Field screening of diverse wheat germplasm for determining their adaptability to semi-arid climatic conditions

. 2022 ; 17 (3) : e0265344. [epub] 20220318

Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, publikace stažené z tisku

Perzistentní odkaz   https://www.medvik.cz/link/pmid35303032

Wheat (Triticum aestivum L.) is an important staple food crop for one third of global population and important crop for securing future food security. Rapid changes in the climate on global scale could be a threat for future food security. This situation urges plant breeders to explore the genetic potential of existing wheat germplasm. This study screened forty diverse wheat genotypes for their yield under two different agroclimatic conditions, i.e., Layyah and Dera Ghazi Khan, Pakistan. Data relating to plant height, peduncle length, flag leaf area, spike length, number of spikelets, number of grains per spike, thousand grain weight, chlorophyll content and grain yield were recorded. The tested wheat genotypes significantly differed for grain yield and related traits. Grain yield was positively correlated with plant height, spike length, spike number, flag leaf length, number of grains per spike, and 1000-grain weight. Biplot obtained from the cluster analysis by Euclidean method grouped the studied genotypes in 3 different groups. The genotypes exhibited 10.77% variability within quadrants, whereas 72.36% variability was recorded between quadrants according to clustering. Dendrogram grouped the tested genotypes into two main clusters. The main cluster "I" comprised of 2 genotypes, i.e., 'Seher-2006' and 'AS-2002'. The cluster "II" contained 38 genotypes based on Euclidian values. Genotypes within same cluster had smaller D2 values compared to those belonging to other clusters. The genetic relationships of genotypes provide useful information for breeding programs. Overall, the results revealed that genotypes 'Line 9733', 'Bhakar-2002', 'Line A9' and 'SYN-46' had better yield and yield stability under climatic conditions of southern Punjab. Therefore, these genotypes could be recommended for general cultivation in the study region.

Odvolání publikace

PubMed

Zobrazit více v PubMed

Shiferaw B, Smale M, Braun H-JJ, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013;5: 291–317. doi: 10.1007/s12571-013-0263-y DOI

Jacott CN, Boden SA. Feeling the heat: developmental and molecular responses of wheat and barley to high ambient temperatures. Melzer R, editor. J Exp Bot. 2020;71: 5740–5751. doi: 10.1093/jxb/eraa326 PubMed DOI PMC

Shah MA, Farooq M, Shahzad M, Khan MB, Hussain M. Yield and phenological responses of bt cotton to different sowing dates in semi-arid climate. Pakistan J Agric Sci. 2017;54: 233–239. doi: 10.21162/PAKJAS/17.4394 DOI

Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, et al.. Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 2011. doi: 10.1007/s12571-011-0126-3 DOI

Farooq S, Shahid M, Khan MB, Hussain M, Farooq M. Improving the productivity of bread wheat by good management practices under terminal drought. J Agron Crop Sci. 2015;201: 173–188. doi: 10.1111/jac.12093 DOI

Farooq S, Hussain M, Jabran K, Hassan W, Rizwan MS, Yasir TA. Osmopriming with CaCl2 improves wheat (Triticum aestivum L.) production under water-limited environments. Environ Sci Pollut Res. 2017;24: 13638–13649. doi: 10.1007/s11356-017-8957-x PubMed DOI

FAO. FAO. 2019. Available: www.faostat.fao.org

GOP. Economic Survey of Pakistan. Islamabad; 2020.

Brisson N, Gate P, Gouache D, Charmet G, Oury FX, Huard F. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. F Crop Res. 2010. doi: 10.1016/j.fcr.2010.07.012 DOI

Sattar A, Sher A, Ijaz M, Ul-Allah S, Rizwan MS, Hussain M, et al.. Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS One. 2020;15: e0232974. doi: 10.1371/journal.pone.0232974 PubMed DOI PMC

Farooq M, Hussain M, Siddique KHMM. Drought Stress in Wheat during Flowering and Grain-filling Periods. CRC Crit Rev Plant Sci. 2014;33: 331–349. doi: 10.1080/07352689.2014.875291 DOI

Shah MA, Farooq M, Hussain M. Evaluation of transplanting bt cotton in a cotton-wheat cropping system. Exp Agric. 2017;53: 227–241. doi: 10.1017/S0014479716000338 DOI

Shah MA, Hussain M, Shahzad M, Jabran K, Ul-Allah S, Farooq M. Transplanting improves the allometry and fiber quality of Bt cotton in cotton–wheat cropping system. Exp Agric. 2020;56: 26–36.

Shah M, Hussain M, Nawaz A, Jabran K, Farooq S. Relay intercropping improves growth and fiber quality of Bt Cotton. Int J Agric Biol. 2019;22: 1539–1546. doi: 10.17957/IJAB/15.1232 DOI

Venkatesh MS, Hazra KK, Ghosh PK, Khuswah BL, Ganeshamurthy AN, Ali M, et al.. Long–term effect of crop rotation and nutrient management on soil–plant nutrient cycling and nutrient budgeting in Indo–Gangetic plains of India. Arch Agron Soil Sci. 2017;63: 2007–2022. doi: 10.1080/03650340.2017.1320392 DOI

Shahzad AN, Qureshi MK, Wakeel A, Misselbrook T. Crop production in Pakistan and low nitrogen use efficiencies. Nat Sustain. 2019. doi: 10.1038/s41893-019-0429-5 DOI

Hussain M, Khan MB, Mehmood Z, Zia AB, Jabran K, Farooq M. Optimizing row spacing in wheat cultivars differing in tillering and stature for higher productivity. Arch Agron Soil Sci. 2013;59: 1457–1470. doi: 10.1080/03650340.2012.725937 DOI

Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A. 2011. doi: 10.1073/pnas.1116437108 PubMed DOI PMC

Munné-Bosch S, Alegre L. Die and let live: Leaf senescence contributes to plant survival under drought stress. Functional Plant Biology. 2004. doi: 10.1071/FP03236 PubMed DOI

Hussain S, Ulhassan Z, Brestic M, Zivcak M, Weijun Zhou, Allakhverdiev SI, et al.. Photosynthesis research under climate change. Photosynthesis Research. 2021. doi: 10.1007/s11120-021-00861-z PubMed DOI

Hossain A, Skalicky M, Brestic M, Maitra S, Alam MA, Syed MA, et al.. Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum l.) under the changing climate. Agronomy. 2021. doi: 10.3390/agronomy11020241 DOI

Irfan Ullah M, Mahpara S, Bibi R, Ullah Shah R, Ullah R, Abbas S, et al.. Grain yield and correlated traits of bread wheat lines: Implications for yield improvement. Saudi J Biol Sci. 2021. doi: 10.1016/j.sjbs.2021.06.006 PubMed DOI PMC

Kumari VV, Roy A, Vijayan R, Banerjee P, Verma VC, Nalia A, et al.. Drought and heat stress in cool-season food legumes in sub-tropical regions: Consequences, adaptation, and mitigation strategies. Plants. 2021. doi: 10.3390/plants10061038 PubMed DOI PMC

Daryanto S, Wang L, Jacinthe PA. Global synthesis of drought effects on maize and wheat production. PLoS One. 2016. doi: 10.1371/journal.pone.0156362 PubMed DOI PMC

Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, et al.. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere. 2015;120: 154–164. doi: 10.1016/j.chemosphere.2014.06.029 PubMed DOI

Hussain M, Farooq M, Sattar A, Ijaz M, Sher A, Ul-Allah S. Mitigating the adverse effects of drought stress through seed priming and seed quality on wheat (Triticum aestivum L.) productivity. Pakistan J Agric Sci. 2018;55: 313–319.

Hussain M, Waqas-ul-Haq M, Farooq S, Jabran K, Farroq M, Farooq M, et al.. The impact of seed priming and row spacing on the productivity of different cultivars of irrigated wheat under early season drought. Exp Agric. 2016;52: 477–490. doi: 10.1017/S0014479716000053 DOI

Anjum SA, Xie X yu, Wang L chang, Saleem MF, Man C, Lei W. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research. 2011. doi: 10.5897/AJAR10.027 DOI

Ibrahimova U, Zivcak M, Gasparovic K, Rastogi A, Allakhverdiev SI, Yang X, et al.. Electron and proton transport in wheat exposed to salt stress: is the increase of the thylakoid membrane proton conductivity responsible for decreasing the photosynthetic activity in sensitive genotypes? Photosynth Res. 2021. doi: 10.1007/s11120-021-00853-z PubMed DOI PMC

Gaballah MM, Metwally AM, Skalicky M, Hassan MM, Brestic M, El Sabagh A, et al.. Genetic diversity of selected rice genotypes under water stress conditions. Plants. 2021. doi: 10.3390/plants10010027 PubMed DOI PMC

Aggarwal PK. Simulating growth, development, and yield of wheat in warmer areas. 3 International Conference on Wheat for the Nontraditional Warm Areas Foz do Iguacu (Brazil) 29 Jul-3 Aug 1990. 1990.

Joshi AK, Mishra B, Chatrath R, Ortiz Ferrara G, Singh RP. Wheat improvement in India: Present status, emerging challenges and future prospects. Euphytica. 2007. doi: 10.1007/s10681-007-9385-7 DOI

Randall PJ, Moss HJ. Some effects of temperature regime during grain filling on wheat quality. Aust J Agric Res. 1990. doi: 10.1071/AR9900603 DOI

Stone PJ, Nicolas ME. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress.[Workshop paper]. Aust J Plant Physiol. 1994.

Munaro LB, Hefley TJ, DeWolf E, Haley S, Fritz AK, Zhang G, et al.. Exploring long-term variety performance trials to improve environment-specific genotype×management recommendations: A case-study for winter wheat. F Crop Res. 2020;255: 107848.

Heritability Jedynski S. and path coefficient analysis of yield components in spring wheat. Biul Hod I Aklim Rosl. 2001; 203–210.

Kashif M, Khaliq I. Heritability, Correlation and Path Coefficient Analysis for Some Metric Traits in Wheat. Int J Agric Biol. 2004.

Singh SP, Asawa BM. Path coefficient analysis and selection indices in wheat. Jnkvv Res J. 1980.

Uddin MJ, Mitra B, Chowdhury MAZ. Genetic parameters, correlation, path coefficient analysis and selection indices in wheat. Bangladesh J Sci Ind Res. 1997;32: 523–528.

Chowdhry MA, Ali M, Subhani GM, Khaliq I. Path coefficient analysis for water use efficiency, evapotranspiration efficiency and some yield related traits in wheat. Pakistan J Biol Sci. 2000.

Ceccarelli C, Loinard L, Castets A, Tielens A, Caux E. The hot core of the solar-type protostar IRAS 16293–2422: H_2CO emission. Astron Astrophys. 2000;357: L9–L12.

Sarker U, Islam MT, Rabbani MG, Oba S. Phenotypic divergence in vegetable amaranth for total antioxidant capacity, antioxidant profile, dietary fiber, nutritional and agronomic traits. Acta Agric Scand Sect B—Soil Plant Sci. 2018;68: 67–76.

Bhattacharjee T, Paul N, Banerjee S, Kumar P, Maurya SC, Chattopadhyay A. Genetic divergence in bitter gourd (Momordica charantia L.) under undulating topography of Tripura. IJCS. 2019;7: 1557–1561.

Ibrahim AU. Genetic variability, Correlation and Path analysis for Yield and yield components in F6 generation of Wheat (Triticum aestivum Em. Thell.). IOSR J Agric Vet Sci. 2019;12: 17–23.

Sabit Z, Yadav B, Rai PK. Genetic variability, correlation and path analysis for yield and its components in f5 generation of bread wheat (Triticum aestivum L.). J Pharmacogn Phytochem. 2017;6: 680–687.

Steel R., Torrei J, Dickey D. Principles and Procedures of Statistics A Biometrical Approach. A Biometrical Approach. 1997.

Dewey DR, Lu K. A Correlation and Path‐Coefficient Analysis of Components of Crested Wheatgrass Seed Production 1. Agron J. 1959;51: 515–518.

ter Braak CJF, Smilauer P. Canoco reference manual and user’s guide: software for ordination, version 5.0. 2012.

Mondal SK, Khajuria MR. Correlation and path analysis in bread wheat (Triticum aestivum L.) under rainfed condition. Environ Ecol. 2001;19: 405–408.

Mohamed AIS. Promising durum wheat genotypes under normal and stress growing conditions in northern Sudan. Barley Wheat Newsl. 1999.

Fellahi Z, Hannachi A, Bouzerzour H, Boutekrabt A. Correlation between traits and path analysis coefficient for grain yield and other quantitative traits in bread wheat under semi arid conditions. J Agric Sustain. 2013;3.

Ali IH, Shakor EF. Estimation of combining ability, gene action and heterosis in durum wheat using nested mating design. J kerbala Univ. 2012.

Cooper M, DeLacy IH. Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments. Theor Appl Genet. 1994;88: 561–572. doi: 10.1007/BF01240919 PubMed DOI

Yan W, Cornelius PL, Crossa J, Hunt LA. Two types of GGE biplots for analyzing multi‐environment trial data. Crop Sci. 2001;41: 656–663.

Dubey N, Avinashe HA, Shrivastava AN. Evaluation of genetic diversity among soybean [Glycine max (L.)] genotypes using multivariate analysis. Plant Arch. 2018;18: 908–912.

Xu J, Han H, Ning T, Li Z, Lal R. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system. F Crop Res. 2019;233: 33–40.

Bakry AS, Takahashi H, Otsuki M, Tagami J. Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Dent Mater. 2014;30: 314–320. doi: 10.1016/j.dental.2013.12.002 PubMed DOI

El-Kramany MF, Ibrahim OM, El-Habbasha SF, Ashour NI. Screening of 40 Triticale (X Triticosecale wittmack) genotypes under sandy soil conditions. J Appl Sci Res. 2009; 33–39.

Ibrahim S. Poverty, aspirations and well-being: Afraid to aspire and unable to reach a better life–voices from Egypt. Brooks World Poverty Inst Work Pap. 2011.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...