Empagliflozin alters lipid metabolism in the myocardium and liver in a prediabetes model with severe dyslipidemia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39027339
PubMed Central
PMC11254829
DOI
10.3389/fphar.2024.1393946
PII: 1393946
Knihovny.cz E-zdroje
- Klíčová slova
- SGLT2 inhibitors, arachidonic acid, cardiovascular disease, empagliflozin, inflammation, ketone body, lipid metabolism,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Recent studies suggest that empagliflozin reduces total and cardiovascular mortality in both diabetic and nondiabetic subjects. Although the exact mechanism is unclear, it is understood to positively affect myocardial energetics, including the metabolism of ketone bodies, lipids, and fatty acids. In this study, we compared empagliflozin effects on lipid metabolism in the heart and liver in a prediabetic rat model with severe dyslipidemia. MATERIALS AND METHODS: Wistar rats served as the control group, while hereditary hypertriglyceridemic (HHTg) rats were used as a nonobese, prediabetic model. Rats were treated with or without empagliflozin at a dose of 10 mg/kg body weight (BW) for 8 weeks. RESULTS: In HHTg rats, empagliflozin decreased body weight and adiposity, improved glucose tolerance, and decreased serum triacylglycerols (TAGs) (p < 0.001). Empagliflozin decreased the activity and gene expression of the lipogenic enzyme SCD-1 (p < 0.001) in the myocardium, which may have led to a decrease in the ectopic accumulation of TAGs and lipotoxic diacylglycerols and lysophosphatidylcholines (p < 0.001). Changes in the myocardial phosphatidylcholine/phosphatidylethanolamine ratio (p < 0.01) and in the fatty acid profile of myocardial phospholipids may have contributed to the antifibrotic effects of empagliflozin. The anti-inflammatory effects of empagliflozin were evidenced by an increased IL-10/TNFα ratio (p < 0.001), a marked decrease in arachidonic acid metabolites (20-HETE, p < 0.001), and an increase in PUFA metabolites (14,15-EETs, p < 0.001) in the myocardium. However, empagliflozin did not significantly affect either the concentration or utilization of ketone bodies. In the liver, empagliflozin decreased lipogenesis and the accumulation of TAGs and lipotoxic intermediates. Its effect on arachidonic acid metabolites and alterations in n-3 PUFA metabolism was less pronounced than in the myocardium. CONCLUSION: Our findings suggest that empagliflozin treatment in the heart and liver reduced the accumulation of neutral lipids and lipotoxic intermediates and altered the metabolism of n-3 PUFA. In the heart, empagliflozin altered arachidonic acid metabolism, which is likely associated with the anti-inflammatory and antifibrotic effects of the drug. We assume that these alterations in lipid metabolism contribute to the cardioprotective effects of empagliflozin in prediabetic states with severe dyslipidemia.
1st Faculty of Medicine Charles University Prague Czechia
Center for Experimental Medicine Institute for Clinical and Experimental Medicine Prague Czechia
Zobrazit více v PubMed
Abdul-Ghani M., Del Prato S., Chilton R., DeFronzo R. A. (2016). SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care 39, 717–725. 10.2337/dc16-0041 PubMed DOI PMC
Aragon-Herrera A., Feijoo-Bandin S., Otero Santiago M., Barral L., Campos-Toimil M., Gil-Longo J., et al. (2019). Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem. Pharmacol. 170, 113677. 10.1016/j.bcp.2019.113677 PubMed DOI
Balatskyi V. V., Dobrzyn P. (2023). Role of stearoyl-CoA desaturase 1 in cardiovascular physiology. Int. J. Mol. Sci. 24, 5531. 10.3390/ijms24065531 PubMed DOI PMC
Byrne N. J., Soni S., Takahara S., Ferdaoussi M., Al Batran R., Darwesh A. M., et al. (2020). Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart failure. Circ. Heart Fail 13, e006573. 10.1161/CIRCHEARTFAILURE.119.006573 PubMed DOI
Cai X., Tian Y., Wu Y., Bonner M. Y., Zhuo X., Yuan Z. (2021). An optimized model of hypertrophic preconditioning confers cardioprotection in the mouse. J. Surg. Res. 264, 544–552. 10.1016/j.jss.2020.11.087 PubMed DOI
Chehrehgosha H., Sohrabi M. R., Ismail-Beigi F., Malek M., Reza Babaei M., Zamani F., et al. (2021). Empagliflozin improves liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease and type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. Diabetes Ther. 12, 843–861. 10.1007/s13300-021-01011-3 PubMed DOI PMC
Chen Y., Peng D. (2023). New insights into the molecular mechanisms of SGLT2 inhibitors on ventricular remodeling. Int. Immunopharmacol. 118, 110072. 10.1016/j.intimp.2023.110072 PubMed DOI
Deshpande R., Patel R., Regmi M. R., Salih M., Kropp R., Al-Bast B., et al. (2023). Safety outcomes of sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes and other risk factors for cardiovascular disease: a systematic review and meta-analysis. Cardiovasc Endocrinol. Metab. 12, e0284. 10.1097/XCE.0000000000000284 PubMed DOI PMC
Eder K. (1995). Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B Biomed. Appl. 671, 113–131. 10.1016/0378-4347(95)00142-6 PubMed DOI
Finck B. N., Han X., Courtois M., Aimond F., Nerbonne J. M., Kovacs A., et al. (2003). A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc. Natl. Acad. Sci. U. S. A. 100, 1226–1231. 10.1073/pnas.0336724100 PubMed DOI PMC
Garvey W. T., Van Gaal L., Leiter L. A., Vijapurkar U., List J., Cuddihy R., et al. (2018). Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism 85, 32–37. 10.1016/j.metabol.2018.02.002 PubMed DOI
Gholam M. F., Liu L. P., Searcy L. A., Denslow N. D., Alli A. A. (2023). Dapagliflozin treatment augments bioactive phosphatidylethanolamine concentrations in kidney cortex membrane fractions of hypertensive diabetic db/db mice and alters the density of lipid rafts in mouse proximal tubule cells. Int. J. Mol. Sci. 24, 1408. 10.3390/ijms24021408 PubMed DOI PMC
Gronda E., Iacoviello M., Benvenuto M., Valenti C., Navazio A., Caldarola P., et al. (2022). The mechanisms mediating the favorable effects of sodium-glucose cotransporter 2 inhibitors on cardiorenal function. G. Ital. Cardiol. (Rome) 23, 854–871. 10.1714/3900.38825 PubMed DOI
Hawley S. A., Ford R. J., Smith B. K., Gowans G. J., Mancini S. J., Pitt R. D., et al. (2016). The Na+/Glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65, 2784–2794. 10.2337/db16-0058 PubMed DOI PMC
Hojna S., Rauchova H., Malinska H., Markova I., Huttl M., Papousek F., et al. (2021). Antihypertensive and metabolic effects of empagliflozin in Ren-2 transgenic rats, an experimental non-diabetic model of hypertension. Biomed. Pharmacother. 144, 112246. 10.1016/j.biopha.2021.112246 PubMed DOI
Huttl M., Markova I., Miklankova D., Oliyarnyk O., Trnovska J., Kucera J., et al. (2020). Metabolic cardio- and reno-protective effects of empagliflozin in a prediabetic rat model. J. Physiol. Pharmacol. 71. 10.26402/jpp.2020.5.04 PubMed DOI
Huttl M., Markova I., Miklankova D., Zapletalova I., Poruba M., Haluzik M., et al. (2021). In a prediabetic model, empagliflozin improves hepatic lipid metabolism independently of obesity and before onset of hyperglycemia. Int. J. Mol. Sci. 22, 11513. 10.3390/ijms222111513 PubMed DOI PMC
Iannantuoni F. A. M., Diaz-Morales N., Falcon R., Banuls C., Abad-Jimenez Z., Victor V. M., et al. (2019). The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J. Clin. Med. 8, 1814. 10.3390/jcm8111814 PubMed DOI PMC
Kahl S., Gancheva S., Strassburger K., Herder C., Machann J., Katsuyama H., et al. (2020). Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: a randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care 43, 298–305. 10.2337/dc19-0641 PubMed DOI
Kaur K., Dhingra S., Slezak J., Sharma A. K., Bajaj A., Singal P. K. (2009). Biology of TNFalpha and IL-10, and their imbalance in heart failure. Heart Fail Rev. 14, 113–123. 10.1007/s10741-008-9104-z PubMed DOI
Kim J. W., Lee Y. J., You Y. H., Moon M. K., Yoon K. H., Ahn Y. B., et al. (2018). Effect of sodium-glucose cotransporter 2 inhibitor, empagliflozin, and α-glucosidase inhibitor, voglibose, on hepatic steatosis in an animal model of type 2 diabetes. J. Cell Biochem. 120, 8534–8546. 10.1002/jcb.28141 PubMed DOI
Koyani C. N., Plastira I., Sourij H., Hallstrom S., Schmidt A., Rainer P. P., et al. (2020). Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol. Res. 158, 104870. 10.1016/j.phrs.2020.104870 PubMed DOI
Lazarte J., Kanagalingam T., Hegel R. A. (2021). Lipid effects of sodium-glucose cotransporter 2 inhibitors. Curr. Opin. Lipidol. 32, 183–190. 10.1097/MOL.0000000000000751 PubMed DOI
Levelt E., Rodgers C. T., Clarke W. T., Mahmod M., Ariga R., Francis J. M., et al. (2016). Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur. Heart J. 37, 3461–3469. 10.1093/eurheartj/ehv442 PubMed DOI PMC
Marilly E., Cottin J., Cabrera N., Cornu C., Boussageon R., Moulin P., et al. (2022). SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia 65, 2000–2010. 10.1007/s00125-022-05773-8 PubMed DOI
Marin-Royo G., Martinez-Martinez E., Gutierrez B., Jurado-Lopez R., Gallardo I., Montero O., et al. (2018). The impact of obesity in the cardiac lipidome and its consequences in the cardiac damage observed in obese rats. Clin. Investig. Arterioscler. 30, 10–20. 10.1016/j.arteri.2017.07.004 PubMed DOI
Markova I., Miklankova D., Huttl M., Kacer P., Skibova J., Kucera J., et al. (2019). The effect of lipotoxicity on renal dysfunction in a nonobese rat model of metabolic syndrome: a urinary proteomic approach. J. Diabetes Res. 2019, 8712979. 10.1155/2019/8712979 PubMed DOI PMC
Miklankova D., Markova I., Huttl M., Zapletalova I., Poruba M., Malinska H. (2021). Metformin affects cardiac arachidonic acid metabolism and cardiac lipid metabolite storage in a prediabetic rat model. Int. J. Mol. Sci. 22, 7680. 10.3390/ijms22147680 PubMed DOI PMC
Nasiri-Ansari N., Nikolopoulou C., Papoutsi K., Kyrou I., Mantzoros C. S., Kyriakopoulos G., et al. (2021). Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE((-/-)) mice by activating autophagy and reducing ER stress and apoptosis. Int. J. Mol. Sci. 22, 818. 10.3390/ijms22020818 PubMed DOI PMC
