Sensitive operation of enzyme-based biodevices by advanced signal processing
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29912920
PubMed Central
PMC6005535
DOI
10.1371/journal.pone.0198913
PII: PONE-D-17-26910
Knihovny.cz E-zdroje
- MeSH
- biosenzitivní techniky metody MeSH
- chemické bojové látky analýza MeSH
- chlorované uhlovodíky analýza MeSH
- enzymy metabolismus MeSH
- ether analogy a deriváty analýza MeSH
- hexany analýza MeSH
- hydrolasy metabolismus MeSH
- kalibrace MeSH
- látky znečišťující životní prostředí analýza MeSH
- lyasy metabolismus MeSH
- počítačové zpracování signálu * MeSH
- senzitivita a specificita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-chlorohexane MeSH Prohlížeč
- bis(2-chloroethyl)ether MeSH Prohlížeč
- chemické bojové látky MeSH
- chlorované uhlovodíky MeSH
- dehydrochlorinases MeSH Prohlížeč
- enzymy MeSH
- ether MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hexany MeSH
- hydrolasy MeSH
- látky znečišťující životní prostředí MeSH
- lyasy MeSH
Analytical devices that combine sensitive biological component with a physicochemical detector hold a great potential for various applications, e.g., environmental monitoring, food analysis or medical diagnostics. Continuous efforts to develop inexpensive sensitive biodevices for detecting target substances typically focus on the design of biorecognition elements and their physical implementation, while the methods for processing signals generated by such devices have received far less attention. Here, we present fundamental considerations related to signal processing in biosensor design and investigate how undemanding signal treatment facilitates calibration and operation of enzyme-based biodevices. Our signal treatment approach was thoroughly validated with two model systems: (i) a biodevice for detecting chemical warfare agents and environmental pollutants based on the activity of haloalkane dehalogenase, with the sensitive range for bis(2-chloroethyl) ether of 0.01-0.8 mM and (ii) a biodevice for detecting hazardous pesticides based on the activity of γ-hexachlorocyclohexane dehydrochlorinase with the sensitive range for γ-hexachlorocyclohexane of 0.01-0.3 mM. We demonstrate that the advanced signal processing based on curve fitting enables precise quantification of parameters important for sensitive operation of enzyme-based biodevices, including: (i) automated exclusion of signal regions with substantial noise, (ii) derivation of calibration curves with significantly reduced error, (iii) shortening of the detection time, and (iv) reliable extrapolation of the signal to the initial conditions. The presented simple signal curve fitting supports rational design of optimal system setup by explicit and flexible quantification of its properties and will find a broad use in the development of sensitive and robust biodevices.
Enantis s r o Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Sharma H, Mutharasan R. Review of biosensors for foodborne pathogens and toxins. Sensors and Actuators B: Chemical. 2013; 183: p. 535–549.
Bahadir EB, Sezgintürk MK. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Analytical Biochemistry. 2015; 478: p. 107–120. doi: 10.1016/j.ab.2015.03.011 PubMed DOI
Bazin I, Tria SA, Hayat A, Marty JL. New biorecognition molecules in biosensors for the detection of toxins. Biosensors and Bioelectronics. 2017; 87: p. 285–298. doi: 10.1016/j.bios.2016.06.083 PubMed DOI
Mishra RK, Hubble LJ, Martín A, Kumar R, Barfidokht A, Kim J, et al. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sensors. 2017; 2(4): p. 553–561. doi: 10.1021/acssensors.7b00051 PubMed DOI
Bidmanova S, Steiner MS, Stepan M, Vymazalova K, Gruber MA, Duerkop A, et al. Enzyme-based test strips for visual or photographic detection and quantitation of gaseous sulfur mustard. Analytical Chemistry. 2016; 88(11): p. 6044–6049. doi: 10.1021/acs.analchem.6b01272 PubMed DOI
Roda A, Mirasoli M, Michelini E, Fusco MD, Zangheri M, Cevenini L, et al. Progress in chemical luminescence-based biosensors: A critical review. Biosensors and Bioelectronics. 2016; 76: p. 164–179. doi: 10.1016/j.bios.2015.06.017 PubMed DOI
Bisswanger H. Enzyme assays. Perspectives in Science. 2014; 1: p. 41–55.
Orellana G, Haigh D. New trends in fiber-optic chemical and biological sensors. Current Analytical Chemistry. 2008; 4(4): p. 273–295.
Rodriguez-Mozaz S, Marco MP, Alda MJD, Barceló D. Biosensors for environmental applications: Future development trends. Pure and Applied Chemistry. 2004; 76(4): p. 723–752.
Su L, Jia W, Hou C, Lei Y. Microbial biosensors: A review. Biosensors and Bioelectronics. 2011; 26: p. 1788–1799. doi: 10.1016/j.bios.2010.09.005 PubMed DOI
De Marco R, Clarke G, Pejcic B. Ion‐selective electrode potentiometry in environmental analysis. Electroanalysis. 2007; 19: p. 1987–2001.
Farré M, Kantiani L, Pérez S, Barceló D. Sensors and biosensors in support of EU Directives. TrAC Trends in Analytical Chemistry. 2009; 28(2): p. 170–185.
