Progressive Genomic Approaches to Explore Drought- and Salt-Induced Oxidative Stress Responses in Plants under Changing Climate

. 2021 Sep 14 ; 10 (9) : . [epub] 20210914

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34579441

Grantová podpora
'APVV-18-0465 and EPPN2020-OPVaI-VA-ITMS313011T813'. This research was funded by the 'Slovak University of Agriculture', Nitra, Tr. A. Hlinku 2,949 01 Nitra, Slovak Republic under the project 'APVV-18-0465 and EPPN2020-OPVaI-VA-ITMS313011T813'.

Drought and salinity are the major environmental abiotic stresses that negatively impact crop development and yield. To improve yields under abiotic stress conditions, drought- and salinity-tolerant crops are key to support world crop production and mitigate the demand of the growing world population. Nevertheless, plant responses to abiotic stresses are highly complex and controlled by networks of genetic and ecological factors that are the main targets of crop breeding programs. Several genomics strategies are employed to improve crop productivity under abiotic stress conditions, but traditional techniques are not sufficient to prevent stress-related losses in productivity. Within the last decade, modern genomics studies have advanced our capabilities of improving crop genetics, especially those traits relevant to abiotic stress management. This review provided updated and comprehensive knowledge concerning all possible combinations of advanced genomics tools and the gene regulatory network of reactive oxygen species homeostasis for the appropriate planning of future breeding programs, which will assist sustainable crop production under salinity and drought conditions.

Zobrazit více v PubMed

Rozema J., Flowers T. Crops for a Salinized World. Science. 2008;322:1478–1480. doi: 10.1126/science.1168572. PubMed DOI

Zhang X., Lu G., Long W., Zou X., Li F., Nishio T. Recent progress in drought and salt tolerance studies in Brassica crops. Breed. Sci. 2014;64:60–73. doi: 10.1270/jsbbs.64.60. PubMed DOI PMC

Athar H.R., Ashraf M. Salinity and Water Stress. Springer; Berlin/Heidelberg, Germany: 2009. Strategies for Crop Improvement against Salinity and Drought Stress: An Overview; pp. 1–16.

Catlin P., Hoffman G., Mead R., Johnson R. Long-term response of mature plum trees to salinity. Irrig. Sci. 1993;13:171–176. doi: 10.1007/BF00190032. DOI

Munns R., Tester M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911. PubMed DOI

FAO Unlocking the Water Potential of Agriculture. 2003. [(accessed on 7 April 2006)]. Available online: https://agris.fao.org/agris-search/search.do?recordID=XF2006444621.

EL Sabagh A., Islam M.S., Skalicky M., Raza M.A., Singh K., Hossain M.A., Hossain A., Mahboob W., Iqbal M.A., Ratnasekera D., et al. Adaptation and Management Strategies of Wheat (Triticum aestivum L.) Against Salinity Stress to Increase Yield and Quality. Front. Agron. 2021;3:43. doi: 10.3389/fagro.2021.661932. DOI

Kumari V.V., Roy A., Vijayan R., Banerjee P., Verma V., Nalia A., Pramanik M., Mukherjee B., Ghosh A., Reja H., et al. Drought and Heat Stress in Cool-Season Food Legumes in Sub-Tropical Regions: Consequences, Adaptation, and Mitigation Strategies. Plants. 2021;10:1038. doi: 10.3390/plants10061038. PubMed DOI PMC

Sinclair T.R. Challenges in breeding for yield increase for drought. Trends Plant Sci. 2011;16:289–293. doi: 10.1016/j.tplants.2011.02.008. PubMed DOI

Abbai R., Subramaniyam S., Mathiyalagan R., Yang D.C. Plant Bioinformatics. Springer; Berlin/Heidelberg, Germany: 2017. Functional genomic approaches in plant research; pp. 215–239.

Kartseva T., Dobrikova A., Kocheva K., Alexandrov V., Georgiev G., Brestič M., Misheva S. Optimal Nitrogen Supply Ameliorates the Performance of Wheat Seedlings under Osmotic Stress in Genotype-Specific Manner. Plants. 2021;10:493. doi: 10.3390/plants10030493. PubMed DOI PMC

Zhang D.Y., Tong J., He X., Xu Z., Xu L., Wei P., Huang Y., Ebrestic M., Ema H., Eshao H.-B. A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. Front. Plant Sci. 2016;6:1237. doi: 10.3389/fpls.2015.01237. PubMed DOI PMC

dos Reis S.P., Marques D.N., Barros N.L.F., Costa C.d.N.M., de Souza C.R.B. Genetically Engineered Foods. Elsevier; Amsterdam, The Netherlands: 2018. Genetically engineered food crops to abiotic stress tolerance; pp. 247–279.