Nusca A., Tuccinardi D., Albano M., Cavallaro C., Ricottini E., Manfrini S., et al. (2018). Glycemic variability in the development of cardiovascular complications in diabetes. Diabetes Metab. Res. Rev. 34, e3047. 10.1002/dmrr.3047 PubMed DOI
Ormazabal V., Nair S., Elfeky O., Aguayo C., Salomon C., Zuniga F. A. (2018). Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 17, 122. 10.1186/s12933-018-0762-4 PubMed DOI PMC
Packer M. (2023). SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat. Rev. Cardiol. 20, 443–462. 10.1038/s41569-022-00824-4 PubMed DOI
Petito-da-Silva T. I., Souza-Mello V., Barbosa-da-Silva S. (2019). Empaglifozin mitigates NAFLD in high-fat-fed mice by alleviating insulin resistance, lipogenesis and ER stress. Mol. Cell Endocrinol. 498, 110539. 10.1016/j.mce.2019.110539 PubMed DOI
Salvatore T., Galiero R., Caturano A., Rinaldi L., Di Martino A., Albanese G., et al. (2022). An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors. Int. J. Mol. Sci. 23, 3651. 10.3390/ijms23073651 PubMed DOI PMC
Sato T., Aizawa Y., Yuasa S., Kishi S., Fuse K., Fujita S., et al. (2018). The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 17, 6. 10.1186/s12933-017-0658-8 PubMed DOI PMC
Strand E., Bjorndal B., Nygard O., Burri L., Berge C., Bohov P., et al. (2012). Long-term treatment with the pan-PPAR agonist tetradecylthioacetic acid or fish oil is associated with increased cardiac content of n-3 fatty acids in rat. Lipids Health Dis. 11, 82. 10.1186/1476-511X-11-82 PubMed DOI PMC
Szekeres Z., Toth K., Szabados E. (2021). The effects of SGLT2 inhibitors on lipid metabolism. Metabolites 11, 87. 10.3390/metabo11020087 PubMed DOI PMC
van der Veen J. N., Kennelly J. P., Wan S., Vance J. E., Vance D. E., Jacobs R. L. (2017). The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 1859, 1558–1572. 10.1016/j.bbamem.2017.04.006 PubMed DOI
Vrana A., Kazdova L. (1990). The hereditary hypertriglyceridemic nonobese rat: an experimental model of human hypertriglyceridemia. Transpl. Proc. 22, 2579. PubMed
Xi Y., Chen D., Dong Z., Zhang J., Lam H., He J., et al. (2022). Multi-omics insights into potential mechanism of SGLT2 inhibitors cardiovascular benefit in diabetic cardiomyopathy. Front. Cardiovasc Med. 9, 999254. 10.3389/fcvm.2022.999254 PubMed DOI PMC
Xu L., Nagata N., Nagashimada M., Zhuge F., Ni Y., Chen G., et al. (2017). SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 20, 137–149. 10.1016/j.ebiom.2017.05.028 PubMed DOI PMC
Yaribeygi H., Maleki M., Reiner Z., Jamialahmadi T., Sahebkar A. (2022). Mechanistic view on the effects of SGLT2 inhibitors on lipid metabolism in diabetic milieu. J. Clin. Med. 11, 6544. 10.3390/jcm11216544 PubMed DOI PMC
Yousif M. H., Benter I. F., Dunn K. M., Dahly-Vernon A. J., Akhtar S., Roman R. J. (2009). Role of 20-hydroxyeicosatetraenoic acid in altering vascular reactivity in diabetes. Auton. Autacoid Pharmacol. 29, 1–12. 10.1111/j.1474-8673.2009.00426.x PubMed DOI PMC
Zhang W., Lu J., Wang Y., Sun P., Gao T., Xu N., et al. (2023). Canagliflozin attenuates lipotoxicity in cardiomyocytes by inhibiting inflammation and ferroptosis through activating AMPK pathway. Int. J. Mol. Sci. 24, 858. 10.3390/ijms24010858 PubMed DOI PMC
Zicha J., Pechanova O., Cacanyiova S., Cebova M., Kristek F., Torok J., et al. (2006). Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol. Res. 55 (Suppl. 1), S49–S63. 10.33549/physiolres.930000.55.S1.49 PubMed DOI
Zordoky B. N., El-Kadi A. O. (2008). Modulation of cardiac and hepatic cytochrome P450 enzymes during heart failure. Curr. Drug Metab. 9, 122–128. 10.2174/138920008783571792 PubMed DOI