Drought and Heat Stress in Cool-Season Food Legumes in Sub-Tropical Regions: Consequences, Adaptation, and Mitigation Strategies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-18-0465 and EPPN2020-OPVaI-VA-ITMS313011T813
This research was funded by the 'Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2,949 01 Nitra, Slovak Republic under the project 'APVV-18-0465 and EPPN2020-OPVaI-VA-ITMS313011T813'.
PubMed
34063988
PubMed Central
PMC8224053
DOI
10.3390/plants10061038
PII: plants10061038
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation, drought stress, heat stress, legumes, mitigation strategies,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Drought and heat stress are two major abiotic stresses that challenge the sustainability of agriculture to a larger extend. The changing and unpredictable climate further aggravates the efforts made by researchers as well as farmers. The stresses during the terminal stage of cool-season food legumes may affect numerous physiological and biochemical reactions that may result in poor yield. The plants possess a good number of adaptative and avoiding mechanisms to sustain the adverse situation. The various agronomic and breeding approaches may help in stress-induced alteration. The physiological and biochemical response of crops to any adverse situation is very important to understand to develop mechanisms and approaches for tolerance in plants. Agronomic approaches like altering the planting time, seed priming, foliar application of various macro and micro nutrients, and the application of rhizobacteria may help in mitigating the adverse effect of heat and drought stress to some extent. Breeding approaches like trait-based selection, inheritance studies of marker-based selection, genetic approaches using the transcriptome and metabolome may further pave the way to select and develop crops with better heat and drought stress adaptation and mitigation.
Defence Institute of High Altitude Research Chandigarh 160002 India
Department of Agronomy Bangladesh Wheat and Maize Research Institute Dinajpur 5200 Bangladesh
Zobrazit více v PubMed
Popelka J.C., Terryn N., Higgins T.J.V. Gene technology for grain legumes: Can it contribute to the food challenge in developing countries? Plant Sci. 2004;167:195–206. doi: 10.1016/j.plantsci.2004.03.027. DOI
Varshney R.K., Dubey A. Novel genomic tools and modern genetic and breeding approaches for crop improvement. J. Plant Biochem. Biotechnol. 2009;18:127–138. doi: 10.1007/BF03263311. DOI
Andrews M., Hodge S. Climate Change and Management of Cool Season Grain Legume Crops. Springer; Dordrecht, The Netherlands: 2010. Climate change, a challenge for cool season grain legume crop production; pp. 1–9.
Vijayan R. Pulses: In need of more attention. Asian J. Biol. Sci. 2016;11:321–325. doi: 10.15740/HAS/AJBS/11.2/321-325. DOI
IPCC . Synthesis Report, Contribution of Working Group I, II and III to the Fifth Assessment Report of the Inter-Governmental Panel on Climate Change. IPCC; Geneva, Switzerland: 2014. Climate change; p. 151.
Jha U.C., Bohra A., Singh N.P. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed. 2014;133:679–701. doi: 10.1111/pbr.12217. DOI
Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007;61:199–223. doi: 10.1016/j.envexpbot.2007.05.011. DOI
Hossain A., Skalicky M., Brestic M., Maitra S., Ashraful Alam M., Syed M.A., Hossain J., Sarkar S., Saha S., Bhadra P., et al. Consequences and Mitigation Strategies of Abiotic Stresses in Wheat (Triticum aestivum L.) under the Changing Climate. Agronomy. 2021;11:241. doi: 10.3390/agronomy11020241. DOI
Gaur P.M., Samineni S., Krishnamurthy L., Varshney R.K., Kumar S., Ghanem M.E., Nayyar H. High temperature tolerance in grain legumes. Legume Perspect. 2015;7:23–24.
Vijayan R., Wani S.H., Rajendran A., Visha Kumari V. Genetics and Breeding of Pulse Crops. Kalyani Publishers; New Delhi, India: 2018. p. 288.
Lipiec J., Doussan C., Nosalewicz A., Kondracka K. Effect of drought and heat stresses on plant growth and yield: A review. Int. Agrophys. 2013;27:463–477. doi: 10.2478/intag-2013-0017. DOI
Hussain M., Malik M.A., Farooq M., Ashraf M.Y., Cheema M.A. Improving drought tolerance by exogenous application of glycine betaine and salicylic acid in sunflower. J. Agron. Crop Sci. 2008;194:193–199. doi: 10.1111/j.1439-037X.2008.00305.x. DOI
Rucker K.S., Kvien C.K., Holbrook C.C., Hook J.E. Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci. 1995;22:14–18. doi: 10.3146/pnut.22.1.0003. DOI
Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009;29:185–212. doi: 10.1051/agro:2008021. DOI
Praba M.L., Cairns J.E., Babu R.C., Lafitte H.R. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J. Agron. Crop Sci. 2009;195:30–46. doi: 10.1111/j.1439-037X.2008.00341.x. DOI
Ismail A.M., Hall A.E. Reproductive-stage heat tolerance, leaf membrane thermo stability and plant morphology in cowpea. Crop Sci. 1999;39:1762–1768. doi: 10.2135/cropsci1999.3961762x. DOI
Vollenweider P., Gunthardt-Goerg M.S. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 2005;137:455–465. doi: 10.1016/j.envpol.2005.01.032. PubMed DOI
Fahad S., Hussain S., Saud S., Khan F., Hassan S., Nasim W., Huang J. Exogenously applied plant growth regulators affect heat-stressed rice pollens. J. Agron. Crop Sci. 2016;202:139–150. doi: 10.1111/jac.12148. DOI
Dreesen P.E., De Boeck H.J., Janssens I.A., Nijs I. Summer heat and drought extremes trigger unexpeted changes in productivity of a temperate/biannual plant community. Environ. Exp. Bot. 2012;79:21–30. doi: 10.1016/j.envexpbot.2012.01.005. DOI
Rani A., Devi P., Jha U.C., Sharma K.D., Siddique K.H.M., Nayyar H. Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front. Plant Sci. 2020;10:1759. doi: 10.3389/fpls.2019.01759. PubMed DOI PMC
Choukri H., Hejjaoui K., El-Baouchi A., El haddad N., Smouni A., Maalouf F., Thavarajah D., Kumar S. Heat and drought stress impact on phenology, grain yield, and nutritional quality of lentil (Lens culinaris Medikus) Front. Nutr. 2020;7:596307. doi: 10.3389/fnut.2020.596307. PubMed DOI PMC
Wei Y., Jin J., Jiang S., Ning S., Liu L. Quantitative response of soybean development and yield to drought stress during different growth stages in the Huaibei Plain, China. Agronomy. 2018;8:97. doi: 10.3390/agronomy8070097. DOI
Kyei-boahen S., Savala C.E.N., Chikoye D., Abaidoo R., Kyei-Boahen S. Growth and yield responses of cowpea to inoculation and phosphorus fertilization in different environments. Front. Plant Sci. 2017;8:646. doi: 10.3389/fpls.2017.00646. PubMed DOI PMC
Daryanto S., Wang L., Jacinthe P.A. Global synthesis of drought effects on food legume production. PLoS ONE. 2015;10:e0127401. doi: 10.1371/journal.pone.0127401. PubMed DOI PMC
Kumar K., Solanki S., Singh S.N., Khan M.A. Disease of Pulse Crops and Their Sustainable Management. Biotech Books; New Delhi, India: 2016. Abiotic constraints of pulse production in India; pp. 23–39.