Lawlor D.W. Genetic engineering to improve plant performance under drought: Physiological evaluation of achievements, limitations, and possibilities. J. Exp. Bot. 2013;64:83–108. doi: 10.1093/jxb/ers326. PubMed DOI

Rasel M., Tahjib-Ul-Arif M., Hossain M.A., Hassan L., Farzana S., Brestic M. Screening of Salt-Tolerant Rice Landraces by Seedling Stage Phenotyping and Dissecting Biochemical Determinants of Tolerance Mechanism multidimensional roles in salt-stressed plants. J. Plant Growth Regul. 2020:1–16. doi: 10.1007/s00344-020-10235-9. DOI

Plaut Z., Edelstein M., Ben-Hur M. Overcoming Salinity Barriers to Crop Production Using Traditional Methods. Crit. Rev. Plant Sci. 2013;32:250–291. doi: 10.1080/07352689.2012.752236. DOI

Gepts P. The contribution of genetic and genomic approaches to plant domestication studies. Curr. Opin. Plant Biol. 2014;18:51–59. doi: 10.1016/j.pbi.2014.02.001. PubMed DOI

Shi J., Gao H., Wang H., Lafitte H.R., Archibald R.L., Yang M., Hakimi S.M., Mo H., Habben J.E. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 2016;15:207–216. doi: 10.1111/pbi.12603. PubMed DOI PMC

Ibrahimova U., Zivcak M., Gasparovic K., Rastogi A., Allakhverdiev S.I., Yang X., Brestic M. Electron and proton transport in wheat exposed to salt stress: Is the increase of the thylakoid membrane proton conductivity responsible for decreasing the photosynthetic activity in sensitive genotypes? Photosynth. Res. 2021:1–17. doi: 10.1007/s11120-021-00853-z. PubMed DOI PMC

Singh B., Salaria N., Thakur K., Kukreja S., Gautam S., Goutam U. Functional genomic approaches to improve crop plant heat stress tolerance. F1000Research. 2019;8:1721. doi: 10.12688/f1000research.19840.1. PubMed DOI PMC

Yan K., Shao H., Shao C., Chen P., Zhao S., Brestic M., Chen X. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol. Plant. 2013;35:2867–2878. doi: 10.1007/s11738-013-1325-7. DOI

Cheng R., Doerge R.W., Borevitz J. Novel Resampling Improves Statistical Power for Multiple-Trait QTL Mapping. G3 Genes Genomes Genet. 2017;7:813–822. doi: 10.1534/g3.116.037531. PubMed DOI PMC

Aktar S., Hossain N., Azam M.G., Billah M., Biswas P.L., Latif M.A., Rohman M., Bagum S.A., Uddin M.S. Phenotyping of Hybrid Maize (Zea mays L.) at Seedling Stage under Drought Condition. Am. J. Plant Sci. 2018;9:2154–2169. doi: 10.4236/ajps.2018.911156. DOI

Sanchez A., Subudhi P., Rosenow D., Nguyen H. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench) Plant Mol. Biol. 2002;48:713–726. doi: 10.1023/A:1014894130270. PubMed DOI

Sandhu N., Singh A., Dixit S., Cruz M.T.S., Maturan P.C., Jain R.K., Kumar A. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet. 2014;15:63. doi: 10.1186/1471-2156-15-63. PubMed DOI PMC

Prohens J., Gramazio P., Plazas M., Dempewolf H., Kilian B., Diez M.J., Fita A., Herraiz F.J., Rodríguez-Burruezo A., Soler S., et al. Introgressiomics: A new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica. 2017;213:158. doi: 10.1007/s10681-017-1938-9. DOI

Swamy B.P.M., Shamsudin N.A.A., Rahman S.N.A., Mauleon R., Ratnam W., Cruz M.T.S., Kumar A. Association Mapping of Yield and Yield-related Traits Under Reproductive Stage Drought Stress in Rice (Oryza sativa L.) Rice. 2017;10:21. doi: 10.1186/s12284-017-0161-6. PubMed DOI PMC

Abdelraheem A., Thyssen G.N., Fang D.D., Jenkins J.N., Mccarty J.C., Wedegaertner T., Zhang J. GWAS reveals consistent QTL for drought and salt tolerance in a MAGIC population of 550 lines derived from intermating of 11 Upland cotton (Gossypium hirsutum) parents. Mol. Genet. Genom. 2020;296:119–129. doi: 10.1007/s00438-020-01733-2. PubMed DOI

Zhao Y., Wang H., Shao B., Chen W., Guo Z., Gong H., Sang X., Wang J., Ye W.W. SSR-based association mapping of salt tolerance in cotton (Gossypium hirsutum L.) Genet. Mol. Res. 2016;15:gmr.15027370. doi: 10.4238/gmr.15027370. PubMed DOI

Bennett D., Reynolds M.P., Mullan D., Izanloo A., Kuchel H., Langridge P., Schnurbusch T. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor. Appl. Genet. 2012;125:1473–1485. doi: 10.1007/s00122-012-1927-2. PubMed DOI

Liu X., Fan Y., Mak M., Babla M., Holford P., Wang F., Chen G., Scott G., Wang G., Shabala S., et al. QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley. BMC Genom. 2017;18:1–13. doi: 10.1186/s12864-016-3380-0. PubMed DOI PMC

Fan Y., Shabala S., Ma Y., Xu R., Zhou M. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genom. 2015;16:43. doi: 10.1186/s12864-015-1243-8. PubMed DOI PMC

Courtois B., McLaren G., Sinha P., Prasad K., Yadav R., Shen L. Mapping QTLs associated with drought avoidance in upland rice. Mol. Breed. 2000;6:55–66. doi: 10.1023/A:1009652326121. DOI

Bahuguna R.N., Gupta P., Bagri J., Singh D., Dewi A.K., Tao L., Islam M., Sarsu F., Singla-Pareek S.L., Pareek A. Forward and reverse genetics approaches for combined stress tolerance in rice. Indian J. Plant Physiol. 2018;23:630–646. doi: 10.1007/s40502-018-0418-0. DOI

Gupta B.K., Sahoo K.K., Ghosh A., Tripathi A.K., Anwar K., Das P., Singh A.K., Pareek A., Sopory S.K., Singla-Pareek S.L. Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Environ. 2017;41:1186–1200. doi: 10.1111/pce.12968. PubMed DOI

Joshi R., Prashat R., Sharma P.C., Singla-Pareek S.L., Pareek A. Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress. Indian J. Plant Physiol. 2016;21:545–555. doi: 10.1007/s40502-016-0264-x. DOI

Martinez-Atienza J., Jiang X., Garciadeblas B., Mendoza I., Zhu J.-K., Pardo J.M., Quintero F.J. Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiol. 2006;143:1001–1012. doi: 10.1104/pp.106.092635. PubMed DOI PMC

Mickelbart M.V., Hasegawa P.M., Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 2015;16:237–251. doi: 10.1038/nrg3901. PubMed DOI

Nutan K.K., Kumar G., Singla-Pareek S.L., Pareek A. A Salt Overly Sensitive Pathway Member from Brassica juncea BjSOS3 Can Functionally Complement ΔAtsos3 in Arabidopsis. Curr. Genom. 2017;19:60–69. doi: 10.2174/1389202918666170228133621. PubMed DOI PMC

Olías R., Eljakaoui Z., Pardo J.M., Belver A. The Na+/H+ exchanger SOS1 controls extrusion and distribution of Na+ in tomato plants under salinity conditions. Plant Signal. Behav. 2009;4:973–976. doi: 10.4161/psb.4.10.9679. PubMed DOI PMC

Wu S.-J., Ding L., Zhu J.-K. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell. 1996;8:617–627. doi: 10.2307/3870339. PubMed DOI PMC

Blumenberg M. Introductory Chapter: Transcriptome Analysis. IntechOpen; London, UK: 2019. DOI

Gahlaut V., Jaiswal V., Kumar A., Gupta P.K. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.) Theor. Appl. Genet. 2016;129:2019–2042. doi: 10.1007/s00122-016-2794-z. PubMed DOI

Bowman M.J., Park W., Bauer P., Udall J.A., Page J.T., Raney J., Scheffler B., Jones D.C., Campbell B.T. RNA-Seq Transcriptome Profiling of Upland Cotton (Gossypium hirsutum L.) Root Tissue under Water-Deficit Stress. PLoS ONE. 2013;8:e82634. doi: 10.1371/journal.pone.0082634. PubMed DOI PMC

Rong W., Qi L., Wang A., Ye X., Du L., Liang H., Xin Z., Zhang Z. The ERF transcription factor Ta ERF 3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol. J. 2014;12:468–479. doi: 10.1111/pbi.12153. PubMed DOI

Gao S.-Q., Chen M., Xu Z.-S., Zhao C.-P., Li L., Xu H.-J., Tang Y.-M., Zhao X., Ma Y.-Z. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol. Biol. 2011;75:537–553. doi: 10.1007/s11103-011-9738-4. PubMed DOI

Shin D., Moon S.-J., Han S., Kim B.-G., Park S.R., Lee S.-K., Yoon H.-J., Lee H.E., Kwon H.-B., Baek D., et al. Expression of StMYB1R-1, a Novel Potato Single MYB-Like Domain Transcription Factor, Increases Drought Tolerance. Plant Physiol. 2010;155:421–432. doi: 10.1104/pp.110.163634. PubMed DOI PMC

Song Y., Ji D., Li S., Wang P., Li Q., Xiang F. The Dynamic Changes of DNA Methylation and Histone Modifications of Salt Responsive Transcription Factor Genes in Soybean. PLoS ONE. 2012;7:e41274. doi: 10.1371/journal.pone.0041274. PubMed DOI PMC

Hao Y.-J., Wei W., Song Q.-X., Chen H.-W., Zhang Y.-Q., Wang F., Zou H.-F., Lei G., Tian A., Zhang W.-K., et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 2011;68:302–313. doi: 10.1111/j.1365-313X.2011.04687.x. PubMed DOI

Wang X., Zeng J., Li Y., Rong X., Sun J., Sun T., Li M., Wang L., Feng Y., Chai R., et al. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front. Plant Sci. 2015;6:615. doi: 10.3389/fpls.2015.00615. PubMed DOI PMC

Yoshida T., Fujita Y., Maruyama K., Mogami J., Todaka D., Shinozaki K., Yamaguchi-Shinozaki K. Four A rabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ. 2014;38:35–49. doi: 10.1111/pce.12351. PubMed DOI PMC

Singh B., Singh A.K. Marker-Assisted Plant Breeding: Principles and Practices. Springer; Berlin/Heidelberg, Germany: 2015. p. 514. DOI

Agrama H.A., Eizenga G.C., Yan W. Association mapping of yield and its components in rice cultivars. Mol. Breed. 2007;19:341–356. doi: 10.1007/s11032-006-9066-6. DOI

Edae E.A., Byrne P.F., Manmathan H., Haley S.D., Reynolds M.P. Association Mapping and Nucleotide Sequence Variation in Five Drought Tolerance Candidate Genes in Spring Wheat. Plant Genome. 2013;6:547–562. doi: 10.3835/plantgenome2013.04.0010. DOI

Saeed M., Wangzhen G., Tianzhen Z. Association mapping for salinity tolerance in cotton (Gossypium hirsutum L.) germplasm from US and diverse regions of China. Aust. J. Crop Sci. 2014;8:338–346.

Purcărea C., Cachiţă-Cosma D. Studies regarding the effects of salicylic acid on maize (Zea mays L.) seedling under salt stress. Studia Univ. Ser. Tiintele Vietii. 2010;20:63–68.

Wójcik-Jagła M., Fiust A., Kościelniak J., Rapacz M. Association mapping of drought tolerance-related traits in barley to complement a traditional biparental QTL mapping study. Theor. Appl. Genet. 2017;131:167–181. doi: 10.1007/s00122-017-2994-1. PubMed DOI PMC

Song S.-Y., Chen Y., Chen J., Dai X.-Y., Zhang W.-H. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta. 2011;234:331–345. doi: 10.1007/s00425-011-1403-2. PubMed DOI

Zhang J., Hao C., Ren Q., Chang X., Liu G., Jing R. Association mapping of dynamic developmental plant height in common wheat. Planta. 2011;234:891–902. doi: 10.1007/s00425-011-1434-8. PubMed DOI

Sehgal D., Skot L., Singh R., Srivastava R.K., Das S.P., Taunk J., Sharma P.C., Pal R., Raj B., Hash C.T. Exploring Potential of Pearl Millet Germplasm Association Panel for Association Mapping of Drought Tolerance Traits. PLoS ONE. 2015;10:e0122165. doi: 10.1371/journal.pone.0122165. PubMed DOI PMC

Sukumaran S., Dreisigacker S., Lopes M., Chavez P., Reynolds M.P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor. Appl. Genet. 2014;128:353–363. doi: 10.1007/s00122-014-2435-3. PubMed DOI

Crossa J., Burgueño J., Dreisigacker S., Vargas M., Herrera-Foessel S.A., Lillemo M., Singh R.P., Trethowan R., Warburton M., Franco J. Association Analysis of Historical Bread Wheat Germplasm Using Additive Genetic Covariance of Relatives and Population Structure. Genetics. 2007;177:1889–1913. doi: 10.1534/genetics.107.078659. PubMed DOI PMC

Rasheed A., Xia X., Ogbonnaya F., Mahmood T., Zhang Z., Mujeeb-Kazi A., He Z. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol. 2014;14:128. doi: 10.1186/1471-2229-14-128. PubMed DOI PMC

Rolvien T., Kornak U., Linke S.J., Amling M., Oheim R. Whole-Exome Sequencing Identifies Novel Compound Heterozygous ZNF469 Mutations in Two Siblings with Mild Brittle Cornea Syndrome. Calcif. Tissue Int. 2020;107:294–299. doi: 10.1007/s00223-020-00721-3. PubMed DOI PMC

Lekklar C., Pongpanich M., Suriya-Arunroj D., Chinpongpanich A., Tsai H., Comai L., Chadchawan S., Buaboocha T. Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC Genom. 2019;20:76. doi: 10.1186/s12864-018-5317-2. PubMed DOI PMC

Shi Y., Gao L., Wu Z., Zhang X., Wang M., Zhang C., Zhang F., Zhou Y., Li Z. Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol. 2017;17:92. doi: 10.1186/s12870-017-1044-0. PubMed DOI PMC

Hasan M., Skalicky M., Jahan M., Hossain N., Anwar Z., Nie Z., Alabdallah N., Brestic M., Hejnak V., Fang X.-W. Spermine: Its Emerging Role in Regulating Drought Stress Responses in Plants. Cells. 2021;10:261. doi: 10.3390/cells10020261. PubMed DOI PMC

Voichek Y., Weigel D. Identifying genetic variants underlying phenotypic variation in plants without complete genomes. Biol. Res. 2020;52:534–540. doi: 10.1038/s41588-020-0612-7. PubMed DOI PMC

Ogbonnaya F.C., Rasheed A., Okechukwu E.C., Jighly A., Makdis F., Wuletaw T., Hagras A., Uguru M.I., Agbo C.U. Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor. Appl. Genet. 2017;130:1819–1835. doi: 10.1007/s00122-017-2927-z. PubMed DOI

Hoang G.T., Van Dinh L., Nguyen T.T., Ta N.K., Gathignol F., Mai C.D., Jouannic S., Tran K.D., Khuat T.H., Do V.N., et al. Genome-wide Association Study of a Panel of Vietnamese Rice Landraces Reveals New QTLs for Tolerance to Water Deficit During the Vegetative Phase. Rice. 2019;12:1–20. doi: 10.1186/s12284-018-0258-6. PubMed DOI PMC

Ding F., Cui P., Wang Z., Zhang S., Ali S., Xiong L. Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genom. 2014;15:431. doi: 10.1186/1471-2164-15-431. PubMed DOI PMC

Hübner S., Korol A.B., Schmid K.J. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC Plant Biol. 2015;15:1–14. doi: 10.1186/s12870-015-0528-z. PubMed DOI PMC

Pucholt P., Sjödin P., Weih M., Rönnberg-Wästljung A.C., Berlin S. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes. BMC Plant Biol. 2015;15:1–16. doi: 10.1186/s12870-015-0630-2. PubMed DOI PMC

Pham A.-T., Maurer A., Pillen K., Brien C., