The Different Insulin-Sensitising and Anti-Inflammatory Effects of Palmitoleic Acid and Oleic Acid in a Prediabetes Model
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36147256
PubMed Central
PMC9489414
DOI
10.1155/2022/4587907
Knihovny.cz E-zdroje
- MeSH
- adiponektin MeSH
- antiflogistika MeSH
- cytokiny MeSH
- diabetes mellitus 2. typu * MeSH
- glukagon MeSH
- glukosa metabolismus MeSH
- inzulin metabolismus MeSH
- inzulinová rezistence * MeSH
- krysa rodu Rattus MeSH
- kyselina olejová farmakologie MeSH
- kyseliny arachidonové MeSH
- kyseliny mastné mononenasycené farmakologie terapeutické užití MeSH
- kyseliny mastné neesterifikované MeSH
- lipoproteinlipasa MeSH
- mastné kyseliny metabolismus MeSH
- prediabetes * farmakoterapie MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adiponektin MeSH
- antiflogistika MeSH
- cytokiny MeSH
- glukagon MeSH
- glukosa MeSH
- inzulin MeSH
- kyselina olejová MeSH
- kyseliny arachidonové MeSH
- kyseliny mastné mononenasycené MeSH
- kyseliny mastné neesterifikované MeSH
- lipoproteinlipasa MeSH
- mastné kyseliny MeSH
- palmitoleic acid MeSH Prohlížeč
INTRODUCTION: Monounsaturated fatty acids (MUFA) are understood to have therapeutic and preventive effects on chronic complications associated with type 2 diabetes mellitus (T2DM); however, there are differences between individual MUFAs. Although the effects of palmitoleic acid (POA) are still debated, POA can regulate glucose homeostasis, lipid metabolism, and cytokine production, thus improving metabolic disorders. In this study, we investigated and compared the metabolic effects of POA and oleic acid (OA) supplementation on glucose and lipid metabolism, insulin sensitivity, and inflammation in a prediabetic model, the hereditary hypertriglyceridemic rat (HHTg). HHTg rats exhibiting genetically determined hypertriglyceridemia, insulin resistance, and impaired glucose tolerance were fed a standard diet. POA and OA were each administered intragastrically at a dose of 100 mg/kg b.wt. for four weeks. RESULTS: Supplementation with both MUFAs significantly elevated insulin and glucagon levels, but only POA decreased nonfasting glucose. POA-treated rats showed elevated circulating NEFA associated with increased lipolysis, lipoprotein lipase gene expression, and fatty acid reesterification in visceral adipose tissue (VAT). The mechanism of improved insulin sensitivity of peripheral tissues (measured as insulin-stimulated lipogenesis and glycogenesis) in POA-treated HHTg rats could contribute increased circulating adiponectin and omentin levels together with elevated FADS1 gene expression in VAT. POA-supplemented rats exhibited markedly decreased proinflammatory cytokine production by VAT, which can alleviate chronic inflammation. OA-supplemented rats exhibited decreased arachidonic acid (AA) profiles and decreased proinflammatory AA-derived metabolites (20-HETE) in membrane phospholipids of peripheral tissues. Slightly increased FADS1 gene expression after OA along with increased adiponectin production by VAT was reflected in slightly ameliorated adipose tissue insulin sensitivity (increased insulin-stimulated lipogenesis). CONCLUSIONS: Our results show that POA served as a lipokine, ameliorating insulin sensitivity in peripheral tissue and markedly modulating the metabolic activity of VAT including cytokine secretion. OA had a beneficial effect on lipid metabolism and improved inflammation by modulating AA metabolism.
Zobrazit více v PubMed
Shetty S. S., Kumari S. Fatty acids and their role in type-2 diabetes (Review) Experimental and Therapeutic Medicine . 2021;22(1):p. 706. doi: 10.3892/etm.2021.10138. PubMed DOI PMC
Raatz S. K., Conrad Z., Johnson L. K., Picklo M. J., Jahns L. Relationship of the reported intakes of fat and fatty acids to body weight in US adults. Nutrients . 2017;9(5):p. 438. doi: 10.3390/nu9050438. PubMed DOI PMC
Rocha D. M., Caldas A. P., Oliveira L. L., Bressan J., Hermsdorff H. H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis . 2016;244:211–215. doi: 10.1016/j.atherosclerosis.2015.11.015. PubMed DOI
Gillingham L. G., Harris-Janz S., Jones P. J. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids . 2011;46(3):209–228. doi: 10.1007/s11745-010-3524-y. PubMed DOI
Lyons C. L., Kennedy E. B., Roche H. M. Metabolic inflammation-differential modulation by dietary constituents. Nutrients . 2016;8(5):p. 247. doi: 10.3390/nu8050247. PubMed DOI PMC
Zhuang P., Liu X., Li Y., et al. Circulating fatty acids and genetic predisposition to type 2 diabetes: gene-nutrient interaction analysis. Diabetes Care . 2022;45(3):564–575. doi: 10.2337/dc21-2048. PubMed DOI
de Souza C. O., Vannice G. K., Rosa Neto J. C., Calder P. C. Is palmitoleic acid a plausible nonpharmacological strategy to prevent or control chronic metabolic and inflammatory disorders? Molecular Nutrition & Food Research . 2018;62(1) doi: 10.1002/mnfr.201700504. PubMed DOI
Tricò D., Mengozzi A., Nesti L., et al. Circulating palmitoleic acid is an independent determinant of insulin sensitivity, beta cell function and glucose tolerance in non-diabetic individuals: a longitudinal analysis. Diabetologia . 2020;63(1):206–218. doi: 10.1007/s00125-019-05013-6. PubMed DOI
Nunes E. A., Rafacho A. Implications of palmitoleic acid (palmitoleate) on glucose homeostasis, insulin resistance and diabetes. Current Drug Targets . 2017;18(6):619–628. doi: 10.2174/1389450117666151209120345. PubMed DOI
Sarabhai T., Koliaki C., Mastrototaro L., et al. Dietary palmitate and oleate differently modulate insulin sensitivity in human skeletal muscle. Diabetologia . 2022;65(2):301–314. doi: 10.1007/s00125-021-05596-z. PubMed DOI PMC
Palomer X., Pizarro-Delgado J., Barroso E., Vázquez-Carrera M. Palmitic and oleic acid: the yin and yang of fatty acids in type 2 diabetes mellitus. Trends in Endocrinology and Metabolism . 2018;29(3):178–190. doi: 10.1016/j.tem.2017.11.009. PubMed DOI
Frigolet M. E., Gutierrez-Aguilar R. The role of the novel lipokine palmitoleic acid in health and disease. Advances in Nutrition . 2017;8(1):173S–181S. doi: 10.3945/an.115.011130. PubMed DOI PMC
Zicha J., Pechanova O., Cacanyiova S., et al. Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiological Research . 2006;55(Suppl 1):S49–S63. doi: 10.33549/physiolres.930000.55.S1.49. PubMed DOI
Malinska H., Hüttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition . 2015;31(7-8):1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI
Eder K. Gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography. B, Biomedical Applications . 1995;671(1-2):113–131. doi: 10.1016/0378-4347(95)00142-6. PubMed DOI
Miklankova D., Markova I., Hüttl M., Zapletalova I., Poruba M., Malinska H. Metformin affects cardiac arachidonic acid metabolism and cardiac lipid metabolite storage in a prediabetic rat model. International Journal of Molecular Sciences . 2021;22(14):p. 7680. doi: 10.3390/ijms22147680. PubMed DOI PMC
Listenberger L. L., Han X., Lewis S. E., et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proceedings of the National Academy of Sciences of the United States of America . 2003;100(6):3077–3082. doi: 10.1073/pnas.0630588100. PubMed DOI PMC
Karpe F., Dickmann J. R., Frayn K. N. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes . 2011;60(10):2441–2449. doi: 10.2337/db11-0425. PubMed DOI PMC
IS Sobczak A., A Blindauer C., J Stewart A. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients . 2019;11(9):p. 2022. doi: 10.3390/nu11092022. PubMed DOI PMC
Mukherjee B., Hossain C. M., Mondal L., Paul P., Ghosh M. K. Obesity and insulin resistance: an abridged molecular correlation. Lipid Insights . 2013;6:1–11. doi: 10.4137/LPI.S10805. PubMed DOI PMC
Bolsoni-Lopes A., Festuccia W. T., Farias T. S., et al. Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARα-dependent manner. American Journal of Physiology. Endocrinology and Metabolism . 2013;305(9):E1093–E1102. doi: 10.1152/ajpendo.00082.2013. PubMed DOI
Piché M. E., Parry S. A., Karpe F., Hodson L. Chylomicron-derived fatty acid spillover in adipose tissue: a signature of metabolic health? The Journal of Clinical Endocrinology & Metabolism . 2018;103(1):25–34. doi: 10.1210/jc.2017-01517. PubMed DOI PMC
Zechner R., Strauss J., Frank S., et al. The role of lipoprotein lipase in adipose tissue development and metabolism. International Journal of Obesity and Related Metabolic Disorders . 2000;24(S4) Suppl 4:S53–S56. doi: 10.1038/sj.ijo.0801506. PubMed DOI
Tholstrup T., Sandström B., Bysted A., Hølmer G. Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men. The American Journal of Clinical Nutrition . 2001;73(2):198–208. doi: 10.1093/ajcn/73.2.198. PubMed DOI
Olivecrona G. Role of lipoprotein lipase in lipid metabolism. Current Opinion in Lipidology . 2016;27(3):233–241. doi: 10.1097/MOL.0000000000000297. PubMed DOI
Rehman K., Akash M. S. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? Journal of Biomedical Science . 2016;23(1):p. 87. doi: 10.1186/s12929-016-0303-y. PubMed DOI PMC
Chen L., Chen R., Wang H., Liang F. Mechanisms linking inflammation to insulin resistance. International Journal of Endocrinology . 2015;2015:9. doi: 10.1155/2015/508409.508409 PubMed DOI PMC
Yang Z. H., Pryor M., Noguchi A., et al. Dietary palmitoleic acid attenuates atherosclerosis progression and hyperlipidemia in low-density lipoprotein receptor-deficient mice. Molecular Nutrition & Food Research . 2019;63(12):p. 1900120. doi: 10.1002/mnfr.201900120. PubMed DOI PMC
Riccardi G., Giacco R., Rivellese A. A. Dietary fat, insulin sensitivity and the metabolic syndrome. Clinical Nutrition . 2004;23(4):447–456. doi: 10.1016/j.clnu.2004.02.006. PubMed DOI
Rehman K., Haider K., Jabeen K., Akash M. S. H. Current perspectives of oleic acid: regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes. Reviews in Endocrine & Metabolic Disorders . 2020;21(4):631–643. doi: 10.1007/s11154-020-09549-6. PubMed DOI
Carrillo C., Cavia Mdel M., Alonso-Torre S. Role of oleic acid in immune system; mechanism of action; a review. Nutrición Hospitalaria . 2012;27(4):978–990. doi: 10.3305/nh.2012.27.4.5783. PubMed DOI
Wang Y., Huang F. N-3 polyunsaturated fatty acids and inflammation in obesity: local effect and systemic benefit. BioMed Research International . 2015;2015:16. doi: 10.1155/2015/581469.581469 PubMed DOI PMC
Marklund M., Morris A. P., Mahajan A., et al. Genome-wide association studies of estimated fatty acid desaturase activity in serum and adipose tissue in elderly individuals: associations with insulin sensitivity. Nutrients . 2018;10(11):p. 1791. doi: 10.3390/nu10111791. PubMed DOI PMC
Hellmann J., Tang Y., Kosuri M., Bhatnagar A., Spite M. Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. The FASEB Journal . 2011;25(7):2399–2407. doi: 10.1096/fj.10-178657. PubMed DOI PMC
Park Y., Capobianco S., Gao X., Falck J. R., Dellsperger K. C., Zhang C. Role of EDHF in type 2 diabetes-induced endothelial dysfunction. The American Journal of Physiology- Heart and Circulatory Physiology . 2008;295(5):H1982–H1988. doi: 10.1152/ajpheart.01261.2007. PubMed DOI PMC
Mustafa S., Sharma V., McNeill J. H. Insulin resistance and endothelial dysfunction: are epoxyeicosatrienoic acids the link? Experimental and Clinical Cardiology . 2009;14(2):e41–e50. PubMed PMC
Gilani A., Agostinucci K., Hossain S., et al. 20-HETE interferes with insulin signaling and contributes to obesity-driven insulin resistance. Prostaglandins and Other Lipid Mediators . 2021;152:p. 106485. doi: 10.1016/j.prostaglandins.2020.106485. PubMed DOI PMC
Gilani A., Pandey V., Garcia V., et al. High-fat diet-induced obesity and insulin resistance in CYP4a14−/−mice is mediated by 20-HETE. Integrative and Comparative Physiology . 2018;315(5):R934–R944. doi: 10.1152/ajpregu.00125.2018. PubMed DOI PMC
Sales-Campos H., Souza P. R., Peghini B. C., da Silva J. S., Cardoso C. R. An overview of the modulatory effects of oleic acid in health and disease. Mini-Reviews in Medicinal Chemistry . 2013;13(2):201–210. doi: 10.2174/138955713804805193. PubMed DOI
D'souza A. M., Neumann U. H., Glavas M. M., Kieffer T. J. The glucoregulatory actions of leptin. Molecular Metabolism . 2017;6(9):1052–1065. doi: 10.1016/j.molmet.2017.04.011. PubMed DOI PMC
Kieffer T. J., Habener J. F. The adipoinsular axis: effects of leptin on pancreatic beta-cells. American Journal of Physiology. Endocrinology and Metabolism . 2000;278(1):E1–E14. doi: 10.1152/ajpendo.2000.278.1.E1. PubMed DOI
Sergi D., Naumovski N., Heilbronn L. K., et al. Mitochondrial (dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Frontiers in Physiology . 2019;10:p. 532. doi: 10.3389/fphys.2019.00532. PubMed DOI PMC
Takkunen M. J., Schwab U. S., de Mello V. D., et al. Longitudinal associations of serum fatty acid composition with type 2 diabetes risk and markers of insulin secretion and sensitivity in the Finnish Diabetes Prevention Study. European Journal of Nutrition . 2016;55(3):967–979. doi: 10.1007/s00394-015-0911-4. PubMed DOI