The Beneficial Additive Effect of Silymarin in Metformin Therapy of Liver Steatosis in a Pre-Diabetic Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IKEM, IN 00023001
Ministry of Health of the Czech Republic under its programme for the conceptual development of research organisations
IGA_LF_2021_013
IGA
CEP - Centrální evidence projektů
PubMed
35056941
PubMed Central
PMC8780287
DOI
10.3390/pharmaceutics14010045
PII: pharmaceutics14010045
Knihovny.cz E-zdroje
- Klíčová slova
- combination therapy, liver steatosis, metformin, pre-diabetes, silymarin,
- Publikační typ
- časopisecké články MeSH
The combination of plant-derived compounds with anti-diabetic agents to manage hepatic steatosis closely associated with diabetes mellitus may be a new therapeutic approach. Silymarin, a complex of bioactive substances extracted from Silybum marianum, evinces an antioxidative, anti-inflammatory, and hepatoprotective activity. In this study, we investigated whether metformin (300 mg/kg/day for four weeks) supplemented with micronized silymarin (600 mg/kg/day) would be effective in mitigating fatty liver disturbances in a pre-diabetic model with dyslipidemia. Compared with metformin monotherapy, the metformin-silymarin combination reduced the content of neutral lipids (TAGs) and lipotoxic intermediates (DAGs). Hepatic gene expression of enzymes and transcription factors involved in lipogenesis (Scd-1, Srebp1, Pparγ, and Nr1h) and fatty acid oxidation (Pparα) were positively affected, with hepatic lipid accumulation reducing as a result. Combination therapy also positively influenced arachidonic acid metabolism, including its metabolites (14,15-EET and 20-HETE), mitigating inflammation and oxidative stress. Changes in the gene expression of cytochrome P450 enzymes, particularly Cyp4A, can improve hepatic lipid metabolism and moderate inflammation. All these effects play a significant role in ameliorating insulin resistance, a principal background of liver steatosis closely linked to T2DM. The additive effect of silymarin in metformin therapy can mitigate fatty liver development in the pre-diabetic state and before the onset of diabetes.
Zobrazit více v PubMed
Buysschaert M., Bergman M. Definition of prediabetes. Med. Clin. N. Am. 2011;95:289–297. doi: 10.1016/j.mcna.2010.11.002. PubMed DOI
Francque S.M. The Role of Non-alcoholic Fatty Liver Disease in Cardiovascular Disease. Eur. Cardiol. 2014;9:10–15. doi: 10.15420/ecr.2014.9.1.10. PubMed DOI PMC
Zelber-Sagi S., Lotan R., Shibolet O., Webb M., Buch A., Nitzan-Kaluski D., Halpern Z., Santo E., Oren R. Non-alcoholic fatty liver disease independently predicts prediabetes during a 7-year prospective follow-up. Liver Int. 2013;33:1406–1412. doi: 10.1111/liv.12200. PubMed DOI
Bellentani S., Scaglioni F., Marino M., Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig. Dis. 2010;28:155–161. doi: 10.1159/000282080. PubMed DOI
Friedman S.L., Neuschwander-Tetri B.A., Rinella M., Sanyal A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018;24:908–922. doi: 10.1038/s41591-018-0104-9. PubMed DOI PMC
Caussy C., Soni M., Cui J., Bettencourt R., Schork N., Chen C.H., Ikhwan M.A., Bassirian S., Cepin S., Gonzalez M.P., et al. Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. J. Clin. Investig. 2017;127:2697–2704. doi: 10.1172/JCI93465. PubMed DOI PMC
Loomba R., Schork N., Chen C.H., Bettencourt R., Bhatt A., Ang B., Nguyen P., Hernandez C., Richards L., Salotti J., et al. Heritability of Hepatic Fibrosis and Steatosis Based on a Prospective Twin Study. Gastroenterology. 2015;149:1784–1793. doi: 10.1053/j.gastro.2015.08.011. PubMed DOI PMC
Albhaisi S., Chowdhury A., Sanyal A.J. Non-alcoholic fatty liver disease in lean individuals. JHEP Rep. 2019;1:329–341. doi: 10.1016/j.jhepr.2019.08.002. PubMed DOI PMC
Kim D., Kim W.R. Nonobese Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2017;15:474–485. doi: 10.1016/j.cgh.2016.08.028. PubMed DOI
Sookoian S., Pirola C.J. Systematic review with meta-analysis: Risk factors for non-alcoholic fatty liver disease suggest a shared altered metabolic and cardiovascular profile between lean and obese patients. Aliment. Pharmacol. Ther. 2017;46:85–95. doi: 10.1111/apt.14112. PubMed DOI
American Diabetes Association Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43:S32–S36. doi: 10.2337/dc20-S003. PubMed DOI
Nasri H., Rafieian-Kopaei M. Metformin: Current knowledge. J. Res. Med. Sci. 2014;19:658–664. PubMed PMC
Green C.J., Marjot T., Tomlinson J.W., Hodson L. Of mice and men: Is there a future for metformin in the treatment of hepatic steatosis? Diabetes Obes. Metab. 2019;21:749–760. doi: 10.1111/dom.13592. PubMed DOI
Bayat Mokhtari R., Homayouni T.S., Baluch N., Morgatskaya E., Kumar S., Das B., Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;8:38022–38043. doi: 10.18632/oncotarget.16723. PubMed DOI PMC
Zhang A., Sun H., Yuan Y., Sun W., Jiao G., Wang X. An in vivo analysis of the therapeutic and synergistic properties of Chinese medicinal formula Yin-Chen-Hao-Tang based on its active constituents. Fitoterapia. 2011;82:1160–1168. doi: 10.1016/j.fitote.2011.07.014. PubMed DOI
Abenavoli L., Capasso R., Milic N., Capasso F. Milk thistle in liver diseases: Past, present, future. Phytother. Res. 2010;24:1423–1432. doi: 10.1002/ptr.3207. PubMed DOI
Zhang Z.B., Shen Z.G., Wang J.X., Zhang H.X., Zhao H., Chen J.F., Yun J. Micronization of silybin by the emulsion solvent diffusion method. Int. J. Pharm. 2009;376:116–122. doi: 10.1016/j.ijpharm.2009.04.028. PubMed DOI
Poruba M., Kazdova L., Oliyarnyk O., Malinska H., Matuskova Z., Tozzi di Angelo I., Skop V., Vecera R. Improvement bioavailability of silymarin ameliorates severe dyslipidemia associated with metabolic syndrome. Xenobiotica. 2015;45:751–756. doi: 10.3109/00498254.2015.1010633. PubMed DOI
Poruba M., Matuskova Z., Kazdova L., Oliyarnyk O., Malinska H., Tozzi di Angelo I., Vecera R. Positive effects of different drug forms of silybin in the treatment of metabolic syndrome. Physiol. Res. 2015;64:S507–S512. doi: 10.33549/physiolres.933235. PubMed DOI
MacDonald-Ramos K., Michan L., Martinez-Ibarra A., Cerbon M. Silymarin is an ally against insulin resistance: A review. Ann. Hepatol. 2021;23:100255. doi: 10.1016/j.aohep.2020.08.072. PubMed DOI
Krecman V., Skottova N., Walterova D., Ulrichova J., Simanek V. Silymarin inhibits the development of diet-induced hypercholesterolemia in rats. Planta Med. 1998;64:138–142. doi: 10.1055/s-2006-957391. PubMed DOI
