An aggregation-prone mutant of eIF3a forms reversible assemblies escaping spatial control in exponentially growing yeast cells

. 2019 Aug ; 65 (4) : 919-940. [epub] 20190204

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30715564

Grantová podpora
16-05497S Grantov? Agentura ?esk? Republiky
GACU1180213 Grantov? Agentura, Univerzita Karlova

Odkazy

PubMed 30715564
DOI 10.1007/s00294-019-00940-8
PII: 10.1007/s00294-019-00940-8
Knihovny.cz E-zdroje

Cells have elaborated a complex strategy to maintain protein homeostasis under physiological as well as stress conditions with the aim to ensure the smooth functioning of vital processes and producing healthy offspring. Impairment of one of the most important processes in living cells, translation, might have serious consequences including various brain disorders in humans. Here, we describe a variant of the translation initiation factor eIF3a, Rpg1-3, mutated in its PCI domain that displays an attenuated translation efficiency and formation of reversible assemblies at physiological growth conditions. Rpg1-3-GFP assemblies are not sequestered within mother cells only as usual for misfolded-protein aggregates and are freely transmitted from the mother cell into the bud although they are of non-amyloid nature. Their bud-directed transmission and the active movement within the cell area depend on the intact actin cytoskeleton and the related molecular motor Myo2. Mutations in the Rpg1-3 protein render not only eIF3a but, more importantly, also the eIF3 core complex prone to aggregation that is potentiated by the limited availability of Hsp70 and Hsp40 chaperones. Our results open the way to understand mechanisms yeast cells employ to cope with malfunction and aggregation of essential proteins and their complexes.

Zobrazit více v PubMed

J Biol Chem. 1999 Sep 24;274(39):27567-72 PubMed

Mol Cell. 2000 Jan;5(1):163-72 PubMed

Proc Natl Acad Sci U S A. 2000 May 9;97(10):5273-8 PubMed

EMBO J. 2001 Jun 1;20(11):2954-65 PubMed

Mol Biol Cell. 2002 Mar;13(3):854-65 PubMed

Science. 2003 Mar 14;299(5613):1751-3 PubMed

Genetics. 2003 Feb;163(2):495-506 PubMed

Genes Dev. 2003 Mar 15;17(6):786-99 PubMed

Science. 2003 May 2;300(5620):805-8 PubMed

J Cell Biol. 2003 Dec 22;163(6):1255-66 PubMed

Science. 2004 Jun 18;304(5678):1793-7 PubMed

Curr Biol. 2004 Nov 23;14(22):1996-2004 PubMed

J Struct Biol. 2005 Aug;151(2):182-95 PubMed

Methods Mol Biol. 2006;313:107-20 PubMed

Methods. 2006 May;39(1):50-5 PubMed

Genes Dev. 2007 Oct 1;21(19):2410-21 PubMed

BMC Bioinformatics. 2008 Jan 23;9:40 PubMed

Nature. 2008 Aug 28;454(7208):1088-95 PubMed

FASEB J. 2009 Feb;23(2):451-63 PubMed

J Vis Exp. 2008 Jul 16;(17):null PubMed

Annu Rev Biochem. 2009;78:959-91 PubMed

Mol Cell Biol. 2009 Jul;29(13):3738-45 PubMed

J Cell Sci. 2009 Jun 15;122(Pt 12):2078-88 PubMed

Cell. 2010 Jan 22;140(2):257-67 PubMed

Nat Protoc. 2010 Apr;5(4):725-38 PubMed

Yeast. 2010 Sep;27(9):765-75 PubMed

Mol Cell Biol. 2010 Oct;30(19):4671-86 PubMed

J Cell Biol. 2010 Aug 23;190(4):541-51 PubMed

J Cell Sci. 2011 Jan 15;124(Pt 2):228-39 PubMed

Nature. 2011 Jul 20;475(7356):324-32 PubMed

J Cell Biol. 2011 Nov 14;195(4):617-29 PubMed

Cell. 2011 Nov 23;147(5):959-61 PubMed

Mol Biol Cell. 2012 Apr;23(7):1231-42 PubMed

PLoS Genet. 2012;8(4):e1002634 PubMed

Mol Biol Cell. 2012 Aug;23(16):3041-56 PubMed

Nat Methods. 2012 Jun 28;9(7):676-82 PubMed

Genetics. 2012 Aug;191(4):1041-72 PubMed

Cell Rep. 2012 Oct 25;2(4):738-47 PubMed

PLoS One. 2013;8(2):e57083 PubMed

Mol Biol Cell. 2013 Jul;24(13):2076-87 PubMed

Genes Cells. 2013 Nov;18(11):974-84 PubMed

Nat Cell Biol. 2013 Oct;15(10):1231-43 PubMed

Prion. 2013 Nov-Dec;7(6):469-76 PubMed

PLoS Genet. 2013 Nov;9(11):e1003962 PubMed

Cell. 2013 Dec 5;155(6):1244-57 PubMed

Nucleic Acids Res. 2014 Apr;42(6):4123-39 PubMed

Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8049-54 PubMed

Trends Cell Biol. 2014 Sep;24(9):506-14 PubMed

Biomolecules. 2014 Jul 17;4(3):704-24 PubMed

PLoS Genet. 2014 Jul 31;10(7):e1004539 PubMed

Cell. 2014 Oct 23;159(3):530-42 PubMed

Nat Methods. 2015 Jan;12(1):7-8 PubMed

EMBO J. 2015 Mar 12;34(6):778-97 PubMed

Nucleic Acids Res. 2015 May 26;43(10):5099-111 PubMed

Science. 2015 Sep 18;349(6254):1334-8 PubMed

Cell. 2015 Oct 8;163(2):406-18 PubMed

Elife. 2015 Oct 06;4:null PubMed

FEMS Yeast Res. 2016 May;16(3):null PubMed

Curr Genet. 2016 Nov;62(4):711-724 PubMed

Biochem Biophys Res Commun. 2016 Jun 17;475(1):100-6 PubMed

Cold Spring Harb Perspect Biol. 2016 Sep 01;8(9):null PubMed

Cell. 2016 Oct 06;167(2):369-381.e12 PubMed

EMBO Rep. 2017 Mar;18(3):377-391 PubMed

Curr Biol. 2017 Mar 20;27(6):773-783 PubMed

Nat Rev Mol Cell Biol. 2017 Jun;18(6):345-360 PubMed

Annu Rev Biochem. 2017 Jun 20;86:97-122 PubMed

J Cell Biol. 2017 Aug 7;216(8):2481-2498 PubMed

Curr Genet. 2018 Apr;64(2):317-325 PubMed

Nat Methods. 2018 Jan;15(1):81-89 PubMed

BMC Bioinformatics. 2017 Nov 29;18(1):529 PubMed

Mol Cell. 2017 Dec 21;68(6):1120-1133.e3 PubMed

PLoS One. 2018 Jan 18;13(1):e0191490 PubMed

J Cell Sci. 2018 Aug 20;131(16):null PubMed

PLoS Genet. 2018 Oct 26;14(10):e1007737 PubMed

Science. 1983 Feb 4;219(4584):493-5 PubMed

Yeast. 1994 Dec;10(13):1793-808 PubMed

Science. 1995 May 12;268(5212):880-4 PubMed

J Biol Chem. 1994 Apr 1;269(13):9798-804 PubMed

Folia Microbiol (Praha). 1994;39(6):554-7 PubMed

Nature. 1997 Sep 4;389(6646):90-3 PubMed

Curr Genet. 1998 Feb;33(2):100-9 PubMed

Trends Biochem Sci. 1998 Jun;23(6):204-5 PubMed

EMBO J. 1998 Jul 15;17(14):3981-9 PubMed

Mol Cell Biol. 1998 Aug;18(8):4935-46 PubMed

J Biol Chem. 1998 Aug 14;273(33):21253-60 PubMed

Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12860-5 PubMed

J Cell Biol. 1998 Dec 28;143(7):1883-98 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

eIF3a Destabilization and TDP-43 Alter Dynamics of Heat-Induced Stress Granules

. 2021 May 13 ; 22 (10) : . [epub] 20210513

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace