doi: 10.1152/ajpregu.00322.2006. PubMed DOI
Lopez-Ruiz A, Sartori-Valinotti J, Yanes LL, Iliescu R, Reckelhoff JF. Sex differences in control of blood pressure: role of oxidative stress in hypertension in females. Am J Physiol Heart Circ Physiol. 2008;295:H466–H474. doi: 10.1152/ajpheart.01232.2007. PubMed DOI PMC
Sasser JM, Brinson KN, Tipton AJ, Crislip GR, Sullivan JC. Blood pressure, sex, and female sex hormones influence renal inner medullary nitric oxide synthase activity and expression in spontaneously hypertensive rats. J Am Heart Assoc. 2015;4:e001738. doi: 10.1161/JAHA.114.001738. PubMed DOI PMC
Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have greater renal anti-inflammatory T lymphocyte infiltration than males. Am J Physiol Regul Integr Comp Physiol. 2012;303:R359–R367. doi: 10.1152/ajpregu.00246.2012. PubMed DOI PMC
Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have a compensatory increase in renal regulatory T cells in response to elevations in blood pressure. Hypertension. 2014;64:557–564. doi: 10.1161/HYPERTENSIONAHA.114.03512. PubMed DOI PMC
Tipton AJ, Musall JB, Crislip GR, Sullivan JC. Greater transforming growth factor-β in adult female SHR is dependent on blood pressure, but does not account for sex differences in renal T-regulatory cells. Am J Physiol Renal Physiol. 2017;313:F847–F853. doi: 10.1152/ajprenal.00175.2017. PubMed DOI PMC
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–544. doi: 10.1038/344541a0. PubMed DOI
Johnson MS, DeMarco VG, Heesch CM, Whaley-Connell AT, Schneider RI, Rehmer NT, Tilmon RD, Ferrario CM, Sowers JR. Sex differences in baroreflex sensitivity, heart rate variability, and end organ damage in the TGR(mRen2)27 rat. Am J Physiol Heart Circ Physiol. 2011;301:H1540–H1550. doi: 10.1152/ajpheart.00593.2011. PubMed DOI PMC
Vaněčková I, Husková Z, Vaňourková Z, Cervenka L. Castration has antihypertensive and organoprotective effects in male but not in female heterozygous Ren-2 rats. Kidney Blood Press Res. 2011;34:46–52. doi: 10.1159/000322618. PubMed DOI
Rauchová H, Hojná S, Kadlecová M, Vaněčková I, Zicha J. Sex differences in blood pressure of aged Ren-2 transgenic rats. Physiol Res. 2020;69:245–252. doi: 10.33549/physiolres.934369. PubMed DOI PMC
Rauchová H, Hojná S, Kadlecová M, Vaněčková I, Chao YM, Chan JYH, Zicha J. Sex differences in blood pressure, free radicals and plasma cholesterol fractions in Ren-2 Transgenic rats of various ages. Physiol Res. 2023;72:167–175. doi: 10.33549/physiolres.935059. PubMed DOI PMC
Husková Z, Kramer H, Vaňourková Z, Thumová M, Malý J, Opočenský M, Škaroupková P, Kolský A, Vernerová Z, Červenka L. Effects of dietary salt load and salt depletion on the course of hypertension and angiotensin II levels in male and female heterozygous Ren-2 transgenic rats. Kidney Blood Press Res. 2007;30:45–55. doi: 10.1159/000099028. PubMed DOI
Ouchi Y, Yazaki Y, Tsai RC, Ashida T. Pressor response to vasopressin and norepinephrine in DOC-salt hypertensive and prehypertensive rats. Tohoku J Exp Med. 1988;154:125–133. doi: 10.1620/tjem.154.125. PubMed DOI
Bayorh MA, Socci RR, Eatman D, Wang M, Thierry-Palmer M. The role of gender in salt-induced hypertension. Clin Exp Hypertens. 2001;23:241–255. doi: 10.1081/CEH-100102663. PubMed DOI
Dobešová Z, Kuneš J, Zicha J. Body fluid alterations and organ hypertrophy in age-dependent salt hypertension of Dahl rats. Physiol Res. 1995;44:377–387. PubMed
Hinojosa-Laborde C, Lange DL, Haywood JR. Role of female sex hormones in the development and reversal of Dahl hypertension. Hypertension. 2000;35:484–489. doi: 10.1161/01.HYP.35.1.484. PubMed DOI
Dobešová Z, Kuneš J, Zicha J. The altered balance between sympathetic nervous system and nitric oxide in salt hypertensive Dahl rats: ontogenetic and F2 hybrid studies. J Hypertens. 2002;20:945–955. doi: 10.1097/00004872-200205000-00030. PubMed DOI
Behuliak M, Pintérová M, Kuneš J, Zicha J. Vasodilator efficiency of endogenous prostanoids, Ca2+-activated K+ channels and nitric oxide in rats with spontaneous, salt-dependent or NO-deficient hypertension. Hypertens Res. 2011;34:968–975. doi: 10.1038/hr.2011.82. PubMed DOI
Mensah EA, Daneshtalab N, Tabrizchi R. Differential biomechanics in resistance arteries of male compared with female Dahl hypertensive rats. J Hypertens. 2022;40:596–605. doi: 10.1097/HJH.0000000000003053. PubMed DOI PMC
Herrera VL, Tsikoudakis A, Ponce LR, Matsubara Y, Ruiz-Opazo N. Sex-specific QTLs and interacting loci underlie salt-sensitive hypertension and target organ complications in Dahl S/jrHS hypertensive rats. Physiol Genomics. 2006;26:172–179. doi: 10.1152/physiolgenomics.00285.2005. PubMed DOI
Barris CT, Faulkner JL, Belin de Chantemèle EJ. Salt sensitivity of blood pressure in women. Hypertension. 2023;80:268–278. doi: 10.1161/HYPERTENSIONAHA.122.17952. PubMed DOI PMC
Xue B, Badaue-Passos D, Jr, Guo F, Gomez-Sanchez CE, Hay M, Johnson AK. Sex differences and central protective effect of 17β-estradiol in the development of aldosterone/NaCl-induced hypertension. Am J Physiol Heart Circ Physiol. 2009;296:H1577–H1585. doi: 10.1152/ajpheart.01255.2008. PubMed DOI PMC
Faulkner JL, Belin de Chantemèle EJ. Mineralocorticoid receptor and endothelial dysfunction in hypertension. Curr Hypertens Rep. 2019;21:78. doi: 10.1007/s11906-019-0981-4. PubMed DOI PMC
Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman S, Sluss PM, de Villiers TJ STRAW+10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop +10: addressing the unfinished agenda of staging reproductive aging. Climacteric. 2012;15:105–114. doi: 10.3109/13697137.2011.650656. PubMed DOI PMC
Hale GE, Zhao X, Hughes CL, Burger HG, Robertson DM, Fraser IS. Endocrine features of menstrual cycles in middle and late reproductive age and the menopausal transition classified according to the Staging of Reproductive Aging Workshop (STRAW) staging system. J Clin Endocrinol Metab. 2007;92:3060–3067. doi: 10.1210/jc.2007-0066. PubMed DOI
Vokonas PS, Kannel WB, Cupples LA. Epidemiology and risk of hypertension in the elderly: the Framingham Study. J Hypertens. 1988;6(Suppl):S3–S9. doi: 10.1097/00004872-199112002-00002. PubMed DOI
Ong KL, Cheung BMY, Man YB, Lau CP, Lam KSL. Prevalence, awareness, treatment, and control of hypertension among United States adults 1999–2004. Hypertension. 2007;49:69–75. doi: 10.1161/01.HYP.0000252676.46043.18. PubMed DOI
Staessen J, Bulpitt CJ, Fagard R, Lijnen P, Amery A. The influence of menopause on blood pressure. J Hum Hypertens. 1989;3:427–433. PubMed
Portaluppi F, Pansini F, Manfredini R, Mollica G. Relative influence of menopausal status, age, and body mass index on blood pressure. Hypertension. 1997;29:976–979. doi: 10.1161/01.HYP.29.4.976. PubMed DOI
Cifkova R, Pitha J, Lejskova M, Lanska V, Zecova S. Blood pressure around the menopause: a population study. J Hypertens. 2008;26:1976–1982. doi: 10.1097/HJH.0b013e32830b895c. PubMed DOI
Niță AR, Knock GA, Heads RJ. Signalling mechanisms in the cardiovascular protective effects of estrogen: With a focus on rapid/membrane signalling. Curr Res Physiol. 2021;4:103–118. doi: 10.1016/j.crphys.2021.03.003. PubMed DOI PMC
Roa-Díaz ZM, Raguindin PF, Bano A, Laine JE, Muka T, Glisic M. Menopause and cardiometabolic diseases: What we (don’t) know and why it matters. Maturitas. 2021;152:48–56. doi: 10.1016/j.maturitas.2021.06.013. PubMed DOI
Armeni E, Lambrinoudaki I. Menopause, androgens, and cardiovascular ageing: a narrative review. Ther Adv Endocrinol Metab. 2022;13:20420188221129946. doi: 10.1177/20420188221129946. PubMed DOI PMC
Coylewright M, Reckelhoff JF, Ouyang P. Menopause and hypertension: an age-old debate. Hypertension. 2008;51:952–959. doi: 10.1161/HYPERTENSIONAHA.107.105742. PubMed DOI
Somani YB, Pawelczyk JA, De Souza MJ, Kris-Etherton PM, Proctor DN. Aging women and their endothelium: probing the relative role of estrogen on vasodilator function. Am J Physiol Heart Circ Physiol. 2019;317:H395–H404. doi: 10.1152/ajpheart.00430.2018. PubMed DOI PMC
Maric-Bilkan C, Manigrasso MB. Sex differences in hypertension: contribution of the renin-angiotensin system. Gend Med. 2012;9:287–291. doi: 10.1016/j.genm.2012.06.005. PubMed DOI
Pechère-Bertschi A, Burnier M. Female sex hormones, salt, and blood pressure regulation. Am J Hypertens. 2004;17:994–1001. doi: 10.1016/j.amjhyper.2004.08.009. PubMed DOI
El Khoudary SR, Greendale G, Crawford SL, Avis NE, Brooks MM, Thurston RC, Karvonen-Gutierrez C, Waetjen LE, Matthews K. The menopause transition and women's health at midlife: a progress report from the Study of Women's Health Across the Nation (SWAN) Menopause. 2019;26:1213–1227. doi: 10.1097/GME.0000000000001424. PubMed DOI PMC
Udali S, Guarini P, Moruzzi S, Choi SW, Friso S. Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol Aspects Med. 2013;34:883–901. doi: 10.1016/j.mam.2012.08.001. PubMed DOI
Sharma S, Eghbali M. Influence of sex differences on microRNA gene regulation in disease. Biol Sex Differ. 2014;5:3. doi: 10.1186/2042-6410-5-3. PubMed DOI PMC
Schierbeck LL, Rejnmark L, Tofteng CL, Stilgren L, Eiken P, Mosekilde L, Køber L, Jensen JE. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. BMJ. 2012;345:e6409. doi: 10.1136/bmj.e6409. PubMed DOI
Hodis HN, Collins P, Mack WJ, Schierbeck LL. The timing hypothesis for coronary heart disease prevention with hormone therapy: past, present and future in perspective. Climacteric. 2012;15:217–228. doi: 10.3109/13697137.2012.656401. PubMed DOI PMC
Boardman HM, Hartley L, Eisinga A, Main C, Roqué i Figuls M, Bonfill Cosp X, Gabriel Sanchez R, Knight B. Hormone therapy for preventing cardiovascular disease in post-menopausal women. Cochrane Database Syst Rev. 2015;2015(3):CD002229. doi: 10.1002/14651858.CD002229.pub4. PubMed DOI PMC
Newson L. Menopause and cardiovascular disease. Post Reprod Health. 2018;24:44–49. doi: 10.1177/2053369117749675. PubMed DOI
El Khoudary SR. The menopause transition: a critical stage for cardiovascular disease risk acceleration in women. Menopause. 2023;30:556–558. doi: 10.1097/GME.0000000000002172. PubMed DOI
Mikkola TS, Tuomikoski P, Lyytinen H, Korhonen P, Hoti F, Vattulainen P, Gissler M, Ylikorkala O. Estradiol-based postmenopausal hormone therapy and risk of cardiovascular and all-cause mortality. Menopause. 2015;22:976–983. doi: 10.1097/GME.0000000000000450. PubMed DOI
Chiu CL, Lujic S, Thornton C, O'Loughlin A, Makris A, Hennessy A, Lind JM. Menopausal hormone therapy is associated with having high blood pressure in postmenopausal women: observational cohort study. PLoS One. 2012;7:e40260. doi: 10.1371/journal.pone.0040260. PubMed DOI PMC
Trémollières FA, Pouilles JM, Cauneille C, Ribot C. Coronary heart disease risk factors and menopause: a study in 1684 French women. Atherosclerosis. 1999;142:415–423. doi: 10.1016/S0021-9150(98)00252-4. PubMed DOI
Miller VM, Taylor HS, Naftolin F, Manson JE, Gleason CE, Brinton EA, Kling JM, Cedars MI, Dowling NM, Kantarci K, Harman SM. Lessons from KEEPS: the Kronos Early Estrogen Prevention Study. Climacteric. 2021;24:139–145. doi: 10.1080/13697137.2020.1804545. PubMed DOI PMC
Salpeter SR, Walsh JM, Ormiston TM, Greyber E, Buckley NS, Salpeter EE. Meta-analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes Metab. 2006;8:538–554. doi: 10.1111/j.1463-1326.2005.00545.x. PubMed DOI
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens. 2022 doi: 10.1038/s41371-022-00771-0. (in press) PubMed DOI PMC
Crofton JT, Share L. Gonadal hormones modulate deoxycorticosterone-salt hypertension in male and female rats. Hypertension. 1997;29:494–499. doi: 10.1161/01.HYP.29.1.494. PubMed DOI
Otsuka K, Suzuki H, Sasaki T, Ishii N, Itoh H, Saruta T. Blunted pressure natriuresis in ovariectomized Dahl-Iwai salt-sensitive rats. Hypertension. 1996;27:119–124. doi: 10.1161/01.HYP.27.1.119. PubMed DOI
Harrison-Bernard LM, Schulman IH, Raij L. Postovariectomy hypertension is linked to increased renal AT1 receptor and salt sensitivity. Hypertension. 2003;42:1157–1163. doi: 10.1161/01.HYP.0000102180.13341.50. PubMed DOI
Herrera VL, Pasion KA, Moran AM, Ruiz-Opazo N. Differential genetic basis for pre-menopausal and post-menopausal salt-sensitive hypertension. PLoS One. 2012;7:e43160. doi: 10.1371/journal.pone.0043160. PubMed DOI PMC
Herrera VL, Pasion KA, Moran AM, Ruiz-Opazo N. Worse renal disease in postmenopausal F2[Dahl S x R]-intercross rats: detection of novel QTLs affecting hypertensive kidney disease. PLoS One. 2013;8:e56096. doi: 10.1371/journal.pone.0056096. PubMed DOI PMC
Gong G, Dobin A, Johnson ML, Pettinger WA. Sexual dimorphism of renal α2-adrenergic receptor regulation in Dahl rats. Hypertens Res. 1996;19:83–89. doi: 10.1291/hypres.19.83. PubMed DOI
Otsuka K, Suzuki H, Sasaki T, Ishii N, Itoh H, Saruta T. Blunted pressure natriuresis in ovariectomized Dahl-Iwai salt-sensitive rats. Hypertension. 1996;27:119–124. doi: 10.1161/01.HYP.27.1.119. PubMed DOI
Zheng W, Ji H, Maric C, Wu X, Sandberg K. Effect of dietary sodium on estrogen regulation of blood pressure in Dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol. 2008;294:H1508–H1513. doi: 10.1152/ajpheart.01322.2007. PubMed DOI
Zhang L, Fujii S, Kosaka H. Effect of oestrogen on reactive oxygen species production in the aortas of ovariectomized Dahl salt-sensitive rats. J Hypertens. 2007;25:407–414. doi: 10.1097/HJH.0b013e328010beee. PubMed DOI
De Sanctis V, Soliman AT, Di Maio S, Soliman N, Elsedfy H. Long-term effects and significant Adverse Drug Reactions (ADRs) associated with the use of Gonadotropin-Releasing Hormone analogs (GnRHa) for central precocious puberty: a brief review of literature. Acta Biomed. 2019;90:345–359. PubMed PMC
Sasaki T, Ohno Y, Otsuka K, Suzawa T, Suzuki H, Saruta T. Oestrogen attenuates the increases in blood pressure and platelet aggregation in ovariectomized and salt-loaded Dahl salt-sensitive rats. J Hypertens. 2000;18:911–917. doi: 10.1097/00004872-200018070-00013. PubMed DOI
Hinojosa-Laborde C, Craig T, Zheng W, Ji H, Haywood JR, Sandberg K. Ovariectomy augments hypertension in aging female Dahl salt-sensitive rats. Hypertension. 2004;44:405–409. doi: 10.1161/01.HYP.0000142893.08655.96. PubMed DOI
Dai Q, Lin J, Craig T, Chou YM, Hinojosa-Laborde C, Lindsey ML. Estrogen effects on MMP-13 and MMP-14 regulation of left ventricular mass in Dahl salt-induced hypertension. Gend Med. 2008;5:74–85. doi: 10.1016/S1550-8579(08)80010-1. PubMed DOI
Maric C, Sandberg K, Hinojosa-Laborde C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17β-estradiol in the aging Dahl salt sensitive rat. J Am Soc Nephrol. 2004;15:1546–1556. doi: 10.1097/01.ASN.0000128219.65330.EA. PubMed DOI
Maric C, Xu Q, Sandberg K, Hinojosa-Laborde C. Age-related renal disease in female Dahl salt-sensitive rats is attenuated with 17β-estradiol supplementation by modulating nitric oxide synthase expression. Gend Med. 2008;5:147–159. doi: 10.1016/j.genm.2008.05.002. PubMed DOI PMC
Iams SG, Wexler BC. Retardation in the development of spontaneous hypertension in SH rats by gonadectomy. J Lab Clin Med. 1977;90:997–1003. PubMed
Iams SG, Wexler BC. Inhibition of the development of spontaneous hypertension in SH rats by gonadectomy or estradiol. J Lab Clin Med. 1979;94:608–616. PubMed
Liu B, Ely D. Testosterone increases: sodium reabsorption, blood pressure, and renal pathology in female spontaneously hypertensive rats on a high sodium diet. Adv Pharmacol Sci. 2011;2011:817835. doi: 10.1155/2011/817835. PubMed DOI PMC
Reckelhoff JF, Zhang H, Granger JP. Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension. 1998;31:435–439. doi: 10.1161/01.HYP.31.1.435. PubMed DOI
Reckelhoff JF, Zhang H, Srivastava K, Granger JP. Gender differences in hypertension in spontaneously hypertensive rats: role of androgens and androgen receptor. Hypertension. 1999;34:920–923. doi: 10.1161/01.HYP.34.4.920. PubMed DOI
Loh SY, Salleh N. Influence of testosterone on mean arterial pressure: A physiological study in male and female normotensive WKY and hypertensive SHR rats. Physiol Int. 2017;104:25–34. doi: 10.1556/2060.104.2017.1.3. PubMed DOI
Reckelhoff JF, Fortepiani LA. Novel mechanisms responsible for postmenopausal hypertension. Hypertension. 2004;43:918–923. doi: 10.1161/01.HYP.0000124670.03674.15. PubMed DOI
Yanes LL, Reckelhoff JF. Postmenopausal hypertension. Am J Hypertens. 2011;24:740–749. doi: 10.1038/ajh.2011.71. PubMed DOI PMC
Maranon RO, Reckelhoff JF. Mechanisms responsible for postmenopausal hypertension in a rat model: Roles of the renal sympathetic nervous system and the renin-angiotensin system. Physiol Rep. 2016;4:e12669. doi: 10.14814/phy2.12669. PubMed DOI PMC
Fang Z, Carlson SH, Chen YF, Oparil S, Wyss JM. Estrogen depletion induces NaCl-sensitive hypertension in female spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2001;281:R1934–R1939. doi: 10.1152/ajpregu.2001.281.6.R1934. PubMed DOI
Jazbutyte V, Arias-Loza PA, Hu K, Widder J, Govindaraj V, von Poser-Klein C, Bauersachs J, Fritzemeier KH, Hegele-Hartung C, Neyses L, Ertl G, Pelzer T. Ligand-dependent activation of ERβ lowers blood pressure and attenuates cardiac hypertrophy in ovariectomized spontaneously hypertensive rats. Cardiovasc Res. 2008;77:774–781. doi: 10.1093/cvr/cvm081. PubMed DOI
Pelzer T, Jazbutyte V, Hu K, Segerer S, Nahrendorf M, Nordbeck P, Bonz AW, Muck J, Fritzemeier KH, Hegele-Hartung C, Ertl G, Neyses L. The estrogen receptor-α agonist 16α-LE2 inhibits cardiac hypertrophy and improves hemodynamic function in estrogen-deficient spontaneously hypertensive rats. Cardiovasc Res. 2005;67:604–612. doi: 10.1016/j.cardiores.2005.04.035. PubMed DOI
Widder J, Pelzer T, von Poser-Klein C, Hu K, Jazbutyte V, Fritzemeier KH, Hegele-Hartung C, Neyses L, Bauersachs J. Improvement of endothelial dysfunction by selective estrogen receptor-α stimulation in ovariectomized SHR. Hypertension. 2003;42:991–996. doi: 10.1161/01.HYP.0000098661.37637.89. PubMed DOI
Ito K, Hirooka Y, Kimura Y, Sagara Y, Sunagawa K. Ovariectomy augments hypertension through Rho-kinase activation in the brain stem in female spontaneously hypertensive rats. Hypertension. 2006;48:651–657. doi: 10.1161/01.HYP.0000238125.21656.9e. PubMed DOI
Shimojo GL, Palma RK, Brito JO, Sanches IC, Irigoyen MC, De Angelis K. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats. Braz J Med Biol Res. 2015;48:523–527. doi: 10.1590/1414-431x20154387. PubMed DOI PMC
da Palma RK, Moraes-Silva IC, da Silva Dias D, Shimojo GL, Conti FF, Bernardes N, Barboza CA, Sanches IC, da Rosa Araújo AS, Irigoyen MC, De Angelis K. Resistance or aerobic training decreases blood pressure and improves cardiovascular autonomic control and oxidative stress in hypertensive menopausal rats. J Appl Physiol. 2016;121:1032–1038. doi: 10.1152/japplphysiol.00130.2016. PubMed DOI
Dias da Silva VJ, Miranda R, Oliveira L, Rodrigues Alves CH, Van Gils GH, Porta A, Montano N. Heart rate and arterial pressure variability and baroreflex sensitivity in ovariectomized spontaneously hypertensive rats. Life Sci. 2009;84:719–724. doi: 10.1016/j.lfs.2009.02.019. PubMed DOI
Huang A, Sun D, Kaley G, Koller A. Estrogen preserves regulation of shear stress by nitric oxide in arterioles of female hypertensive rats. Hypertension. 1998;31:309–314. doi: 10.1161/01.HYP.31.1.309. PubMed DOI
Riveiro A, Mosquera A, Calvo C, Alonso M, Macía M, Cores M. Long-term effect of bilateral ovariectomy on endothelial function in aortic rings of spontaneously hypertensive rats: role of nitric oxide. Gynecol Endocrinol. 2001;15:158–164. doi: 10.1080/gye.15.2.158.164. PubMed DOI
Giménez J, García MP, Serna M, Bonacasa B, Carbonell LF, Quesada T, Hernández I. 17β-oestradiol enhances the acute hypotensive effect of captopril in female ovariectomized spontaneously hypertensive rats. Exp Physiol. 2006;91:715–722. doi: 10.1113/expphysiol.2006.033449. PubMed DOI
Dantas AP, Tostes RC, Fortes ZB, Costa SG, Nigro D, Carvalho MH. In vivo evidence for antioxidant potential of estrogen in microvessels of female spontaneously hypertensive rats. Hypertension. 2002;39:405–411. doi: 10.1161/hy0202.102993. PubMed DOI
Riveiro A, Mosquera A, Alonso M, Calvo C. Angiotensin II type 1 receptor blocker irbesartan ameliorates vascular function in spontaneously hypertensive rats regardless of oestrogen status. J Hypertens. 2002;20:1365–1372. doi: 10.1097/00004872-200207000-00023. PubMed DOI
Dantas AP, do Franco MC, Tostes RC, Fortes ZB, Costa SG, Nigro D, Carvalho MH. Relative contribution of estrogen withdrawal and gonadotropins increase secondary to ovariectomy on prostaglandin generation in mesenteric microvessels. J Cardiovasc Pharmacol. 2004;43:48–55. doi: 10.1097/00005344-200401000-00008. PubMed DOI
Ceravolo GS, Filgueira FP, Costa TJ, Lobato NS, Chignalia AZ, Araujo PX, Tostes RC, Dantas AP, Fortes ZB, Carvalho MH. Conjugated equine estrogen treatment corrected the exacerbated aorta oxidative stress in ovariectomized spontaneously hypertensive rats. Steroids. 2013;78:341–346. doi: 10.1016/j.steroids.2012.11.018. PubMed DOI
Huang A, Sun D, Kaley G, Koller A. Estrogen maintains nitric oxide synthesis in arterioles of female hypertensive rats. Hypertension. 1997 Jun;29(6):1351–1356. doi: 10.1161/01.HYP.29.6.1351. PubMed DOI
Wassmann S, Bäumer AT, Strehlow K, van Eickels M, Grohé C, Ahlbory K, Rösen R, Böhm M, Nickenig G. Endothelial dysfunction and oxidative stress during estrogen deficiency in spontaneously hypertensive rats. Circulation. 2001 Jan 23;103:435–441. doi: 10.1161/01.CIR.103.3.435. PubMed DOI
Leitzbach D, Weckler N, Madajka M, Malinski T, Wiemer G, Linz W. Restoration of endothelial function via enhanced nitric oxide synthesis after long-term treatment of raloxifene in adult hypertensive rats. Arzneimittelforschung. 2005;55:86–92. doi: 10.1055/s-0031-1296828. PubMed DOI
Vera R, Jiménez R, Lodi F, Sánchez M, Galisteo M, Zarzuelo A, Pérez-Vizcaíno F, Duarte J. Genistein restores caveolin-1 and AT-1 receptor expression and vascular function in large vessels of ovariectomized hypertensive rats. Menopause. 2007;14:933–940. doi: 10.1097/gme.0b013e31802d9785. PubMed DOI
Fortepiani LA, Yanes L, Zhang H, Racusen LC, Reckelhoff JF. Role of androgens in mediating renal injury in aging SHR. Hypertension. 2003;42:952–955. doi: 10.1161/01.HYP.0000099241.53121.7F. PubMed DOI
Yanes LL, Romero DG, Cucchiarelli VE, Fortepiani LA, Gomez-Sanchez CE, Santacruz F, Reckelhoff JF. Role of endothelin in mediating postmenopausal hypertension in a rat model. Am J Physiol Regul Integr Comp Physiol. 2005;288:R229–R233. doi: 10.1152/ajpregu.00697.2003. PubMed DOI
Lima R, Yanes LL, Davis DD, Reckelhoff JF. Roles played by 20-HETE, angiotensin II and endothelin in mediating the hypertension in aging female spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2013;304:R248–R251. doi: 10.1152/ajpregu.00380.2012. PubMed DOI PMC
Yanes LL, Lima R, Moulana M, Romero DG, Yuan K, Ryan MJ, Baker R, Zhang H, Fan F, Davis DD, Roman RJ, Reckelhoff JF. Postmenopausal hypertension: role of 20-HETE. Am J Physiol Regul Integr Comp Physiol. 2011;300:R1543–R1548. doi: 10.1152/ajpregu.00387.2010. PubMed DOI PMC
Yanes LL, Romero DG, Iles JW, Iliescu R, Gomez-Sanchez C, Reckelhoff JF. Sexual dimorphism in the renin-angiotensin system in aging spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2006;291:R383–R390. doi: 10.1152/ajpregu.00510.2005. PubMed DOI
Yanes LL, Romero DG, Iliescu R, Zhang H, Davis D, Reckelhoff JF. Postmenopausal hypertension: role of the renin-angiotensin system. Hypertension. 2010;56:359–363. doi: 10.1161/HYPERTENSIONAHA.110.152975. PubMed DOI PMC
Maranon RO, Lima R, Mathbout M, do Carmo JM, Hall JE, Roman RJ, Reckelhoff JF. Postmenopausal hypertension: role of the sympathetic nervous system in an animal model. Am J Physiol Regul Integr Comp Physiol. 2014;306:R248–R256. doi: 10.1152/ajpregu.00490.2013. PubMed DOI PMC
Chappell MC, Gallagher PE, Averill DB, Ferrario CM, Brosnihan KB. Estrogen or the AT1 antagonist olmesartan reverses the development of profound hypertension in the congenic mRen2.Lewis rat. Hypertension. 2003;42:781–786. doi: 10.1161/01.HYP.0000085210.66399.A3. PubMed DOI
Brosnihan KB, Li P, Ganten D, Ferrario CM. Estrogen protects transgenic hypertensive rats by shifting the vasoconstrictor-vasodilator balance of RAS. Am J Physiol. 1997;273:R1908–R1915. doi: 10.1152/ajpregu.1997.273.6.R1908. PubMed DOI
Wang H, Jessup JA, Zhao Z, Da Silva J, Lin M, MacNamara LM, Ahmad S, Chappell MC, Ferrario CM, Groban L. Characterization of the cardiac renin angiotensin system in oophorectomized and estrogen-replete mRen2.Lewis rats. PLoS One. 2013;8:e76992. doi: 10.1371/journal.pone.0076992. PubMed DOI PMC
Chappell MC, Yamaleyeva LM, Westwood BM. Estrogen and salt sensitivity in the female mRen(2).Lewis rat. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1557–R1563. doi: 10.1152/ajpregu.00051.2006. PubMed DOI
Yamaleyeva LM, Pendergrass KD, Pirro NT, Gallagher PE, Groban L, Chappell MC. Ovariectomy is protective against renal injury in the high-salt-fed older mRen2.Lewis rat. Am J Physiol Heart Circ Physiol. 2007;293:H2064–H2071. doi: 10.1152/ajpheart.00427.2007. PubMed DOI
Groban L, Yamaleyeva LM, Westwood BM, Houle TT, Lin M, Kitzman DW, Chappell MC. Progressive diastolic dysfunction in the female mRen(2).Lewis rat: influence of salt and ovarian hormones. J Gerontol A Biol Sci Med Sci. 2008;63:3–11. doi: 10.1093/gerona/63.1.3. PubMed DOI
Lindsey SH, Liu L, Chappell MC. Vasodilation by GPER in mesenteric arteries involves both endothelial nitric oxide and smooth muscle cAMP signaling. Steroids. 2014;81:99–102. doi: 10.1016/j.steroids.2013.10.017. PubMed DOI PMC
Lindsey SH, Yamaleyeva LM, Brosnihan KB, Gallagher PE, Chappell MC. Estrogen receptor GPR30 reduces oxidative stress and proteinuria in the salt-sensitive female mRen2.Lewis rat. Hypertension. 2011;58:665–671. doi: 10.1161/HYPERTENSIONAHA.111.175174. PubMed DOI PMC
Yamaleyeva LM, Gallagher PE, Vinsant S, Chappell MC. Discoordinate regulation of renal nitric oxide synthase isoforms in ovariectomized mRen2.Lewis rats. Am J Physiol Regul Integr Comp Physiol. 2007;292:R819–R826. doi: 10.1152/ajpregu.00389.2006. PubMed DOI
Jessup JA, Zhang L, Chen AF, Presley TD, Kim-Shapiro DB, Chappell MC, Wang H, Groban L. Neuronal nitric oxide synthase inhibition improves diastolic function and reduces oxidative stress in ovariectomized mRen2.Lewis rats. Menopause. 2011;18:698–708. doi: 10.1097/gme.0b013e31820390a2. PubMed DOI PMC
Brosnihan KB, Li P, Figueroa JP, Ganten D, Ferrario CM. Estrogen, nitric oxide, and hypertension differentially modulate agonist-induced contractile responses in female transgenic (mRen2)27 hypertensive rats. Am J Physiol Heart Circ Physiol. 2008;294:H1995–H2001. doi: 10.1152/ajpheart.01193.2007. PubMed DOI
Pinna C, Cignarella A, Sanvito P, Pelosi V, Bolego C. Prolonged ovarian hormone deprivation impairs the protective vascular actions of estrogen receptor alpha agonists. Hypertension. 2008;51:1210–1217. doi: 10.1161/HYPERTENSIONAHA.107.106807. PubMed DOI
Ociepka A, Milewicz T, Kialka M, Krzyczkowska-Sendrakowska M. Vascular effects of simvastatin are similar to hormone replacement therapy in postmenopausal women. Przegl Lek. 2016;73:280–286. PubMed
Zhao Z, Wang H, Jessup JA, Lindsey SH, Chappell MC, Groban L. Role of estrogen in diastolic dysfunction. Am J Physiol Heart Circ Physiol. 2014;306:H628–H640. doi: 10.1152/ajpheart.00859.2013. PubMed DOI PMC
Oparil S, Chen SJ, Chen YF, Durand JN, Allen L, Thompson JA. Estrogen attenuates the adventitial contribution to neointima formation in injured rat carotid arteries. Cardiovasc Res. 1999;44:608–614. doi: 10.1016/S0008-6363(99)00240-0. PubMed DOI
Klimeš I, Vrána A, Kuneš J, Šeböková E, Dobešová Z, Štolba P, Zicha J. Hereditary hypertriglyceridemic rat: a new animal model of metabolic alterations in hypertension. Blood Press. 1995;4:137–142. doi: 10.3109/08037059509077585. PubMed DOI
Pitha J, Hüttl M, Malinska H, Miklankova D, Bartuskova H, Hlinka T, Markova I. Cardiovascular, metabolic and inflammatory changes after ovariectomy and estradiol substitution in hereditary hypertriglyceridemic rats. Int J Mol Sci. 2022;23:2825. doi: 10.3390/ijms23052825. PubMed DOI PMC
Sartori-Valinotti JC, Venegas-Pont MR, Lamarca BB, Romero DG, Yanes LL, Racusen LC, Jones AV, Ryan MJ, Reckelhoff JF. Rosiglitazone reduces blood pressure in female Dahl salt-sensitive rats. Steroids. 2010;75:794–749. doi: 10.1016/j.steroids.2009.10.010. PubMed DOI PMC
Loh SY, Giribabu N, Salleh N. Changes in plasma aldosterone and electrolytes levels, kidney epithelial sodium channel (ENaC) and blood pressure in normotensive WKY and hypertensive SHR rats following gonadectomy and chronic testosterone treatment. Steroids. 2017;128:128–135. doi: 10.1016/j.steroids.2017.09.008. PubMed DOI
Bonacasa B, Hernández I, Fenoy FJ, Quesada T, López B. Effect of tempol on myocardial vascular remodeling in female spontaneously hypertensive rats. Histol Histopathol. 2012;27:1047–1054. PubMed
García MP, Giménez J, Serna M, Salom MG, Bonacasa B, Carbonell LF, Quesada T, Hernández I. Effect of estrogen and angiotensin-converting enzyme inhibitor on vascular remodeling in ovariectomized spontaneously hypertensive rats. Menopause. 2006;13:397–403. doi: 10.1097/01.gme.0000222472.08593.e4. PubMed DOI
Giménez J, Garcia PM, Reckelhoff B, Carbonell LF, Quesada T, Hernández I. Effects of oestrogen treatment and angiotensin-converting enzyme inhibition on the microvasculature of ovariectomized spontaneously hypertensive rats. Exp Physiol. 2006;91:261–268. doi: 10.1113/expphysiol.2005.032060. PubMed DOI
Jazbutyte V, Hu K, Kruchten P, Bey E, Maier SK, Fritzemeier KH, Prelle K, Hegele-Hartung C, Hartmann RW, Neyses L, Ertl G, Pelzer T. Aging reduces the efficacy of estrogen substitution to attenuate cardiac hypertrophy in female spontaneously hypertensive rats. Hypertension. 2006;48:579–586. doi: 10.1161/01.HYP.0000240053.48517.c7. PubMed DOI
Bitto A, Altavilla D, Bonaiuto A, Polito F, Minutoli L, Di Stefano V, Giuliani D, Guarini S, Arcoraci V, Squadrito F. Effects of aglycone genistein in a rat experimental model of postmenopausal metabolic syndrome. J Endocrinol. 2009;200:367–376. doi: 10.1677/JOE-08-0206. PubMed DOI