Wah Kheong C., Nik Mustapha N.R., Mahadeva S. A Randomized Trial of Silymarin for the Treatment of Nonalcoholic Steatohepatitis. Clin. Gastroenterol. Hepatol. 2017;15:1940–1949.e8. doi: 10.1016/j.cgh.2017.04.016. PubMed DOI
Sobolova L., Skottova N., Vecera R., Urbanek K. Effect of silymarin and its polyphenolic fraction on cholesterol absorption in rats. Pharmacol. Res. 2006;53:104–112. doi: 10.1016/j.phrs.2005.09.004. PubMed DOI
Skottova N., Kazdova L., Oliyarnyk O., Vecera R., Sobolova L., Ulrichova J. Phenolics-rich extracts from Silybum marianum and Prunella vulgaris reduce a high-sucrose diet induced oxidative stress in hereditary hypertriglyceridemic rats. Pharmacol. Res. 2004;50:123–130. doi: 10.1016/j.phrs.2003.12.013. PubMed DOI
Zicha J., Pechanova O., Cacanyiova S., Cebova M., Kristek F., Torok J., Simko F., Dobesova Z., Kunes J. Hereditary hypertriglyceridemic rat: A suitable model of cardiovascular disease and metabolic syndrome? Physiol. Res. 2006;55:S49–S63. PubMed
Hanley A.J., Williams K., Stern M.P., Haffner S.M. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: The San Antonio Heart Study. Diabetes Care. 2002;25:1177–1184. doi: 10.2337/diacare.25.7.1177. PubMed DOI
Miklankova D., Markova I., Huttl M., Zapletalova I., Poruba M., Malinska H. Metformin Affects Cardiac Arachidonic Acid Metabolism and Cardiac Lipid Metabolite Storage in a Prediabetic Rat Model. Int. J. Mol. Sci. 2021;22:7680. doi: 10.3390/ijms22147680. PubMed DOI PMC
Qi N., Kazdova L., Zidek V., Landa V., Kren V., Pershadsingh H.A., Lezin E.S., Abumrad N.A., Pravenec M., Kurtz T.W. Pharmacogenetic evidence that cd36 is a key determinant of the metabolic effects of pioglitazone. J. Biol. Chem. 2002;277:48501–48507. doi: 10.1074/jbc.M206655200. PubMed DOI
Stephen Robert J.M., Peddha M.S., Srivastava A.K. Effect of Silymarin and Quercetin in a Miniaturized Scaffold in Wistar Rats against Non-alcoholic Fatty Liver Disease. ACS Omega. 2021;6:20735–20745. doi: 10.1021/acsomega.1c00555. PubMed DOI PMC
Roxo D.F., Arcaro C.A., Gutierres V.O., Costa M.C., Oliveira J.O., Lima T.F.O., Assis R.P., Brunetti I.L., Baviera A.M. Curcumin combined with metformin decreases glycemia and dyslipidemia, and increases paraoxonase activity in diabetic rats. Diabetol. Metab. Syndr. 2019;11:33. doi: 10.1186/s13098-019-0431-0. PubMed DOI PMC
Rahimi-Madiseh M., Heidarian E., Kheiri S., Rafieian-Kopaei M. Effect of hydroalcoholic Allium ampeloprasum extract on oxidative stress, diabetes mellitus and dyslipidemia in alloxan-induced diabetic rats. Biomed. Pharmacother. 2017;86:363–367. doi: 10.1016/j.biopha.2016.12.028. PubMed DOI
Mohammadi H., Manouchehri H., Changizi R., Bootorabi F., Khorramizadeh M.R. Concurrent metformin and silibinin therapy in diabetes: Assessments in zebrafish (Danio rerio) animal model. J. Diabetes Metab. Disord. 2020;19:1233–1244. doi: 10.1007/s40200-020-00637-7. PubMed DOI PMC
Poruba M., Anzenbacher P., Racova Z., Oliyarnyk O., Huttl M., Malinska H., Markova I., Gurska S., Kazdova L., Vecera R. The effect of combined diet containing n-3 polyunsaturated fatty acids and silymarin on metabolic syndrome in rats. Physiol. Res. 2019;68:S39–S50. doi: 10.33549/physiolres.934322. PubMed DOI
Markova I., Malinska H., Huttl M., Miklankova D., Oliyarnyk O., Poruba M., Racova Z., Kazdova L., Vecera R. The combination of atorvastatin with silymarin enhances hypolipidemic, antioxidant and anti-inflammatory effects in a rat model of metabolic syndrome. Physiol. Res. 2021;70:33–43. doi: 10.33549/physiolres.934587. PubMed DOI PMC
Lv W.S., Wen J.P., Li L., Sun R.X., Wang J., Xian Y.X., Cao C.X., Wang Y.L., Gao Y.Y. The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Res. 2012;1444:11–19. doi: 10.1016/j.brainres.2012.01.028. PubMed DOI
Obradovic M., Sudar-Milovanovic E., Soskic S., Essack M., Arya S., Stewart A.J., Gojobori T., Isenovic E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021;12:585887. doi: 10.3389/fendo.2021.585887. PubMed DOI PMC
Antunes L.C., Elkfury J.L., Jornada M.N., Foletto K.C., Bertoluci M.C. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats. Arch. Endocrinol. Metab. 2016;60:138–142. doi: 10.1590/2359-3997000000169. PubMed DOI
Yao J., Zhi M., Gao X., Hu P., Li C., Yang X. Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver. Braz. J. Med. Biol. Res. 2013;46:270–277. doi: 10.1590/1414-431X20122551. PubMed DOI PMC
Zhang Y., Hai J., Cao M., Zhang Y., Pei S., Wang J., Zhang Q. Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway. Int. Immunopharmacol. 2013;17:714–720. doi: 10.1016/j.intimp.2013.08.019. PubMed DOI
Zhang D., Ma Y., Liu J., Deng Y., Zhou B., Wen Y., Li M., Wen D., Ying Y., Luo S., et al. Metformin Alleviates Hepatic Steatosis and Insulin Resistance in a Mouse Model of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease by Promoting Transcription Factor EB-Dependent Autophagy. Front. Pharmacol. 2021;12:689111. doi: 10.3389/fphar.2021.689111. PubMed DOI PMC
Meex R.C.R., Watt M.J. Hepatokines: Linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. 2017;13:509–520. doi: 10.1038/nrendo.2017.56. PubMed DOI
Rees D.C., Johnson E., Lewinson O. ABC transporters: The power to change. Nat. Rev. Mol. Cell. Biol. 2009;10:218–227. doi: 10.1038/nrm2646. PubMed DOI PMC
Hu W.Y., Ma X.H., Zhou W.Y., Li X.X., Sun T.T., Sun H. Preventive effect of Silibinin in combination with Pu-erh tea extract on non-alcoholic fatty liver disease in ob/ob mice. Food Funct. 2017;8:1105–1115. doi: 10.1039/C6FO01591C. PubMed DOI
Piehler A.P., Haug K.B., Wenzel J.J., Kierulf P.B., Kaminski W.E. ABCA-transporters: Regulators of cellular lipid transport. Tidsskr. Nor. Laegeforen. 2007;127:2930–2933. PubMed
Zhao C., Dahlman-Wright K. Liver X receptor in cholesterol metabolism. J. Endocrinol. 2010;204:233–240. doi: 10.1677/JOE-09-0271. PubMed DOI
Divisova J., Kazdova L., Hubova M., Meschisvili E. Relationship between insulin resistance and muscle triglyceride content in nonobese and obese experimental models of insulin resistance syndrome. Ann. N. Y. Acad. Sci. 2002;967:440–445. doi: 10.1111/j.1749-6632.2002.tb04300.x. PubMed DOI
Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metabolism. 2016;65:1038–1048. doi: 10.1016/j.metabol.2015.12.012. PubMed DOI
Takahashi Y., Fukusato T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 2014;20:15539–15548. doi: 10.3748/wjg.v20.i42.15539. PubMed DOI PMC
Yu Z.W., Li D., Ling W.H., Jin T.R. Role of nuclear factor (erythroid-derived 2)-like 2 in metabolic homeostasis and insulin action: A novel opportunity for diabetes treatment? World J. Diabetes. 2012;3:19–28. doi: 10.4239/wjd.v3.i1.19. PubMed DOI PMC
Liu J., Han L., Zhu L., Yu Y. Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats. Lipids Health Dis. 2016;15:27. doi: 10.1186/s12944-016-0194-7. PubMed DOI PMC
Markova I., Miklankova D., Huttl M., Kacer P., Skibova J., Kucera J., Sedlacek R., Kacerova T., Kazdova L., Malinska H. The Effect of Lipotoxicity on Renal Dysfunction in a Nonobese Rat Model of Metabolic Syndrome: A Urinary Proteomic Approach. J. Diabetes Res. 2019;2019:8712979. doi: 10.1155/2019/8712979. PubMed DOI PMC
Roumans K.H.M., Lindeboom L., Veeraiah P., Remie C.M.E., Phielix E., Havekes B., Bruls Y.M.H., Brouwers M., Stahlman M., Alssema M., et al. Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance. Nat. Commun. 2020;11:1891. doi: 10.1038/s41467-020-15684-0. PubMed DOI PMC
Lee J.J., Lambert J.E., Hovhannisyan Y., Ramos-Roman M.A., Trombold J.R., Wagner D.A., Parks E.J. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr. 2015;101:34–43. doi: 10.3945/ajcn.114.092262. PubMed DOI PMC
Sztolsztener K., Chabowski A., Harasim-Symbor E., Bielawiec P., Konstantynowicz-Nowicka K. Arachidonic Acid as an Early Indicator of Inflammation during Non-Alcoholic Fatty Liver Disease Development. Biomolecules. 2020;10:1133. doi: 10.3390/biom10081133. PubMed DOI PMC
Capdevila J.H., Falck J.R. The CYP P450 arachidonic acid monooxygenases: From cell signaling to blood pressure regulation. Biochem. Biophys. Res. Commun. 2001;285:571–576. doi: 10.1006/bbrc.2001.5167. PubMed DOI
Schuck R.N., Zha W., Edin M.L., Gruzdev A., Vendrov K.C., Miller T.M., Xu Z., Lih F.B., DeGraff L.M., Tomer K.B., et al. The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease. PLoS ONE. 2014;9:e110162. doi: 10.1371/journal.pone.0110162. PubMed DOI PMC
Park S.Y., Kim C.H., Lee J.Y., Jeon J.S., Kim M.J., Chae S.H., Kim H.C., Oh S.J., Kim S.K. Hepatic expression of cytochrome P450 in Zucker diabetic fatty rats. Food Chem. Toxicol. 2016;96:244–253. doi: 10.1016/j.fct.2016.08.010. PubMed DOI
Albracht-Schulte K., Rosairo S., Ramalingam L., Wijetunge S., Ratnayake R., Kotakadeniya H., Dawson J.A., Kalupahana N.S., Moustaid-Moussa N. Obesity, adipocyte hypertrophy, fasting glucose, and resistin are potential contributors to nonalcoholic fatty liver disease in South Asian women. Diabetes Metab. Syndr. Obes. 2019;12:863–872. doi: 10.2147/DMSO.S203937. PubMed DOI PMC
Park H.K., Kwak M.K., Kim H.J., Ahima R.S. Linking resistin, inflammation, and cardiometabolic diseases. Korean J. Intern. Med. 2017;32:239–247. doi: 10.3904/kjim.2016.229. PubMed DOI PMC
Zhao S., Jiang J., Jing Y., Liu W., Yang X., Hou X., Gao L., Wei L. The concentration of tumor necrosis factor-alpha determines its protective or damaging effect on liver injury by regulating Yap activity. Cell Death Dis. 2020;11:70. doi: 10.1038/s41419-020-2264-z. PubMed DOI PMC
Zimmermann E., Anty R., Tordjman J., Verrijken A., Gual P., Tran A., Iannelli A., Gugenheim J., Bedossa P., Francque S., et al. C-reactive protein levels in relation to various features of non-alcoholic fatty liver disease among obese patients. J. Hepatol. 2011;55:660–665. doi: 10.1016/j.jhep.2010.12.017. PubMed DOI
Haukeland J.W., Dahl T.B., Yndestad A., Gladhaug I.P., Loberg E.M., Haaland T., Konopski Z., Wium C., Aasheim E.T., Johansen O.E., et al. Fetuin A in nonalcoholic fatty liver disease: In vivo and in vitro studies. Eur. J. Endocrinol. 2012;166:503–510. doi: 10.1530/EJE-11-0864. PubMed DOI
Sato M., Kamada Y., Takeda Y., Kida S., Ohara Y., Fujii H., Akita M., Mizutani K., Yoshida Y., Yamada M., et al. Fetuin-A negatively correlates with liver and vascular fibrosis in nonalcoholic fatty liver disease subjects. Liver Int. 2015;35:925–935. doi: 10.1111/liv.12478. PubMed DOI
Pal D., Dasgupta S., Kundu R., Maitra S., Das G., Mukhopadhyay S., Ray S., Majumdar S.S., Bhattacharya S. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 2012;18:1279–1285. doi: 10.1038/nm.2851. PubMed DOI
Oguntibeju O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019;11:45–63. PubMed PMC
Rives C., Fougerat A., Ellero-Simatos S., Loiseau N., Guillou H., Gamet-Payrastre L., Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules. 2020;10:1702. doi: 10.3390/biom10121702. PubMed DOI PMC
Swiderska M., Maciejczyk M., Zalewska A., Pogorzelska J., Flisiak R., Chabowski A. Oxidative stress biomarkers in the serum and plasma of patients with non-alcoholic fatty liver disease (NAFLD). Can plasma AGE be a marker of NAFLD? Oxidative stress biomarkers in NAFLD patients. Free Radic Res. 2019;53:841–850. doi: 10.1080/10715762.2019.1635691. PubMed DOI
Gillessen A., Schmidt H.H. Silymarin as Supportive Treatment in Liver Diseases: A Narrative Review. Adv. Ther. 2020;37:1279–1301. doi: 10.1007/s12325-020-01251-y. PubMed DOI PMC
Wang Y., Nakajima T., Gonzalez F.J., Tanaka N. PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. Int. J. Mol. Sci. 2020;21:2061. doi: 10.3390/ijms21062061. PubMed DOI PMC
Sampath S., Karundevi B. Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol. Cell. Biochem. 2014;395:11–27. doi: 10.1007/s11010-014-2107-2. PubMed DOI
Zhu X., Yan H., Xia M., Chang X., Xu X., Wang L., Sun X., Lu Y., Bian H., Li X., et al. Metformin attenuates triglyceride accumulation in HepG2 cells through decreasing stearyl-coenzyme A desaturase 1 expression. Lipids Health Dis. 2018;17:114. doi: 10.1186/s12944-018-0762-0. PubMed DOI PMC
Xiao P., Yang Z., Sun J., Tian J., Chang Z., Li X., Zhang B., Ye Y., Ji H., Yu E., et al. Silymarin inhibits adipogenesis in the adipocytes in grass carp Ctenopharyngodon idellus in vitro and in vivo. Fish Physiol. Biochem. 2017;43:1487–1500. doi: 10.1007/s10695-017-0387-7. PubMed DOI
El Kasmi K.C., Anderson A.L., Devereaux M.W., Balasubramaniyan N., Suchy F.J., Orlicky D.J., Shearn C.T., Sokol R.J. Interrupting tumor necrosis factor-alpha signaling prevents parenteral nutrition-associated cholestasis in mice. J. Parenter. Enteral Nutr. 2021 doi: 10.1002/jpen.2279. PubMed DOI
Tewari D., Nabavi S.F., Nabavi S.M., Sureda A., Farooqi A.A., Atanasov A.G., Vacca R.A., Sethi G., Bishayee A. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacol. Res. 2018;128:366–375. doi: 10.1016/j.phrs.2017.09.014. PubMed DOI
Fallah M., Davoodvandi A., Nikmanzar S., Aghili S., Mirazimi S.M.A., Aschner M., Rashidian A., Hamblin M.R., Chamanara M., Naghsh N., et al. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed. Pharmacother. 2021;142:112024. doi: 10.1016/j.biopha.2021.112024. PubMed DOI PMC