Wolfbeis OS. Materials for fluorescence-based optical chemical sensors. Journal of Materials Chemistry. 2005; 15(27–28): p. 2657–2669.
Gill A, Leatherbarrow RJ, Hoare M, Pollard-Knight DV, Fortune DH. Analysis of kinetic data of antibody-antigen interaction from an optical biosensor by exponential curve fitting. Journal of Biotechnology. 1996; 48: p. 117–127. PubMed
Hu J, Ma L, Wang S, Yang J, Chang K, Hu X, et al. Biomolecular interaction analysis using an optical surface plasmon resonance biosensor: the Marquardt algorithm vs Newton iteration algorithm. PLOS One. 2015; 10: p. e0132098 doi: 10.1371/journal.pone.0132098 PubMed DOI PMC
D’Amicoa A, Natale CD, Sarro PM. Ingredients for sensors science. Sensors and Actuators B: Chemical. 2015; 207: p. 1060–1068.
Geng Z, Yang F, Chen X, Wu N. Gaussian process based modeling and experimental design for sensor calibration in drifting environments. Sensors and Actuators B: Chemical. 2015; 216: p. 321–331. PubMed PMC
Fonollosa J, Sheik S, Huerta R, Marco S. Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sensors and Actuators B: Chemical. 2015; 215: p. 618–629.
Achi F, Bourouina-Bacha S, Bourouina M, Amine A. Mathematical model and numerical simulation of inhibition based biosensor for the detection of Hg (II). Sensors and Actuators B: Chemical. 2015; 207: p. 413–423.
Baronas R, Kulys J, Žilinskas A, Lančinskas A, Baronas D. Optimization of the multianalyte determination with biased biosensor. Chemometrics and Intelligent Laboratory Systems. 2013; 126: p. 108–116.
Brown JQ, McShane MJ. Modeling of spherical fluorescent glucose microsensor systems: design of enzymatic smart tattoos. Biosensors and Bioelectronics. 2006; 21: p. 760–769. PubMed
Kurganov BI, Lobanov AV, Borisov IA, Reshetilov AN. Criterion for Hill equation validity for description of biosensor calibration curves. Analytica Chimica Acta. 2001; 427: p. 11–19.
Nagata Y, Miyauchi K, Damborsky J, Manova K, Ansorgova A, Takagi M. Purification and characterization of a haloalkane dehalogenase of a new substrate class from a γ-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Applied and Environmental Microbiology. 1997; 63: p. 3707–3710. PubMed PMC
Bidmanova S, Kotlanova M, Rataj T, Damborsky J, Trtilek M, Prokop Z. Fluorescence-based biosensor for monitoring of environmental pollutants: from concept to field application. Biosensors and Bioelectronics. 2016; 84: p. 97–105. doi: 10.1016/j.bios.2015.12.010 PubMed DOI
Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, et al. Haloalkane dehalogenases: biotechnological applications. Biotechnology Journal. 2013; 8(1): p. 32–45. doi: 10.1002/biot.201100486 PubMed DOI
Wencel D, MacCraith BD, McDonagh C. High performance optical ratiometric sol-gel-based pH sensor. Sensors and Actuators B: Chemical. 2009; 139: p. 208–213.
Goličnik M. Evaluation of enzyme kinetic parameters using explicit analytic approximations to the solution of the Michaelis–Menten equation. Biochemical Engineering Journal. 2011; 53: p. 234–238.
Gutfreund H. Kinetics for the life sciences: receptors, transmitters and catalysts 1st ed UK: Cambridge University Press; 1995.
Raposo F. Evaluation of analytical calibration based on least-squares linear regression for instrumental techniques: A tutorial review. TrAC Trends in Analytical Chemistry. 2016; 77: p. 167–185.
Bidmanova S, Hlavacek A, Damborsky J, Prokop Z. Conjugation of 5(6)-carboxyfluorescein and 5(6)-carboxynaphthofluorescein with bovine serum albumin and their immobilization for optical pH sensing. Sensors and Actuators B: Chemical. 2012; 161: p. 93–99.
Reinstein J. Kinetics: simulation and analysis In Roberts GCK, editor. Encyclopedia of Biophysics.: Springer-Verlag Berlin Heidelberg; 2013. p. 1213–1217.
Johnson KA. A century of enzyme kinetic analysis, 1913 to 2013. FEBS Letters. 2013; 587: p. 2753–2766. doi: 10.1016/j.febslet.2013.07.012 PubMed DOI PMC
Peng L, Fan J, Tong C, Xie Z, Zhao C, Liu X, et al. An ultrasensitive fluorescence method suitable for quantitative analysis of mung bean nuclease and inhibitor screening in vitro and vivo. Biosensors and Bioelectronics. 2016; 83: p. 169–176. doi: 10.1016/j.bios.2016.04.052 PubMed DOI
Kmunícek J, Hynková K, Jedlicka T, Nagata Y, Negri A, Gago F, et al. Quantitative analysis of substrate specificity of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Biochemistry. 2005; 44: p. 3390–3401. doi: 10.1021/bi047912o PubMed DOI
Fernández J, Arjol MA, Cacho C. POP-contaminated sites from HCH production in Sabiñánigo, Spain. Environmental Science and Pollution Research. 2013; 20(4): p. 1937–1950. doi: 10.1007/s11356-012-1433-8 PubMed DOI