Drought and Heat Stress in Cool-Season Food Legumes in Sub-Tropical Regions: Consequences, Adaptation, and Mitigation Strategies

. 2021 May 21 ; 10 (6) : . [epub] 20210521

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34063988

Grantová podpora
APVV-18-0465 and EPPN2020-OPVaI-VA-ITMS313011T813 This research was funded by the 'Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2,949 01 Nitra, Slovak Republic under the project 'APVV-18-0465 and EPPN2020-OPVaI-VA-ITMS313011T813'.

Drought and heat stress are two major abiotic stresses that challenge the sustainability of agriculture to a larger extend. The changing and unpredictable climate further aggravates the efforts made by researchers as well as farmers. The stresses during the terminal stage of cool-season food legumes may affect numerous physiological and biochemical reactions that may result in poor yield. The plants possess a good number of adaptative and avoiding mechanisms to sustain the adverse situation. The various agronomic and breeding approaches may help in stress-induced alteration. The physiological and biochemical response of crops to any adverse situation is very important to understand to develop mechanisms and approaches for tolerance in plants. Agronomic approaches like altering the planting time, seed priming, foliar application of various macro and micro nutrients, and the application of rhizobacteria may help in mitigating the adverse effect of heat and drought stress to some extent. Breeding approaches like trait-based selection, inheritance studies of marker-based selection, genetic approaches using the transcriptome and metabolome may further pave the way to select and develop crops with better heat and drought stress adaptation and mitigation.

Zobrazit více v PubMed

Popelka J.C., Terryn N., Higgins T.J.V. Gene technology for grain legumes: Can it contribute to the food challenge in developing countries? Plant Sci. 2004;167:195–206. doi: 10.1016/j.plantsci.2004.03.027. DOI

Varshney R.K., Dubey A. Novel genomic tools and modern genetic and breeding approaches for crop improvement. J. Plant Biochem. Biotechnol. 2009;18:127–138. doi: 10.1007/BF03263311. DOI

Andrews M., Hodge S. Climate Change and Management of Cool Season Grain Legume Crops. Springer; Dordrecht, The Netherlands: 2010. Climate change, a challenge for cool season grain legume crop production; pp. 1–9.

Vijayan R. Pulses: In need of more attention. Asian J. Biol. Sci. 2016;11:321–325. doi: 10.15740/HAS/AJBS/11.2/321-325. DOI

IPCC . Synthesis Report, Contribution of Working Group I, II and III to the Fifth Assessment Report of the Inter-Governmental Panel on Climate Change. IPCC; Geneva, Switzerland: 2014. Climate change; p. 151.

Jha U.C., Bohra A., Singh N.P. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed. 2014;133:679–701. doi: 10.1111/pbr.12217. DOI

Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007;61:199–223. doi: 10.1016/j.envexpbot.2007.05.011. DOI

Hossain A., Skalicky M., Brestic M., Maitra S., Ashraful Alam M., Syed M.A., Hossain J., Sarkar S., Saha S., Bhadra P., et al. Consequences and Mitigation Strategies of Abiotic Stresses in Wheat (Triticum aestivum L.) under the Changing Climate. Agronomy. 2021;11:241. doi: 10.3390/agronomy11020241. DOI

Gaur P.M., Samineni S., Krishnamurthy L., Varshney R.K., Kumar S., Ghanem M.E., Nayyar H. High temperature tolerance in grain legumes. Legume Perspect. 2015;7:23–24.

Vijayan R., Wani S.H., Rajendran A., Visha Kumari V. Genetics and Breeding of Pulse Crops. Kalyani Publishers; New Delhi, India: 2018. p. 288.

Lipiec J., Doussan C., Nosalewicz A., Kondracka K. Effect of drought and heat stresses on plant growth and yield: A review. Int. Agrophys. 2013;27:463–477. doi: 10.2478/intag-2013-0017. DOI

Hussain M., Malik M.A., Farooq M., Ashraf M.Y., Cheema M.A. Improving drought tolerance by exogenous application of glycine betaine and salicylic acid in sunflower. J. Agron. Crop Sci. 2008;194:193–199. doi: 10.1111/j.1439-037X.2008.00305.x. DOI

Rucker K.S., Kvien C.K., Holbrook C.C., Hook J.E. Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci. 1995;22:14–18. doi: 10.3146/pnut.22.1.0003. DOI

Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009;29:185–212. doi: 10.1051/agro:2008021. DOI

Praba M.L., Cairns J.E., Babu R.C., Lafitte H.R. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J. Agron. Crop Sci. 2009;195:30–46. doi: 10.1111/j.1439-037X.2008.00341.x. DOI

Ismail A.M., Hall A.E. Reproductive-stage heat tolerance, leaf membrane thermo stability and plant morphology in cowpea. Crop Sci. 1999;39:1762–1768. doi: 10.2135/cropsci1999.3961762x. DOI

Vollenweider P., Gunthardt-Goerg M.S. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 2005;137:455–465. doi: 10.1016/j.envpol.2005.01.032. PubMed DOI

Fahad S., Hussain S., Saud S., Khan F., Hassan S., Nasim W., Huang J. Exogenously applied plant growth regulators affect heat-stressed rice pollens. J. Agron. Crop Sci. 2016;202:139–150. doi: 10.1111/jac.12148. DOI

Dreesen P.E., De Boeck H.J., Janssens I.A., Nijs I. Summer heat and drought extremes trigger unexpeted changes in productivity of a temperate/biannual plant community. Environ. Exp. Bot. 2012;79:21–30. doi: 10.1016/j.envexpbot.2012.01.005. DOI

Rani A., Devi P., Jha U.C., Sharma K.D., Siddique K.H.M., Nayyar H. Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front. Plant Sci. 2020;10:1759. doi: 10.3389/fpls.2019.01759. PubMed DOI PMC