Lesk C., Rowhani P., Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529:84. doi: 10.1038/nature16467. PubMed DOI
Lobell D.B., Schlenker W., Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011;333:616–620. doi: 10.1126/science.1204531. PubMed DOI
Challinor A.J., Watson J., Lobell D.B., Howden S.M., Smith D.R., Chhetri N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014;4:287. doi: 10.1038/nclimate2153. DOI
Jisha K.C., Puthur J.T. Seed priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings. Rice Sci. 2016;23:242–254. doi: 10.1016/j.rsci.2016.08.002. DOI
Azadi I., Pezeshkpour P., Nasrollahi H. Evaluation te effect of planting season and crop diversity of lentil (ghachsaran variety) in the dryland condition. J. Annu. Biol. Res. 2013;4:47–50.
Ruelland E., Zachowski A. How plants sense temperature. Environ. Exp. Bot. 2010;69:225–232. doi: 10.1016/j.envexpbot.2010.05.011. DOI
Teixeira R.N., Ligterink W., Franca-Neto J.D.B., Hilhorst H.W., da Silva E.A. Gene expression profiling of the green seed problem in soybean. BMC Plant Biol. 2016;16:37. doi: 10.1186/s12870-016-0729-0. PubMed DOI PMC
Jagtap V., Bhargava S., Streb P., Feierabend J. Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J. Exp. Bot. 1998;49:1715–1721.
Jiang Y., Huang B. Drought and heat stress injury to two cool-season turf grasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 2001;41:436–442. doi: 10.2135/cropsci2001.412436x. DOI
Jiang Y., Huang B. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J. Exp. Bot. 2001;52:341–349. doi: 10.1093/jexbot/52.355.341. PubMed DOI
Brestic M., Zivcak M., Hauptvogel P., Misheva S., Kocheva K., Yang X., Li X., Allakhverdiev S.I. Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. Photosynth. Res. 2018;136:245–255. doi: 10.1007/s11120-018-0486-z. PubMed DOI
Kaushal N., Awasthi R., Gupta K., Gaur P., Siddique K.H., Nayyar H. Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct. Plant Biol. 2013;40:1334–1349. doi: 10.1071/FP13082. PubMed DOI
Kumar S., Thakur P., Kaushal N., Malik J.A., Gaur P., Nayyar H. Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch. Agron. Soil Sci. 2013;59:823–843. doi: 10.1080/03650340.2012.683424. DOI
Guilioni L., Wery J., Tardieu F. Heat stress-induced abortion of buds and flowers in pea: Is sensitivity linked to organ age or to relations between reproductive organs? Ann. Bot. 1997;80:159–168. doi: 10.1006/anbo.1997.0425. DOI
Devasirvatham V., Gaur P.M., Mallikarjuna N., Raju T.N., Trethowan R.M., Tan D.K. Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Res. 2013;142:9–19. doi: 10.1016/j.fcr.2012.11.011. DOI
Kaushal N., Bhandari K., Siddique K.H., Nayyar H. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric. 2016;2:1134380. doi: 10.1080/23311932.2015.1134380. DOI
Gross Y., Kigel J. Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.) Field Crops Res. 1994;36:201–212. doi: 10.1016/0378-4290(94)90112-0. DOI
Nakano H., Kobayashi M., Terauchi T. Sensitive stages to heat stress in pod setting of common bean (Phaseolus vulgaris L.) J. Trop. Agric. 1998;42:78–84.
Maheswari M., Sarkar B., Vanaja M., Srinivasa Rao M., Srinivasa Rao C. Technical Bulletin. Central Research Institute for Dry land Agriculture (ICAR); Hyderabad, India: 2015. Food production under aberrant weather conditions; p. 47.
Liu X., Huang B. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 2000;40:503–510. doi: 10.2135/cropsci2000.402503x. DOI
Moran J.F., Becana M., Iturbe-Ormaetxe I., Frechilla S., Klucas R.V., Aparicio-Tejo P. Drought induces oxidative stress in pea plants. Planta. 1994;194:346–352. doi: 10.1007/BF00197534. DOI
Ludlow M.M., Muchow R.C. A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron. 1990;43:107–153.
Maroco J.P., Pereira J.S., Chaves M.M. Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species. Funct. Plant Biol. 1997;24:381–387. doi: 10.1071/PP96062. DOI
Turner N.C., Wright G.C., Siddique K.H.M. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 2001;71:193–231.
Lawlor D.W., Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant. Cell Environ. 2002;25:275–294. doi: 10.1046/j.0016-8025.2001.00814.x. PubMed DOI
Kadiyala M.D.M., Kumara Charyulu D., Nedumaran S., D Shyam M., Gumma M.K., Bantilan M.C.S. Agronomic management options for sustaining chickpea yield under climate change scenario. J. Agrometeorol. 2016;18:41–47.
Bishop J., Potts S.G., Jones H.E. Susceptibility of faba bean (Vicia faba L.) to heat stress during floral development and anthesis. J. Agron. Crop Sci. 2016;202:508–517. doi: 10.1111/jac.12172. PubMed DOI PMC
Sehgal A., Sita K., Kumar J., Kumar S., Singh S., Siddique K.H.M., Nayyar H. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front. Plant Sci. 2017;8:1776. doi: 10.3389/fpls.2017.01776. PubMed DOI PMC
Podleśny J., Podlenesa A. The effect of high temperature during flowering on growth, development and yielding of blue lupine-barley mixture. J. Food Agric. Environ. 2012;10:500–504.
Vijaylaxmi Effect of high temperature on growth, biomass and yield of field pea genotypes. Legume Res. 2013;36:250–254.
Awasthi R., Kaushal N., Vadez V., Turner N.C., Berger J., Siddique K.H., Nayyar H. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 2014;41:1148–1167. doi: 10.1071/FP13340. PubMed DOI
Hall A.E. Breeding for adaptation to drought and heat in cowpea. Eur. J. Agron. 2004;21:447–454. doi: 10.1016/j.eja.2004.07.005. DOI
Canci H., Toker C. Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.) J. Agron. Crop Sci. 2009;195:47–54. doi: 10.1111/j.1439-037X.2008.00345.x. DOI
Kumar J., Kant R., Kumar S., Basu P.S., Sarker A., Singh N.P. Heat tolerance in lentil under field conditions. Legume Genom. Genet. 2016;7:1–11.
Boote K.J., Allen L.H., Prasad P.V., Baker J.T., Gesch R.W., Snyder A.M., Thomas J.M. Elevated temperature and CO2 impacts on pollination, reproductive growth, and yield of several globally important crops. J. Agric. Meteorol. 2005;60:469–474. doi: 10.2480/agrmet.469. DOI
Nicolas M.E., Gleadow R.M., Dalling M.J. Effect of post-anthesis drought on cell division and starch accumulation in developing wheat grains. Ann. Bot. 1985;55:433–444. doi: 10.1093/oxfordjournals.aob.a086922. DOI
Siddique K.H.M., Loss S.P., Regan K.L., Jettner R.L. Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust. J. Agric. Res. 1999;50:375–388. doi: 10.1071/A98096. DOI
Bhandari K., Siddique K.H., Turner N.C., Kaur J., Singh S., Agrawal S.K., Nayyar H. Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J. Crop Improv. 2016;30:118–151. doi: 10.1080/15427528.2015.1134744. DOI
Sita K., Sehgal A., Rao B.H., Nair R.M., Vara Prasad P.V., Kumar S., Nayyar H. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 2017;8:1658. PubMed PMC
Downes R.W., Gladstones J.S. Physiology of growth and seed production in Lupin usangustifolius L. I. Effects on pod and seed set of controlled short duration high temperatures at flowering. Crop Pasture Sci. 1984;35:493–499. doi: 10.1071/AR9840493. DOI
Jiang Y., Lahlali R., Karunakaran C., Kumar S., Davis A.R., Bueckert R.A. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ. 2015;38:2387–2397. doi: 10.1111/pce.12589. PubMed DOI
Waraich E.A., Ahmad R., Halim A., Aziz T. Alleviation of temperature stress by nutrient management in crop plants: A review. J. Soil Sci. Plant Nutr. 2012;12:221–244. doi: 10.4067/S0718-95162012000200003. DOI
Visha Kumari V., Hoekenga O., Salini K., Chandran M.A.S. Biofortification of food crops in India: An Agricultural Perspective. Asian Biotech. Dev. Rev. 2014;16:21–41.
Broadley M.R., White P.J., Hammond J.P., Zelko I., Lux A. Zinc in plants. New Phytol. 2007;173:677–702. doi: 10.1111/j.1469-8137.2007.01996.x. PubMed DOI
Sharma P.N., Chatterjee C., Agarwala S.C., Sharma C.P. Plant Nutrition—Physiology and Applications. Springer; Dordrecht, The Netherlands: 1990. Zinc deficiency and pollen fertility in maize (Zea mays) pp. 261–265.
Pandey N., Gupta M., Sharma C.P. SEM studies on Zn deficient pollen and Stigma of Vicia faba. Phytomorphology. 1995;45:169–173.
Pandey N., Pathak G.C., Sharma C.P. Zinc is critically required for pollen function and fertilization in lentil. J. Trace Elem. Biol. 2006;20:89–96. doi: 10.1016/j.jtemb.2005.09.006. PubMed DOI
Rout G.R., Sahoo S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015;3:1–24. doi: 10.7831/ras.3.1. DOI
Briat J.F., Fobis-Loisy I., Grignon N., Lobréaux S., Pascal N., Savino G., Thoiron S., Von Wirén N., Van Wuytswinkel O. Cellular and molecular aspects of iron metabolism in plants. Biol. Cell. 1995;84:69–81. doi: 10.1016/0248-4900(96)81320-7. DOI
Dear B.S., Lipsett J. The effect of boron supply on the growth and seed production of sub-terranean clover (Trifoliumsubterraneum L.) Aust. J. Agric. Res. 1987;38:537–546. doi: 10.1071/AR9870537. DOI
Dell B., Huang L. Physiological response of plants to low boron. Plant Soil. 1997;193:103–120. doi: 10.1023/A:1004264009230. DOI
Xu H., Huang Q., Shen K., Shen Z. Anatomical studies on the effects of boron on the development of stamen and pistil of rape (Brassica napus L.) Zhiwu Xuebao. 1993;35:453–457.
Visha Kumari V., Banerjee P., Nath R., Sengupta K., Sarath Chandran M.A., Kumar R. Effect of foliar spray on phenology and yield of Lentil sown on different dates. J. Crop Weed. 2019;15:54–58. doi: 10.22271/09746315.2019.v15.i3.1237. DOI
Rademacher W. Plant growth regulators: Backgrounds and uses in plant production. J. Plant Growth Regul. 2015;34:845–872. doi: 10.1007/s00344-015-9541-6. DOI
Oshino T., Miura S., Kikuchi S., Hamada K., Yano K., Watanabe M., Higashitani A. Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant Cell Environ. 2011;34:284–290. doi: 10.1111/j.1365-3040.2010.02242.x. PubMed DOI
Zhang M., Duan L., Zhai Z., Li J., Tian X., Wang B., Li Z. Effects of plant growth regulators on water deficit-induced yield loss in soybean; Proceedings of the 4th International Crop Science Congress; Brisbane, Australia. 26 Sepember–1 October 2004; pp. 252–256.
Hedden P., Thomas S.G. Gibberellin biosynthesis and its regulation. Biochem. J. 2012;444:11–25. doi: 10.1042/BJ20120245. PubMed DOI
Kumar S., Kaushal N., Nayyar H., Gaur P. Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmo-protectants. Acta Physiol. Plant. 2012;34:1651–1658. doi: 10.1007/s11738-012-0959-1. DOI
Saleh A.A., Abdel-Kader D.Z., El Elish A.M. Role of heat shock and salicylic acid in antioxidant homeostasis in Mungbean (Vigna radiata L.) plant subjected to heat stress. J. Plant Physiol. 2007;2:344–355. doi: 10.3923/ajpp.2007.344.355. DOI
Khan N., Bano A.M.D., Babar A. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS ONE. 2020;15:e0231426. doi: 10.1371/journal.pone.0231426. PubMed DOI PMC
Rady M.M., Boriek S.H.K., Abd El-Mageed T.A., Seif El-Yazal M.A., Ali E.F., Hassan F.A.S., Abdelkhalik A. Exogenous Gibberellic Acid or Dilute Bee Honey Boosts Drought Stress Tolerance in Vicia faba by Rebalancing Osmoprotectants, Antioxidants, Nutrients, and Phytohormones. Plants. 2021;10:748. doi: 10.3390/plants10040748. PubMed DOI PMC
Molla M.R., Ali M.R., Hasanuzzaman M., Al-Mamun M.H., Ahmed A., Nazim-Ud-Dowla M., Rohman M.M. Exogenous proline and betaine-induced upregulation of glutathione transferase and glyoxalase I in lentil (Lens culinaris) under drought Stress. Not. Bot. Horti Agrobot. Cluj Napoca. 2014;42:73–80. doi: 10.15835/nbha4219324. DOI
Garg P., Hemantaranjan A., Pradhan J. Mitigation effects of 24-epibrassinolide and thiourea in field pea (Pisum sativum L.) under drought stress. J. Plant. Sci. Res. 2018;34:227–233. doi: 10.32381/JPSR.2018.34.02.11. DOI
Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 2021;10:259. doi: 10.3390/plants10020259. PubMed DOI PMC
Taylor A.G., Harman G.E. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 1990;28:321–339. doi: 10.1146/annurev.py.28.090190.001541. DOI
Kubala S., Wojtyla L., Quinet M., Lechowska K., Lutts S., Garnczarska M. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmo-priming improvement of Brassica napus germination under salinity stress. J. Plant Physiol. 2015;183:1–12. doi: 10.1016/j.jplph.2015.04.009. PubMed DOI
Iqbal M., Ashraf M. Wheat seed priming in relation to salt tolerance: Growth, yield and levels of free salicylic acid and polyamines. Ann. Bot. Fenn. 2006;43:250–259.
Ghassemi-Golezani K., Aliloo A.A., Valizadeh M., Moghaddam M. Effects of different priming techniques on seed invigoration and seedling establishment of lentil (Lens culinaris Medik) J. Food Agric. Environ. 2008;6:222–226.
Mukundam B., Ramana M.V., Lakshmi C.S., Raja V. Effect of tillage practices and seed priming on growth and yield of upland crops in rice fallows—A review. Agric. Rev. 2008;29:74–78.
Yucel D.O. The effect of different priming treatments and germination temperatures on germination performance of lentil (Lens culinaris Medik) seeds. J. Agric. Biol. Sci. 2012;7:977–981.
Ghasemi-Golezani K., Japparpour-Bonyadi Z., Shafagh-Kolvanagh J., Nikpour-Rashidabad N. Effects of water stress and hydro-priming duration on field performance of lentil. Int. J. Farming Allied Sci. 2013;2:922–925.
Pakbaz N., Barary M., Mehrabi A.A., Hatami A. Effect of seed priming on growth and yield of lentil (Lens culinaris L.) genotypes under rainfed and supplemental irrigation conditions. Int. J. Biosci. 2014;5:131–139.
Aliloo A.A., Alahyari S., Mosavi S.B. Micronutrient priming improves germination and seedling establishment in lentil. Adv. Appl. Agric. Sci. 2014;11:37–44.
Kumar P.M., Chaurasia A.K., Michael Bara B.M. Effect of osmo-priming on seed germination behaviour and vigour of chickpea (Cicer arietinum L.) Int. J. Sci. Nat. 2017;8:330–335.
Harris D.B.S.R., Raghuwanshi B.S., Gangwar J.S., Singh S.C., Joshi K.D., Rashid A., Hollington P.A. Participatory evaluation by farmers of on-farm seed priming in wheat in India, Nepal and Pakistan. Exp. Agric. 2001;37:403–415. doi: 10.1017/S0014479701003106. DOI
Harris D., Joshi A., Khan P.A., Gothkar P., Sodhi P.S. On-farm seed priming in semi-arid agriculture: Development and evaluation in maize, rice and chickpea in India using participatory methods. Exp. Agric. 1999;35:15–29. doi: 10.1017/S0014479799001027. DOI
Kaur S., Gupta A.K., Kaur N. Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. J. Agron. Crop Sci. 2005;191:81–87. doi: 10.1111/j.1439-037X.2004.00140.x. DOI
Afzal I., Rehman H.U., Naveed M., Basra S.M.A. New Challenges in Seed Biology-Basic and Translational Research Driving Seed Technology. In Tech Open Limited; London, UK: 2016. Recent advances in seed enhancements; pp. 47–74.
Uddin M.J., Ali M.O., Rahman M.M. Proceedings of the Policy and Strategy for Increasing Income and Food Security through Improved Crop Management of Chickpea in Rice Fallows in Asia, Kathmandu, Nepal, 17–18 November 2004. Volume 156. International Crops Research Institute for the Semi-Arid Tropics; Andhra Pradesh, India: 2005. Prospects of chickpea in rice-based cropping systems in Bangladesh; pp. 35–46. Summary of a NARC-ICRISAT-NRI Workshop. Patancheru 502 324.
Padgham J. Joint Departmental Discussion Paper—Issue 1. Agriculture and Rural Development & Environment Departments, The International Bank for Reconstruction and Development, The World Bank; Washington, DC, USA: 2009. Agricultural development under a changing climate: Opportunities and challenges for adaptation; p. 169.
Bhowmick M.K. Advances in Seed Priming. Springer; Singapore: 2018. Seed Priming: A Low-Cost Technology for Resource-Poor Farmers in Improving Pulse Productivity; pp. 187–208.
Ashraf M., Foolad M.R. Pre-sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv. Agron. 2005;88:223–271.
Patade V.Y., Bhargava S., Suprasanna P. Halo-priming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric. Ecosyst. Environ. 2009;134:24–28. doi: 10.1016/j.agee.2009.07.003. DOI
Jisha K.C., Vijayakumari K., Puthur J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2013;35:1381–1396. doi: 10.1007/s11738-012-1186-5. DOI
Jisha K.C., Puthur J.T. Seed priming with BABA (β-amino butyric acid): A cost-effective method of abiotic stress tolerance in Vignaradiata (L.) Wilczek. Protoplasma. 2016;253:277–289. doi: 10.1007/s00709-015-0804-7. PubMed DOI
Musa A.M., Harris D., Johansen C., Kumar J.V.D.K. Short duration chickpea to replace fallow after aman rice: The role of on-farm seed priming in the High Barind Tract of Bangladesh. Exp. Agric. 2001;37:509–521. doi: 10.1017/S0014479701000448. DOI
Kaya M.D., Okcu G., Atak M., Cikili Y., Kolsarici O. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.) Eur. J. Agron. 2006;24:291–295. doi: 10.1016/j.eja.2005.08.001. DOI
Farooq M., Basra S.M.A., Rehman H., Saleem B.A. Seed priming enhances the performance of late sown wheat (Triticumaestivum L.) by improving chilling tolerance. J. Agron. Crop Sci. 2008;194:55–60. doi: 10.1111/j.1439-037X.2007.00287.x. DOI
Farooq M., Basra S.M., Wahid A., Ahmad N. Changes in nutrient-homeostasis and reserves metabolism during rice seed priming: Consequences for seedling emergence and growth. Agric. Sci. China. 2010;9:191–198. doi: 10.1016/S1671-2927(09)60083-3. DOI
Jafar M.Z., Farooq M., Cheema M.A., Afzal I., Basra S.M.A., Wahid M.A., Shahid M. Improving the performance of wheat by seed priming under saline conditions. J. Agron. Crop Sci. 2012;198:38–45. doi: 10.1111/j.1439-037X.2011.00485.x. DOI
Solaimalai A., Subburamu K. Seed hardening for field crops—A review. Agric. Rev. 2004;25:129–140.
Cohen Y. The BABA story of induced resistance. Phytoparasitica. 2001;29:375–378. doi: 10.1007/BF02981855. DOI
Jakab G., Cottier V., Toquin V., Rigoli G., Zimmerli L., Metraux J.P., Mauch-Mani B. D-Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 2001;107:29–37. doi: 10.1023/A:1008730721037. DOI
Jakab G., Ton J., Flors V., Zimmerli L., Metraux J.P., Mauch-Mani B. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 2005;139:267–274. doi: 10.1104/pp.105.065698. PubMed DOI PMC
Zimmerli L., Hou B.H., Tsai C.H., Jakab G., Mauch-Mani B., Somerville S. The xenobiotic β-aminobutyric acid enhances Arabidopsis thermo-tolerance. Plant J. 2008;53:144–156. doi: 10.1111/j.1365-313X.2007.03343.x. PubMed DOI
Ton J., Jakab G., Toquin V., Flors V., Iavicoli A., Maeder M.N., Mauch-Mani B. Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell. 2005;17:987–999. doi: 10.1105/tpc.104.029728. PubMed DOI PMC
Kohler J., Hernandez J.A., Caravaca F., Roldan A. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct. Plant Biol. 2008;35:141–151. doi: 10.1071/FP07218. PubMed DOI
Saravanakumar D., Kavino M., Raguchander T., Subbian P., Samiyappan R. Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol. Plant. 2011;33:203–209. doi: 10.1007/s11738-010-0539-1. DOI
Bharti N., Pandey S.S., Barnawal D., Patel V.K., Kalra A. Plant growth promoting rhizo bacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 2016;6:34768. doi: 10.1038/srep34768. PubMed DOI PMC
Habib S.H., Kausar H., Saud H.M. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biol. Med. Res. Int. 2016;2016:6284547. doi: 10.1155/2016/6284547. PubMed DOI PMC
Gangwar K.S., Singh K.K., Sharma S.K., Tomar O.K. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil Till Res. 2006;88:242–252. doi: 10.1016/j.still.2005.06.015. DOI
Kar G., Kumar A. Evaluation of post-rainy season crops with residual soil moisture and different tillage methods in rice fallow of eastern India. Agric. Water Manag. 2009;96:931–938. doi: 10.1016/j.agwat.2009.01.002. DOI
Layek J., Chowdhury S., Ramkrushna G.I., Das A. Evaluation of different lentil cultivars in lowland rice fallow under no-till system for enhancing cropping intensity and productivity. Indian J. Hill Farming. 2014;27:4–9.
Ghosh P.K., Das A., Saha R., Kharkrang E., Tripathi A.K., Munda G.C., Ngachan S.V. Conservation agriculture towards achieving food security in North East India. Curr. Sci. 2010;99:915–921.
Mishra J.P., Praharaj C.S., Singh K.K. Enhancing water use efficiency and production potential of chickpea and field pea through seed bed configurations and irrigation regimes in North Indian Plains. J. Food Legume. 2012;25:310–313.
Reddy A.A. Pulses production technology: Status and way forward. Econ. Polit. Wkly. 2009;44:73–80. doi: 10.2139/ssrn.1537540. DOI
Kumar N., Hazra K.K., Singh S., Nadarajan N. Constraints and Prospects of growing pulses in rice fallows of India. Indian Farming. 2016;66:13–16.
Castillo A.G., Hampton J.G., Coolbear P. Effect of population density on within canopy environment and seed vigour in garden pea (Pisum sativum L.) Proc. Agron. Soc. N. Z. 1993;23:99–106.
Patel H.R., Patel F.H., Maheriya V.D., Dodia I.N. Response of kharif green gram (Vigna radiate L.) to sulphur and phosphorous with and without biofertilizer application. Bioscan. 2013;8:149–152.
Kajla M., Yadav V.K., Chhokar R.S., Sharma R.K. Management practices to mitigate the impact of high temperature on wheat. J. Wheat Res. 2015;7:1–12.
Khan N., Bano A., Babar M.A. Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PLoS ONE. 2019;14:e0213040. doi: 10.1371/journal.pone.0213040. PubMed DOI PMC
Glick B.R., Cheng Z., Czarny J., Duan J. New Perspectives and Approaches in Plant Growth-Promoting Rhizo-Bacteria Research. Springer; Dordrecht, The Netherlands: 2007. Promotion of plant growth by ACC deaminase producing soil bacteria; pp. 329–339.
Niu X., Song L., Xiao Y., Ge W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agro-ecosystem and their potential in alleviating drought stress. Front. Microbiol. 2018;8:2580. doi: 10.3389/fmicb.2017.02580. PubMed DOI PMC
Belimov A.A., Dodd I.C., Hontzeas N., Theobald J.C., Safronova V.I., Davies W.J. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 2009;181:413–423. doi: 10.1111/j.1469-8137.2008.02657.x. PubMed DOI
Dimkpa C., Weinand T., Asch F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009;32:1682–1694. doi: 10.1111/j.1365-3040.2009.02028.x. PubMed DOI
Chanway C.P., Hynes R.K., Nelson L.M. Plant growth-promoting rhizobacteria: Effects on growth and nitrogen fixation of lentil (Lens esculenta Moench) and pea (Pisumsativum L.) Soil Biol. Biochem. 1989;21:511–517. doi: 10.1016/0038-0717(89)90123-5. DOI
Auge R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 2001;11:3–42. doi: 10.1007/s005720100097. DOI
Habibzadeh Y., Evazi A.R., Abedi M. Alleviation drought stress of mungbean (Vigna radiata L.) plants by using arbuscular mycorrhizal fungi. Int. J. Agric. Sci. Nat. Res. 2014;1:1–6.
Smith S.E., Facelli E., Pope S., Smith F.A. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil. 2010;326:3–20. doi: 10.1007/s11104-009-9981-5. DOI
Stoddard F.L., Balko C., Erskine W., Khan H.R., Link W., Sarker A. Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica. 2006;147:167–186. doi: 10.1007/s10681-006-4723-8. DOI
Barnabás B., Jäger K., Fehér A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008;31:11–38. doi: 10.1111/j.1365-3040.2007.01727.x. PubMed DOI
Odeny D.A. The potential of pigeonpea (Cajanus cajan(L.) Millsp.) in Africa. Nat. Resour. Forum. 2007;31:297–305. doi: 10.1111/j.1477-8947.2007.00157.x. DOI
Berger J.D., Milroy S.P., Turner N.C., Siddique K.H.M., Imtiaz M., Malhotra R. Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica. 2011;180:1–15. doi: 10.1007/s10681-011-0391-4. DOI
Hamdi A., Erskine W. Reaction of wild species of the genus Lens to drought. Euphytica. 1996;91:173–179.
Solanki R.K., Gill R.K., Verma P., Singh S. Mutation breeding in pulses: An overview. In: Khan S., Kozgar M.I., editors. Breeding of Pulse Crops. Kalyani Publishers; Ludhiana, India: 2011. pp. 85–103.
Darai R., Ojha B.R., Sarker A., Sah R. Genetics and Breeding for Drought Tolerance in Food Legumes. Int. J. Environ. Agric. Biol. 2016:1. doi: 10.22161/ijeab/1.4.47. DOI
Hatfield J.L., Boote K.J., Kimball B.A., Ziska L.H., Izaurralde R.C., Ort D.R., Thomson A.M., Wolfe D. Climate impacts on agriculture: Implications for crop production. BMC Genom. 2011;10:523. doi: 10.2134/agronj2010.0303. DOI
Sambatti J.B.M., Caylor K.K. When breeding for drought tolerance is is optimal if drought is random? New Physiol. 2007;175:70–80. doi: 10.1111/j.1469-8137.2007.02067.x. PubMed DOI
Sehgal A., Sita K., Siddique K.H.M., Kumar R., Bhogireddy S., Varshney R.K., Rao B.H., Nair R.M., Prasad P.V.V., Nayyar H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant Sci. 2018;9:1705. doi: 10.3389/fpls.2018.01705. PubMed DOI PMC
Brestic M., Zivcak M., Kunderlikova K., Allakhverdiev S.I. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth. Res. 2016;130:251–266. doi: 10.1007/s11120-016-0249-7. PubMed DOI
Fleury D., Jefferies S., Kuchel H., Langridge P. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 2010;61:3211–3222. doi: 10.1093/jxb/erq152. PubMed DOI
Bita C.E., Gerats T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat tolerance crops. Front. Plant Sci. 2013;4:273. doi: 10.3389/fpls.2013.00273. PubMed DOI PMC
Barik S., Rai N., Mishra P., Singh S.K., Gautam V. Bioinformatics: How it helps to boost modern biological research. Curr. Sci. 2020;118:698–699.
Kashiwagi J., Krishnamurthy L., Crouch J.H., Serraj R. Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Res. 2006;95:171–181. doi: 10.1016/j.fcr.2005.02.012. DOI
Varshney R.K., Pazhamala L., Kashiwagi J., Gaur P.M., Krishnamurthy L., Hoisington D.A. Genomics and physiological approaches for root trait breeding to improve drought tolerance in chickpea (Cicer arietinum L.) In: De Oliveira A.D., Varshney R.K., editors. Root Genomics. Springer; Berlin/Heidelberg, Germany: 2011. pp. 233–250.
Varshney R.K., Thudi M., Nayak S.N., Gaur P.M., Kashiwagi J., Krishnamurthy L., Jaganathan D., Koppolu J., Bohra A., Tripathi S., et al. Genetic dissection of drought tolerance in chickpea (Cicerarietinum L.) Theor. Appl. Genet. 2014;127:445–462. doi: 10.1007/s00122-013-2230-6. PubMed DOI PMC
Langridge P., Fleury D. Making the most of ‘omics’ for crop breeding. Trends Biotechnol. 2011;29:33–40. doi: 10.1016/j.tibtech.2010.09.006. PubMed DOI
Valliyodan B., Nguyen H.T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 2006;9:189–195. doi: 10.1016/j.pbi.2006.01.019. PubMed DOI
Kudapa H., Garg V., Chitikineni A., Varshney R.K. The RNA-Seqbased high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development. Plant Cell Environ. 2018;41:2209–2225. PubMed
Varshney R.K., Close T.J., Singh N.K., Hoisington D.A., Cook D.R. Orphan legume crops enter the genomics era. Curr. Opin. Plant Biol. 2009;12:202–210. doi: 10.1016/j.pbi.2008.12.004. PubMed DOI
Thudi M., Li Y., Jackson S.A., May G.D., Varshney R.K. Current state-of-art of sequencing technologies for plant genomics research. Brief Funct. Genomic. 2012;11:3–11. doi: 10.1093/bfgp/elr045. PubMed DOI
Simon C.J., Muehlbauer F.J. Construction of a chickpea linkage map and its comparision with maps of pea and lentil. J. Hered. 1997;88:115–119. doi: 10.1093/oxfordjournals.jhered.a023068. DOI
Varshney R.K., Hiremath P.J., Lekha P., Kashiwagi J., Balaji J., Deokar A.A., Vadez V., Xiao Y., Srinivasan R., Gaur P.M., et al. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.) BMC Genom. 2009;10:523. doi: 10.1186/1471-2164-10-523. PubMed DOI PMC
Crozet P., Marghalha L., Confraria A., Rodrigues A., Martinho C., Elias C.A., Gonzalez E.B. Mechanism of regulation of SNF1/AMPK1/SnRK1 protein kinases. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00190. PubMed DOI PMC
Maruyama K., Sakuma Y., Kasuga M., Ito Y., Seki M., Goda H., Shimada Y., Yoshida S., Shinozaki K., Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004;38:982–993. doi: 10.1111/j.1365-313X.2004.02100.x. PubMed DOI
Ahanger M.A., Akram N.A., Ashraf M., Alyemeni M.N., Wijaya L., Ahmad P. Plant responses to environmental stresses from gene to biotechnology. AoB Plants. 2017;9:1–17. doi: 10.1093/aobpla/plx025. PubMed DOI PMC
Gahlaut V., Jaiswal V., Kumar A., Gupta P.K. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticumaestivum L.) Theor. Appl. Genet. 2016;129:2019–2042. doi: 10.1007/s00122-016-2794-z. PubMed DOI
Li D., Zhang Y., Hu X., Shen X., Ma L., Su Z., Wang T., Dong J. Transcriptional profiling of Medicagotruncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol. 2011;11:109. doi: 10.1186/1471-2229-11-109. PubMed DOI PMC
Ferguson M.E., Burrow M., Schultze S.R., Bramel P.J., Paterson A., Kresovich S., Mitchell S. Microsatellite identification and characterization in peanut (Arachishypogaea L.) Theor. Appl. Genet. 2004;108:1064–1070. doi: 10.1007/s00122-003-1535-2. PubMed DOI
Brauner S., Murphy R.L., Walling J.G., Przyborowski J., Weeden N.F. STS markers for comparative mapping in legumes. J. Am. Soc. Hortic. Sci. 2002;127:616–622. doi: 10.21273/JASHS.127.4.616. DOI
Devasirvatham V., Tan D. Impact of High Temperature and Drought Stresses on Chickpea Production. Agronomy. 2018;8:145. doi: 10.3390/agronomy8080145. DOI
Singh D., Singh C.K., Taunk J., Tomar R.S.S., Chaturvedi A.K., Gaikwad K., Pal M. Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genom. 2017;18:206. doi: 10.1186/s12864-017-3596-7. PubMed DOI PMC
Nadeem M., Li J., Yahya M., Sher A., Ma C., Wang X., Qiu L. Research progress and perspective on drought stress in legumes: A review. Int. J. Mol. Sci. 2019;20:2541. doi: 10.3390/ijms20102541. PubMed DOI PMC
Zhang G.H., Su Q., An L.J., Wu S. Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropuslittoralis. Plant Physiol. Biochem. 2008;46:117–126. doi: 10.1016/j.plaphy.2007.10.022. PubMed DOI
Singh D., Laxmi A. Transcriptional regulation of drought response: A tortuous network of transcriptional factors. Front. Plant Sci. 2015;6:895. doi: 10.3389/fpls.2015.00895. PubMed DOI PMC
Kudo M., Kidokoro S., Yoshida T., Mizoi J., Todaka D., Fernie A.R. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol. J. 2017;15:458–471. doi: 10.1111/pbi.12644. PubMed DOI PMC
Yan K., Chen P., Shao H., Shao C., Zhao S., Brestic M. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS ONE. 2013;8:e62100. doi: 10.1371/journal.pone.0062100. PubMed DOI PMC
Sita K., Sehgal A., Kumar J., Kumar S., Singh S., Siddique K.H., Nayyar H. Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front. Plant Sci. 2017;8:744. doi: 10.3389/fpls.2017.00744. PubMed DOI PMC
Gosal S.S., Wani S.H., Kang M.S. Biotechnology and drought tolerance. J. Crop Improv. 2009;23:19–54. doi: 10.1080/15427520802418251. DOI
Browne J., Tunnacliffe A., Burnell A. Plant desiccation gene found in a nematode. Nature. 2002;416:38. doi: 10.1038/416038a. PubMed DOI
Kishor P.K., Hong Z., Miao G.H., Hu C.A.A., Verma D.P.S. Over expression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmo-tolerance in transgenic plants. Plant Physiol. 1995;108:1387–1394. doi: 10.1104/pp.108.4.1387. PubMed DOI PMC
Anbazhagan K., Bhatnagar-Mathur P., Vadez V., Dumbala S.R., Kishor P.K., Sharma K.K. DREB1A over expression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep. 2015;34:199–210. doi: 10.1007/s00299-014-1699-z. PubMed DOI
Abdelrahman M., Al-Sadi A.M., Pour-Aboughadareh A., Burritt D.J., Tran L.S.P. Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol. Biochem. 2018;131:31–36. doi: 10.1016/j.plaphy.2018.03.012. PubMed DOI
Cai Y., Chen L., Liu X., Sun S., Wu C., Jiang B., Hou W. CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE. 2015;10:e0136064. doi: 10.1371/journal.pone.0136064. PubMed DOI PMC
De Ronde J.A., Cress W.A., Kruer G.H., Strasser R.J., Van Staden J. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant Physiol. 2004;161:1211–1224. doi: 10.1016/j.jplph.2004.01.014. PubMed DOI
Bhatnagar-Mathur P., Vadez V., Devi M.J., Lavanya M., Vani G., Sharma K.K. Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol. Breed. 2009;23:591–606. doi: 10.1007/s11032-009-9258-y. DOI
Li Y., Zhang J., Zhang J., Hao L., Hua J., Duan L., Li Z. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol. J. 2013;11:747–758. doi: 10.1111/pbi.12066. PubMed DOI
Iuchi S., Kobayashi M., Yamaguchi-Shinozaki K., Shinozaki K. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 2000;123:553–562. doi: 10.1104/pp.123.2.553. PubMed DOI PMC
Li D.H., Li W., Li H.Y., Guo J.J., Chen F.J. The soybean GmRACK1 gene plays a role in drought tolerance at vegetative stages. Russ. J. Plant Physiol. 2018;65:541–552. doi: 10.1134/S1021443718040155. DOI
Kim H.J., Cho H.S., Pak J.H., Kwon T., Lee J.H., Kim D.H., Lee D.H., Kim C.G., Chung Y.S. Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean. Mol. Cells. 2018;41:413–422. doi: 10.14348/molcells.2018.2254. PubMed DOI PMC
Hiremath P.J., Farmer A., Cannon S.B., Woodward J., Kudapa H., Tuteja R., Krishnamurthy L. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol. J. 2011;9:922–931. doi: 10.1111/j.1467-7652.2011.00625.x. PubMed DOI PMC
Deokar A.A., Kondawar V., Jain P.K., Karuppayil S.M., Raju N.L., Vadez V., Srinivasan R. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and-susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol. 2011;11:70. doi: 10.1186/1471-2229-11-70. PubMed DOI PMC
McKersie B.D., Bowley S.R., Harjanto E., Leprince O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 1996;111:1177–1181. doi: 10.1104/pp.111.4.1177. PubMed DOI PMC
Manavalan L.P., Guttikonda S.K., Phan Tran L.S., Nguyen H.T. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 2009;50:1260–1276. doi: 10.1093/pcp/pcp082. PubMed DOI
An J., Cheng C., Hu Z., Chen H., Cai W., Yu B. The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS. Environ. Exp. Bot. 2018;155:45–55. doi: 10.1016/j.envexpbot.2018.06.025. DOI
Li Y., Chen Q., Nan H., Li X., Lu S., Zhao X., Cao D. Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS ONE. 2017;12:e0179554. doi: 10.1371/journal.pone.0179554. PubMed DOI PMC
Chen Y., Chi Y., Meng Q., Wang X., Yu D. GmSK1, an SKP1 homologue in soybean, is involved in the tolerance to salt and drought. Plant Physiol. Biochem. 2018;127:25–31. doi: 10.1016/j.plaphy.2018.03.007. PubMed DOI
Wang L.S., Chen Q.S., Xin D.W., Qi Z.M., Zhang C., Li S.N., Wu X.X. Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. J. Integr. Agric. 2018;17:1959–1971. doi: 10.1016/S2095-3119(17)61863-X. DOI
Khazaei H., Caron C.T., Fedoruk M., Diapari M., Vandenberg A., Coyne C.J., McGee R., Bett K.E. Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones. Front. Plant Sci. 2016;7:1093. doi: 10.3389/fpls.2016.01093. PubMed DOI PMC
Upadhyaya H.D., Dwivedi S.L., Ambrose M., Ellis N., Berger J., Smykal P., Debouck D., Duc G., Dumet D., Flavell A., et al. Legume genetic resources: Management, diversity assessment, and utilization in crop improvement. Euphytica. 2011;180:27–47. doi: 10.1007/s10681-011-0449-3. DOI
Smykal P., Aubert G., Burstin J., Coyne C., Ellis N., Flavell A., Ford R., Hýbl M., Macas J., Neumann P., et al. Pea (Pisum sativum L.) in the Genomic Era. Agronomy. 2012;2:74–115. doi: 10.3390/agronomy2020074. DOI