Choukri H., Hejjaoui K., El-Baouchi A., El haddad N., Smouni A., Maalouf F., Thavarajah D., Kumar S. Heat and drought stress impact on phenology, grain yield, and nutritional quality of lentil (Lens culinaris Medikus) Front. Nutr. 2020;7:596307. doi: 10.3389/fnut.2020.596307. PubMed DOI PMC

Wei Y., Jin J., Jiang S., Ning S., Liu L. Quantitative response of soybean development and yield to drought stress during different growth stages in the Huaibei Plain, China. Agronomy. 2018;8:97. doi: 10.3390/agronomy8070097. DOI

Kyei-boahen S., Savala C.E.N., Chikoye D., Abaidoo R., Kyei-Boahen S. Growth and yield responses of cowpea to inoculation and phosphorus fertilization in different environments. Front. Plant Sci. 2017;8:646. doi: 10.3389/fpls.2017.00646. PubMed DOI PMC

Daryanto S., Wang L., Jacinthe P.A. Global synthesis of drought effects on food legume production. PLoS ONE. 2015;10:e0127401. doi: 10.1371/journal.pone.0127401. PubMed DOI PMC

Kumar K., Solanki S., Singh S.N., Khan M.A. Disease of Pulse Crops and Their Sustainable Management. Biotech Books; New Delhi, India: 2016. Abiotic constraints of pulse production in India; pp. 23–39.

Lesk C., Rowhani P., Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529:84. doi: 10.1038/nature16467. PubMed DOI

Lobell D.B., Schlenker W., Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011;333:616–620. doi: 10.1126/science.1204531. PubMed DOI

Challinor A.J., Watson J., Lobell D.B., Howden S.M., Smith D.R., Chhetri N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014;4:287. doi: 10.1038/nclimate2153. DOI

Jisha K.C., Puthur J.T. Seed priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings. Rice Sci. 2016;23:242–254. doi: 10.1016/j.rsci.2016.08.002. DOI

Azadi I., Pezeshkpour P., Nasrollahi H. Evaluation te effect of planting season and crop diversity of lentil (ghachsaran variety) in the dryland condition. J. Annu. Biol. Res. 2013;4:47–50.

Ruelland E., Zachowski A. How plants sense temperature. Environ. Exp. Bot. 2010;69:225–232. doi: 10.1016/j.envexpbot.2010.05.011. DOI

Teixeira R.N., Ligterink W., Franca-Neto J.D.B., Hilhorst H.W., da Silva E.A. Gene expression profiling of the green seed problem in soybean. BMC Plant Biol. 2016;16:37. doi: 10.1186/s12870-016-0729-0. PubMed DOI PMC

Jagtap V., Bhargava S., Streb P., Feierabend J. Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J. Exp. Bot. 1998;49:1715–1721.

Jiang Y., Huang B. Drought and heat stress injury to two cool-season turf grasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 2001;41:436–442. doi: 10.2135/cropsci2001.412436x. DOI

Jiang Y., Huang B. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J. Exp. Bot. 2001;52:341–349. doi: 10.1093/jexbot/52.355.341. PubMed DOI

Brestic M., Zivcak M., Hauptvogel P., Misheva S., Kocheva K., Yang X., Li X., Allakhverdiev S.I. Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. Photosynth. Res. 2018;136:245–255. doi: 10.1007/s11120-018-0486-z. PubMed DOI

Kaushal N., Awasthi R., Gupta K., Gaur P., Siddique K.H., Nayyar H. Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct. Plant Biol. 2013;40:1334–1349. doi: 10.1071/FP13082. PubMed DOI

Kumar S., Thakur P., Kaushal N., Malik J.A., Gaur P., Nayyar H. Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch. Agron. Soil Sci. 2013;59:823–843. doi: 10.1080/03650340.2012.683424. DOI

Guilioni L., Wery J., Tardieu F. Heat stress-induced abortion of buds and flowers in pea: Is sensitivity linked to organ age or to relations between reproductive organs? Ann. Bot. 1997;80:159–168. doi: 10.1006/anbo.1997.0425. DOI

Devasirvatham V., Gaur P.M., Mallikarjuna N., Raju T.N., Trethowan R.M., Tan D.K. Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Res. 2013;142:9–19. doi: 10.1016/j.fcr.2012.11.011. DOI

Kaushal N., Bhandari K., Siddique K.H., Nayyar H. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric. 2016;2:1134380. doi: 10.1080/23311932.2015.1134380. DOI

Gross Y., Kigel J. Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.) Field Crops Res. 1994;36:201–212. doi: 10.1016/0378-4290(94)90112-0. DOI

Nakano H., Kobayashi M., Terauchi T. Sensitive stages to heat stress in pod setting of common bean (Phaseolus vulgaris L.) J. Trop. Agric. 1998;42:78–84.

Maheswari M., Sarkar B., Vanaja M., Srinivasa Rao M., Srinivasa Rao C. Technical Bulletin. Central Research Institute for Dry land Agriculture (ICAR); Hyderabad, India: 2015. Food production under aberrant weather conditions; p. 47.

Liu X., Huang B. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 2000;40:503–510. doi: 10.2135/cropsci2000.402503x. DOI

Moran J.F., Becana M., Iturbe-Ormaetxe I., Frechilla S., Klucas R.V., Aparicio-Tejo P. Drought induces oxidative stress in pea plants. Planta. 1994;194:346–352. doi: 10.1007/BF00197534. DOI

Ludlow M.M., Muchow R.C. A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron. 1990;43:107–153.

Maroco J.P., Pereira J.S., Chaves M.M. Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species. Funct. Plant Biol. 1997;24:381–387. doi: 10.1071/PP96062. DOI

Turner N.C., Wright G.C., Siddique K.H.M. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 2001;71:193–231.

Lawlor D.W., Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant. Cell Environ. 2002;25:275–294. doi: 10.1046/j.0016-8025.2001.00814.x. PubMed DOI

Kadiyala M.D.M., Kumara Charyulu D., Nedumaran S., D Shyam M., Gumma M.K., Bantilan M.C.S. Agronomic management options for sustaining chickpea yield under climate change scenario. J. Agrometeorol. 2016;18:41–47.

Bishop J., Potts S.G., Jones H.E. Susceptibility of faba bean (Vicia faba L.) to heat stress during floral development and anthesis. J. Agron. Crop Sci. 2016;202:508–517. doi: 10.1111/jac.12172. PubMed DOI PMC

Sehgal A., Sita K., Kumar J., Kumar S., Singh S., Siddique K.H.M., Nayyar H. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front. Plant Sci. 2017;8:1776. doi: 10.3389/fpls.2017.01776. PubMed DOI PMC

Podleśny J., Podlenesa A. The effect of high temperature during flowering on growth, development and yielding of blue lupine-barley mixture. J. Food Agric. Environ. 2012;10:500–504.

Vijaylaxmi Effect of high temperature on growth, biomass and yield of field pea genotypes. Legume Res. 2013;36:250–254.

Awasthi R., Kaushal N., Vadez V., Turner N.C., Berger J., Siddique K.H., Nayyar H. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 2014;41:1148–1167. doi: 10.1071/FP13340. PubMed DOI

Hall A.E. Breeding for adaptation to drought and heat in cowpea. Eur. J. Agron. 2004;21:447–454. doi: 10.1016/j.eja.2004.07.005. DOI

Canci H., Toker C. Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.) J. Agron. Crop Sci. 2009;195:47–54. doi: 10.1111/j.1439-037X.2008.00345.x. DOI

Kumar J., Kant R., Kumar S., Basu P.S., Sarker A., Singh N.P. Heat tolerance in lentil under field conditions. Legume Genom. Genet. 2016;7:1–11.

Boote K.J., Allen L.H., Prasad P.V., Baker J.T., Gesch R.W., Snyder A.M., Thomas J.M. Elevated temperature and CO2 impacts on pollination, reproductive growth, and yield of several globally important crops. J. Agric. Meteorol. 2005;60:469–474. doi: 10.2480/agrmet.469. DOI

Nicolas M.E., Gleadow R.M., Dalling M.J. Effect of post-anthesis drought on cell division and starch accumulation in developing wheat grains. Ann. Bot. 1985;55:433–444. doi: 10.1093/oxfordjournals.aob.a086922. DOI

Siddique K.H.M., Loss S.P., Regan K.L., Jettner R.L. Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust. J. Agric. Res. 1999;50:375–388. doi: 10.1071/A98096. DOI

Bhandari K., Siddique K.H., Turner N.C., Kaur J., Singh S., Agrawal S.K., Nayyar H. Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J. Crop Improv. 2016;30:118–151. doi: 10.1080/15427528.2015.1134744. DOI

Sita K., Sehgal A., Rao B.H., Nair R.M., Vara Prasad P.V., Kumar S., Nayyar H. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 2017;8:1658. PubMed PMC

Downes R.W., Gladstones J.S. Physiology of growth and seed production in Lupin usangustifolius L. I. Effects on pod and seed set of controlled short duration high temperatures at flowering. Crop Pasture Sci. 1984;35:493–499. doi: 10.1071/AR9840493. DOI

Jiang Y., Lahlali R., Karunakaran C., Kumar S., Davis A.R., Bueckert R.A. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ. 2015;38:2387–2397. doi: 10.1111/pce.12589. PubMed DOI

Waraich E.A., Ahmad R., Halim A., Aziz T. Alleviation of temperature stress by nutrient management in crop plants: A review. J. Soil Sci. Plant Nutr. 2012;12:221–244. doi: 10.4067/S0718-95162012000200003. DOI

Visha Kumari V., Hoekenga O., Salini K., Chandran M.A.S. Biofortification of food crops in India: An Agricultural Perspective. Asian Biotech. Dev. Rev. 2014;16:21–41.

Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. Zinc in plants. New Phytol. 2007;173:677–702. doi: 10.1111/j.1469-8137.2007.01996.x. PubMed DOI

Sharma P.N., Chatterjee C., Agarwala S.C., Sharma C.P. Plant Nutrition—Physiology and Applications. Springer; Dordrecht, The Netherlands: 1990. Zinc deficiency and pollen fertility in maize (Zea mays) pp. 261–265.

Pandey N., Gupta M., Sharma C.P. SEM studies on Zn deficient pollen and Stigma of Vicia faba. Phytomorphology. 1995;45:169–173.

Pandey N., Pathak G.C., Sharma C.P. Zinc is critically required for pollen function and fertilization in lentil. J. Trace Elem. Biol. 2006;20:89–96. doi: 10.1016/j.jtemb.2005.09.006. PubMed DOI

Rout G.R., Sahoo S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015;3:1–24. doi: 10.7831/ras.3.1. DOI

Briat J.F., Fobis-Loisy I., Grignon N., Lobréaux S., Pascal N., Savino G., Thoiron S., Von Wirén N., Van Wuytswinkel O. Cellular and molecular aspects of iron metabolism in plants. Biol. Cell. 1995;84:69–81. doi: 10.1016/0248-4900(96)81320-7. DOI

Dear B.S., Lipsett J. The effect of boron supply on the growth and seed production of sub-terranean clover (Trifoliumsubterraneum L.) Aust. J. Agric. Res. 1987;38:537–546. doi: 10.1071/AR9870537. DOI

Dell B., Huang L. Physiological response of plants to low boron. Plant Soil. 1997;193:103–120. doi: 10.1023/A:1004264009230. DOI

Xu H., Huang Q., Shen K., Shen Z. Anatomical studies on the effects of boron on the development of stamen and pistil of rape (Brassica napus L.) Zhiwu Xuebao. 1993;35:453–457.

Visha Kumari V., Banerjee P., Nath R., Sengupta K., Sarath Chandran M.A., Kumar R. Effect of foliar spray on phenology and yield of Lentil sown on different dates. J. Crop Weed. 2019;15:54–58. doi: 10.22271/09746315.2019.v15.i3.1237. DOI

Rademacher W. Plant growth regulators: Backgrounds and uses in plant production. J. Plant Growth Regul. 2015;34:845–872. doi: 10.1007/s00344-015-9541-6. DOI

Oshino T., Miura S., Kikuchi S., Hamada K., Yano K., Watanabe M., Higashitani A. Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant Cell Environ. 2011;34:284–290. doi: 10.1111/j.1365-3040.2010.02242.x. PubMed DOI

Zhang M., Duan L., Zhai Z., Li J., Tian X., Wang B., Li Z. Effects of plant growth regulators on water deficit-induced yield loss in soybean; Proceedings of the 4th International Crop Science Congress; Brisbane, Australia. 26 Sepember–1 October 2004; pp. 252–256.

Hedden P., Thomas S.G. Gibberellin biosynthesis and its regulation. Biochem. J. 2012;444:11–25. doi: 10.1042/BJ20120245. PubMed DOI

Kumar S., Kaushal N., Nayyar H., Gaur P. Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmo-protectants. Acta Physiol. Plant. 2012;34:1651–1658. doi: 10.1007/s11738-012-0959-1. DOI

Saleh A.A., Abdel-Kader D.Z., El Elish A.M. Role of heat shock and salicylic acid in antioxidant homeostasis in Mungbean (Vigna radiata L.) plant subjected to heat stress. J. Plant Physiol. 2007;2:344–355. doi: 10.3923/ajpp.2007.344.355. DOI

Khan N., Bano A.M.D., Babar A. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS ONE. 2020;15:e0231426. doi: 10.1371/journal.pone.0231426. PubMed DOI PMC

Rady M.M., Boriek S.H.K., Abd El-Mageed T.A., Seif El-Yazal M.A., Ali E.F., Hassan F.A.S., Abdelkhalik A. Exogenous Gibberellic Acid or Dilute Bee Honey Boosts Drought Stress Tolerance in Vicia faba by Rebalancing Osmoprotectants, Antioxidants, Nutrients, and Phytohormones. Plants. 2021;10:748. doi: 10.3390/plants10040748. PubMed DOI PMC

Molla M.R., Ali M.R., Hasanuzzaman M., Al-Mamun M.H., Ahmed A., Nazim-Ud-Dowla M., Rohman M.M. Exogenous proline and betaine-induced upregulation of glutathione transferase and glyoxalase I in lentil (Lens culinaris) under drought Stress. Not. Bot. Horti Agrobot. Cluj Napoca. 2014;42:73–80. doi: 10.15835/nbha4219324. DOI

Garg P., Hemantaranjan A., Pradhan J. Mitigation effects of 24-epibrassinolide and thiourea in field pea (Pisum sativum L.) under drought stress. J. Plant. Sci. Res. 2018;34:227–233. doi: 10.32381/JPSR.2018.34.02.11. DOI

Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 2021;10:259. doi: 10.3390/plants10020259. PubMed DOI PMC

Taylor A.G., Harman G.E. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 1990;28:321–339. doi: 10.1146/annurev.py.28.090190.001541. DOI

Kubala S., Wojtyla L., Quinet M., Lechowska K., Lutts S., Garnczarska M. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmo-priming improvement of Brassica napus germination under salinity stress. J. Plant Physiol. 2015;183:1–12. doi: 10.1016/j.jplph.2015.04.009. PubMed DOI

Iqbal M., Ashraf M. Wheat seed priming in relation to salt tolerance: Growth, yield and levels of free salicylic acid and polyamines. Ann. Bot. Fenn. 2006;43:250–259.

Ghassemi-Golezani K., Aliloo A.A., Valizadeh M., Moghaddam M. Effects of different priming techniques on seed invigoration and seedling establishment of lentil (Lens culinaris Medik) J. Food Agric. Environ. 2008;6:222–226.

Mukundam B., Ramana M.V., Lakshmi C.S., Raja V. Effect of tillage practices and seed priming on growth and yield of upland crops in rice fallows—A review. Agric. Rev. 2008;29:74–78.

Yucel D.O. The effect of different priming treatments and germination temperatures on germination performance of lentil (Lens culinaris Medik) seeds. J. Agric. Biol. Sci. 2012;7:977–981.

Ghasemi-Golezani K., Japparpour-Bonyadi Z., Shafagh-Kolvanagh J., Nikpour-Rashidabad N. Effects of water stress and hydro-priming duration on field performance of lentil. Int. J. Farming Allied Sci. 2013;2:922–925.

Pakbaz N., Barary M., Mehrabi A.A., Hatami A. Effect of seed priming on growth and yield of lentil (Lens culinaris L.) genotypes under rainfed and supplemental irrigation conditions. Int. J. Biosci. 2014;5:131–139.

Aliloo A.A., Alahyari S., Mosavi S.B. Micronutrient priming improves germination and seedling establishment in lentil. Adv. Appl. Agric. Sci. 2014;11:37–44.

Kumar P.M., Chaurasia A.K., Michael Bara B.M. Effect of osmo-priming on seed germination behaviour and vigour of chickpea (Cicer arietinum L.) Int. J. Sci. Nat. 2017;8:330–335.

Harris D.B.S.R., Raghuwanshi B.S., Gangwar J.S., Singh S.C., Joshi K.D., Rashid A., Hollington P.A. Participatory evaluation by farmers of on-farm seed priming in wheat in India, Nepal and Pakistan. Exp. Agric. 2001;37:403–415. doi: 10.1017/S0014479701003106. DOI

Harris D., Joshi A., Khan P.A., Gothkar P., Sodhi P.S. On-farm seed priming in semi-arid agriculture: Development and evaluation in maize, rice and chickpea in India using participatory methods. Exp. Agric. 1999;35:15–29. doi: 10.1017/S0014479799001027. DOI

Kaur S., Gupta A.K., Kaur N. Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. J. Agron. Crop Sci. 2005;191:81–87. doi: 10.1111/j.1439-037X.2004.00140.x. DOI

Afzal I., Rehman H.U., Naveed M., Basra S.M.A. New Challenges in Seed Biology-Basic and Translational Research Driving Seed Technology. In Tech Open Limited; London, UK: 2016. Recent advances in seed enhancements; pp. 47–74.

Uddin M.J., Ali M.O., Rahman M.M. Proceedings of the Policy and Strategy for Increasing Income and Food Security through Improved Crop Management of Chickpea in Rice Fallows in Asia, Kathmandu, Nepal, 17–18 November 2004. Volume 156. International Crops Research Institute for the Semi-Arid Tropics; Andhra Pradesh, India: 2005. Prospects of chickpea in rice-based cropping systems in Bangladesh; pp. 35–46. Summary of a NARC-ICRISAT-NRI Workshop. Patancheru 502 324.

Padgham J. Joint Departmental Discussion Paper—Issue 1. Agriculture and Rural Development & Environment Departments, The International Bank for Reconstruction and Development, The World Bank; Washington, DC, USA: 2009. Agricultural development under a changing climate: Opportunities and challenges for adaptation; p. 169.

Bhowmick M.K. Advances in Seed Priming. Springer; Singapore: 2018. Seed Priming: A Low-Cost Technology for Resource-Poor Farmers in Improving Pulse Productivity; pp. 187–208.

Ashraf M., Foolad M.R. Pre-sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv. Agron. 2005;88:223–271.

Patade V.Y., Bhargava S., Suprasanna P. Halo-priming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric. Ecosyst. Environ. 2009;134:24–28. doi: 10.1016/j.agee.2009.07.003. DOI

Jisha K.C., Vijayakumari K., Puthur J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2013;35:1381–1396. doi: 10.1007/s11738-012-1186-5. DOI

Jisha K.C., Puthur J.T. Seed priming with BABA (β-amino butyric acid): A cost-effective method of abiotic stress tolerance in Vignaradiata (L.) Wilczek. Protoplasma. 2016;253:277–289. doi: 10.1007/s00709-015-0804-7. PubMed DOI

Musa A.M., Harris D., Johansen C., Kumar J.V.D.K. Short duration chickpea to replace fallow after aman rice: The role of on-farm seed priming in the High Barind Tract of Bangladesh. Exp. Agric. 2001;37:509–521. doi: 10.1017/S0014479701000448. DOI

Kaya M.D., Okcu G., Atak M., Cikili Y., Kolsarici O. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.) Eur. J. Agron. 2006;24:291–295. doi: 10.1016/j.eja.2005.08.001. DOI

Farooq M., Basra S.M.A., Rehman H., Saleem B.A. Seed priming enhances the performance of late sown wheat (Triticumaestivum L.) by improving chilling tolerance. J. Agron. Crop Sci. 2008;194:55–60. doi: 10.1111/j.1439-037X.2007.00287.x. DOI

Farooq M., Basra S.M., Wahid A., Ahmad N. Changes in nutrient-homeostasis and reserves metabolism during rice seed priming: Consequences for seedling emergence and growth. Agric. Sci. China. 2010;9:191–198. doi: 10.1016/S1671-2927(09)60083-3. DOI

Jafar M.Z., Farooq M., Cheema M.A., Afzal I., Basra S.M.A., Wahid M.A., Shahid M. Improving the performance of wheat by seed priming under saline conditions. J. Agron. Crop Sci. 2012;198:38–45. doi: 10.1111/j.1439-037X.2011.00485.x. DOI

Solaimalai A., Subburamu K. Seed hardening for field crops—A review. Agric. Rev. 2004;25:129–140.

Cohen Y. The BABA story of induced resistance. Phytoparasitica. 2001;29:375–378. doi: 10.1007/BF02981855. DOI

Jakab G., Cottier V., Toquin V., Rigoli G., Zimmerli L., Metraux J.P., Mauch-Mani B. D-Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 2001;107:29–37. doi: 10.1023/A:1008730721037. DOI

Jakab G., Ton J., Flors V., Zimmerli L., Metraux J.P., Mauch-Mani B. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 2005;139:267–274. doi: 10.1104/pp.105.065698. PubMed DOI PMC

Zimmerli L., Hou B.H., Tsai C.H., Jakab G., Mauch-Mani B., Somerville S. The xenobiotic β-aminobutyric acid enhances Arabidopsis thermo-tolerance. Plant J. 2008;53:144–156. doi: 10.1111/j.1365-313X.2007.03343.x. PubMed DOI

Ton J., Jakab G., Toquin V., Flors V., Iavicoli A., Maeder M.N., Mauch-Mani B. Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell. 2005;17:987–999. doi: 10.1105/tpc.104.029728. PubMed DOI PMC

Kohler J., Hernandez J.A., Caravaca F., Roldan A. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct. Plant Biol. 2008;35:141–151. doi: 10.1071/FP07218. PubMed DOI

Saravanakumar D., Kavino M., Raguchander T., Subbian P., Samiyappan R. Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol. Plant. 2011;33:203–209. doi: 10.1007/s11738-010-0539-1. DOI

Bharti N., Pandey S.S., Barnawal D., Patel V.K., Kalra A. Plant growth promoting rhizo bacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 2016;6:34768. doi: 10.1038/srep34768. PubMed DOI PMC

Habib S.H., Kausar H., Saud H.M. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biol. Med. Res. Int. 2016;2016:6284547. doi: 10.1155/2016/6284547. PubMed DOI PMC

Gangwar K.S., Singh K.K., Sharma S.K., Tomar O.K. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil Till Res. 2006;88:242–252. doi: 10.1016/j.still.2005.06.015. DOI

Kar G., Kumar A. Evaluation of post-rainy season crops with residual soil moisture and different tillage methods in rice fallow of eastern India. Agric. Water Manag. 2009;96:931–938. doi: 10.1016/j.agwat.2009.01.002. DOI

Layek J., Chowdhury S., Ramkrushna G.I., Das A. Evaluation of different lentil cultivars in lowland rice fallow under no-till system for enhancing cropping intensity and productivity. Indian J. Hill Farming. 2014;27:4–9.

Ghosh P.K., Das A., Saha R., Kharkrang E., Tripathi A.K., Munda G.C., Ngachan S.V. Conservation agriculture towards achieving food security in North East India. Curr. Sci. 2010;99:915–921.

Mishra J.P., Praharaj C.S., Singh K.K. Enhancing water use efficiency and production potential of chickpea and field pea through seed bed configurations and irrigation regimes in North Indian Plains. J. Food Legume. 2012;25:310–313.

Reddy A.A. Pulses production technology: Status and way forward. Econ. Polit. Wkly. 2009;44:73–80. doi: 10.2139/ssrn.1537540. DOI

Kumar N., Hazra K.K., Singh S., Nadarajan N. Constraints and Prospects of growing pulses in rice fallows of India. Indian Farming. 2016;66:13–16.

Castillo A.G., Hampton J.G., Coolbear P. Effect of population density on within canopy environment and seed vigour in garden pea (Pisum sativum L.) Proc. Agron. Soc. N. Z. 1993;23:99–106.

Patel H.R., Patel F.H., Maheriya V.D., Dodia I.N. Response of kharif green gram (Vigna radiate L.) to sulphur and phosphorous with and without biofertilizer application. Bioscan. 2013;8:149–152.

Kajla M., Yadav V.K., Chhokar R.S., Sharma R.K. Management practices to mitigate the impact of high temperature on wheat. J. Wheat Res. 2015;7:1–12.

Khan N., Bano A., Babar M.A. Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PLoS ONE. 2019;14:e0213040. doi: 10.1371/journal.pone.0213040. PubMed DOI PMC

Glick B.R., Cheng Z., Czarny J., Duan J. New Perspectives and Approaches in Plant Growth-Promoting Rhizo-Bacteria Research. Springer; Dordrecht, The Netherlands: 2007. Promotion of plant growth by ACC deaminase producing soil bacteria; pp. 329–339.

Niu X., Song L., Xiao Y., Ge W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agro-ecosystem and their potential in alleviating drought stress. Front. Microbiol. 2018;8:2580. doi: 10.3389/fmicb.2017.02580. PubMed DOI PMC

Belimov A.A., Dodd I.C., Hontzeas N., Theobald J.C., Safronova V.I., Davies W.J. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 2009;181:413–423. doi: 10.1111/j.1469-8137.2008.02657.x. PubMed DOI

Dimkpa C., Weinand T., Asch F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009;32:1682–1694. doi: 10.1111/j.1365-3040.2009.02028.x. PubMed DOI

Chanway C.P., Hynes R.K., Nelson L.M. Plant growth-promoting rhizobacteria: Effects on growth and nitrogen fixation of lentil (Lens esculenta Moench) and pea (Pisumsativum L.) Soil Biol. Biochem. 1989;21:511–517. doi: 10.1016/0038-0717(89)90123-5. DOI

Auge R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 2001;11:3–42. doi: 10.1007/s005720100097. DOI

Habibzadeh Y., Evazi A.R., Abedi M. Alleviation drought stress of mungbean (Vigna radiata L.) plants by using arbuscular mycorrhizal fungi. Int. J. Agric. Sci. Nat. Res. 2014;1:1–6.

Smith S.E., Facelli E., Pope S., Smith F.A. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil. 2010;326:3–20. doi: 10.1007/s11104-009-9981-5. DOI

Stoddard F.L., Balko C., Erskine W., Khan H.R., Link W., Sarker A. Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica. 2006;147:167–186. doi: 10.1007/s10681-006-4723-8. DOI

Barnabás B., Jäger K., Fehér A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008;31:11–38. doi: 10.1111/j.1365-3040.2007.01727.x. PubMed DOI

Odeny D.A. The potential of pigeonpea (Cajanus cajan(L.) Millsp.) in Africa. Nat. Resour. Forum. 2007;31:297–305. doi: 10.1111/j.1477-8947.2007.00157.x. DOI

Berger J.D., Milroy S.P., Turner N.C., Siddique K.H.M., Imtiaz M., Malhotra R. Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica. 2011;180:1–15. doi: 10.1007/s10681-011-0391-4. DOI

Hamdi A., Erskine W. Reaction of wild species of the genus Lens to drought. Euphytica. 1996;91:173–179.

Solanki R.K., Gill R.K., Verma P., Singh S. Mutation breeding in pulses: An overview. In: Khan S., Kozgar M.I., editors. Breeding of Pulse Crops. Kalyani Publishers; Ludhiana, India: 2011. pp. 85–103.

Darai R., Ojha B.R., Sarker A., Sah R. Genetics and Breeding for Drought Tolerance in Food Legumes. Int. J. Environ. Agric. Biol. 2016:1. doi: 10.22161/ijeab/1.4.47. DOI

Hatfield J.L., Boote K.J., Kimball B.A., Ziska L.H., Izaurralde R.C., Ort D.R., Thomson A.M., Wolfe D. Climate impacts on agriculture: Implications for crop production. BMC Genom. 2011;10:523. doi: 10.2134/agronj2010.0303. DOI

Sambatti J.B.M., Caylor K.K. When breeding for drought tolerance is is optimal if drought is random? New Physiol. 2007;175:70–80. doi: 10.1111/j.1469-8137.2007.02067.x. PubMed DOI

Sehgal A., Sita K., Siddique K.H.M., Kumar R., Bhogireddy S., Varshney R.K., Rao B.H., Nair R.M., Prasad P.V.V., Nayyar H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant Sci. 2018;9:1705. doi: 10.3389/fpls.2018.01705. PubMed DOI PMC

Brestic M., Zivcak M., Kunderlikova K., Allakhverdiev S.I. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth. Res. 2016;130:251–266. doi: 10.1007/s11120-016-0249-7. PubMed DOI

Fleury D., Jefferies S., Kuchel H., Langridge P. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 2010;61:3211–3222. doi: 10.1093/jxb/erq152. PubMed DOI

Bita C.E., Gerats T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat tolerance crops. Front. Plant Sci. 2013;4:273. doi: 10.3389/fpls.2013.00273. PubMed DOI PMC

Barik S., Rai N., Mishra P., Singh S.K., Gautam V. Bioinformatics: How it helps to boost modern biological research. Curr. Sci. 2020;118:698–699.

Kashiwagi J., Krishnamurthy L., Crouch J.H., Serraj R. Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Res. 2006;95:171–181. doi: 10.1016/j.fcr.2005.02.012. DOI

Varshney R.K., Pazhamala L., Kashiwagi J., Gaur P.M., Krishnamurthy L., Hoisington D.A. Genomics and physiological approaches for root trait breeding to improve drought tolerance in chickpea (Cicer arietinum L.) In: De Oliveira A.D., Varshney R.K., editors. Root Genomics. Springer; Berlin/Heidelberg, Germany: 2011. pp. 233–250.

Varshney R.K., Thudi M., Nayak S.N., Gaur P.M., Kashiwagi J., Krishnamurthy L., Jaganathan D., Koppolu J., Bohra A., Tripathi S., et al. Genetic dissection of drought tolerance in chickpea (Cicerarietinum L.) Theor. Appl. Genet. 2014;127:445–462. doi: 10.1007/s00122-013-2230-6. PubMed DOI PMC

Langridge P., Fleury D. Making the most of ‘omics’ for crop breeding. Trends Biotechnol. 2011;29:33–40. doi: 10.1016/j.tibtech.2010.09.006. PubMed DOI

Valliyodan B., Nguyen H.T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 2006;9:189–195. doi: 10.1016/j.pbi.2006.01.019. PubMed DOI

Kudapa H., Garg V., Chitikineni A., Varshney R.K. The RNA-Seqbased high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development. Plant Cell Environ. 2018;41:2209–2225. PubMed

Varshney R.K., Close T.J., Singh N.K., Hoisington D.A., Cook D.R. Orphan legume crops enter the genomics era. Curr. Opin. Plant Biol. 2009;12:202–210. doi: 10.1016/j.pbi.2008.12.004. PubMed DOI

Thudi M., Li Y., Jackson S.A., May G.D., Varshney R.K. Current state-of-art of sequencing technologies for plant genomics research. Brief Funct. Genomic. 2012;11:3–11. doi: 10.1093/bfgp/elr045. PubMed DOI

Simon C.J., Muehlbauer F.J. Construction of a chickpea linkage map and its comparision with maps of pea and lentil. J. Hered. 1997;88:115–119. doi: 10.1093/oxfordjournals.jhered.a023068. DOI

Varshney R.K., Hiremath P.J., Lekha P., Kashiwagi J., Balaji J., Deokar A.A., Vadez V., Xiao Y., Srinivasan R., Gaur P.M., et al. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.) BMC Genom. 2009;10:523. doi: 10.1186/1471-2164-10-523. PubMed DOI PMC

Crozet P., Marghalha L., Confraria A., Rodrigues A., Martinho C., Elias C.A., Gonzalez E.B. Mechanism of regulation of SNF1/AMPK1/SnRK1 protein kinases. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00190. PubMed DOI PMC

Maruyama K., Sakuma Y., Kasuga M., Ito Y., Seki M., Goda H., Shimada Y., Yoshida S., Shinozaki K., Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004;38:982–993. doi: 10.1111/j.1365-313X.2004.02100.x. PubMed DOI

Ahanger M.A., Akram N.A., Ashraf M., Alyemeni M.N., Wijaya L., Ahmad P. Plant responses to environmental stresses from gene to biotechnology. AoB Plants. 2017;9:1–17. doi: 10.1093/aobpla/plx025. PubMed DOI PMC

Gahlaut V., Jaiswal V., Kumar A., Gupta P.K. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticumaestivum L.) Theor. Appl. Genet. 2016;129:2019–2042. doi: 10.1007/s00122-016-2794-z. PubMed DOI

Li D., Zhang Y., Hu X., Shen X., Ma L., Su Z., Wang T., Dong J. Transcriptional profiling of Medicagotruncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol. 2011;11:109. doi: 10.1186/1471-2229-11-109. PubMed DOI PMC

Ferguson M.E., Burrow M., Schultze S.R., Bramel P.J., Paterson A., Kresovich S., Mitchell S. Microsatellite identification and characterization in peanut (Arachishypogaea L.) Theor. Appl. Genet. 2004;108:1064–1070. doi: 10.1007/s00122-003-1535-2. PubMed DOI

Brauner S., Murphy R.L., Walling J.G., Przyborowski J., Weeden N.F. STS markers for comparative mapping in legumes. J. Am. Soc. Hortic. Sci. 2002;127:616–622. doi: 10.21273/JASHS.127.4.616. DOI

Devasirvatham V., Tan D. Impact of High Temperature and Drought Stresses on Chickpea Production. Agronomy. 2018;8:145. doi: 10.3390/agronomy8080145. DOI

Singh D., Singh C.K., Taunk J., Tomar R.S.S., Chaturvedi A.K., Gaikwad K., Pal M. Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genom. 2017;18:206. doi: 10.1186/s12864-017-3596-7. PubMed DOI PMC

Nadeem M., Li J., Yahya M., Sher A., Ma C., Wang X., Qiu L. Research progress and perspective on drought stress in legumes: A review. Int. J. Mol. Sci. 2019;20:2541. doi: 10.3390/ijms20102541. PubMed DOI PMC

Zhang G.H., Su Q., An L.J., Wu S. Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropuslittoralis. Plant Physiol. Biochem. 2008;46:117–126. doi: 10.1016/j.plaphy.2007.10.022. PubMed DOI

Singh D., Laxmi A. Transcriptional regulation of drought response: A tortuous network of transcriptional factors. Front. Plant Sci. 2015;6:895. doi: 10.3389/fpls.2015.00895. PubMed DOI PMC

Kudo M., Kidokoro S., Yoshida T., Mizoi J., Todaka D., Fernie A.R. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol. J. 2017;15:458–471. doi: 10.1111/pbi.12644. PubMed DOI PMC

Yan K., Chen P., Shao H., Shao C., Zhao S., Brestic M. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS ONE. 2013;8:e62100. doi: 10.1371/journal.pone.0062100. PubMed DOI PMC

Sita K., Sehgal A., Kumar J., Kumar S., Singh S., Siddique K.H., Nayyar H. Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front. Plant Sci. 2017;8:744. doi: 10.3389/fpls.2017.00744. PubMed DOI PMC

Gosal S.S., Wani S.H., Kang M.S. Biotechnology and drought tolerance. J. Crop Improv. 2009;23:19–54. doi: 10.1080/15427520802418251. DOI

Browne J., Tunnacliffe A., Burnell A. Plant desiccation gene found in a nematode. Nature. 2002;416:38. doi: 10.1038/416038a. PubMed DOI

Kishor P.K., Hong Z., Miao G.H., Hu C.A.A., Verma D.P.S. Over expression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmo-tolerance in transgenic plants. Plant Physiol. 1995;108:1387–1394. doi: 10.1104/pp.108.4.1387. PubMed DOI PMC

Anbazhagan K., Bhatnagar-Mathur P., Vadez V., Dumbala S.R., Kishor P.K., Sharma K.K. DREB1A over expression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep. 2015;34:199–210. doi: 10.1007/s00299-014-1699-z. PubMed DOI

Abdelrahman M., Al-Sadi A.M., Pour-Aboughadareh A., Burritt D.J., Tran L.S.P. Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol. Biochem. 2018;131:31–36. doi: 10.1016/j.plaphy.2018.03.012. PubMed DOI

Cai Y., Chen L., Liu X., Sun S., Wu C., Jiang B., Hou W. CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE. 2015;10:e0136064. doi: 10.1371/journal.pone.0136064. PubMed DOI PMC

De Ronde J.A., Cress W.A., Kruer G.H., Strasser R.J., Van Staden J. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant Physiol. 2004;161:1211–1224. doi: 10.1016/j.jplph.2004.01.014. PubMed DOI

Bhatnagar-Mathur P., Vadez V., Devi M.J., Lavanya M., Vani G., Sharma K.K. Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol. Breed. 2009;23:591–606. doi: 10.1007/s11032-009-9258-y. DOI

Li Y., Zhang J., Zhang J., Hao L., Hua J., Duan L., Li Z. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol. J. 2013;11:747–758. doi: 10.1111/pbi.12066. PubMed DOI

Iuchi S., Kobayashi M., Yamaguchi-Shinozaki K., Shinozaki K. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 2000;123:553–562. doi: 10.1104/pp.123.2.553. PubMed DOI PMC

Li D.H., Li W., Li H.Y., Guo J.J., Chen F.J. The soybean GmRACK1 gene plays a role in drought tolerance at vegetative stages. Russ. J. Plant Physiol. 2018;65:541–552. doi: 10.1134/S1021443718040155. DOI

Kim H.J., Cho H.S., Pak J.H., Kwon T., Lee J.H., Kim D.H., Lee D.H., Kim C.G., Chung Y.S. Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean. Mol. Cells. 2018;41:413–422. doi: 10.14348/molcells.2018.2254. PubMed DOI PMC

Hiremath P.J., Farmer A., Cannon S.B., Woodward J., Kudapa H., Tuteja R., Krishnamurthy L. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol. J. 2011;9:922–931. doi: 10.1111/j.1467-7652.2011.00625.x. PubMed DOI PMC

Deokar A.A., Kondawar V., Jain P.K., Karuppayil S.M., Raju N.L., Vadez V., Srinivasan R. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and-susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol. 2011;11:70. doi: 10.1186/1471-2229-11-70. PubMed DOI PMC

McKersie B.D., Bowley S.R., Harjanto E., Leprince O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 1996;111:1177–1181. doi: 10.1104/pp.111.4.1177. PubMed DOI PMC

Manavalan L.P., Guttikonda S.K., Phan Tran L.S., Nguyen H.T. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 2009;50:1260–1276. doi: 10.1093/pcp/pcp082. PubMed DOI

An J., Cheng C., Hu Z., Chen H., Cai W., Yu B. The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS. Environ. Exp. Bot. 2018;155:45–55. doi: 10.1016/j.envexpbot.2018.06.025. DOI

Li Y., Chen Q., Nan H., Li X., Lu S., Zhao X., Cao D. Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS ONE. 2017;12:e0179554. doi: 10.1371/journal.pone.0179554. PubMed DOI PMC

Chen Y., Chi Y., Meng Q., Wang X., Yu D. GmSK1, an SKP1 homologue in soybean, is involved in the tolerance to salt and drought. Plant Physiol. Biochem. 2018;127:25–31. doi: 10.1016/j.plaphy.2018.03.007. PubMed DOI

Wang L.S., Chen Q.S., Xin D.W., Qi Z.M., Zhang C., Li S.N., Wu X.X. Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. J. Integr. Agric. 2018;17:1959–1971. doi: 10.1016/S2095-3119(17)61863-X. DOI

Khazaei H., Caron C.T., Fedoruk M., Diapari M., Vandenberg A., Coyne C.J., McGee R., Bett K.E. Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones. Front. Plant Sci. 2016;7:1093. doi: 10.3389/fpls.2016.01093. PubMed DOI PMC

Upadhyaya H.D., Dwivedi S.L., Ambrose M., Ellis N., Berger J., Smykal P., Debouck D., Duc G., Dumet D., Flavell A., et al. Legume genetic resources: Management, diversity assessment, and utilization in crop improvement. Euphytica. 2011;180:27–47. doi: 10.1007/s10681-011-0449-3. DOI

Smykal P., Aubert G., Burstin J., Coyne C., Ellis N., Flavell A., Ford R., Hýbl M., Macas J., Neumann P., et al. Pea (Pisum sativum L.) in the Genomic Era. Agronomy. 2012;2:74–115. doi: 10.3390/agronomy2020074. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...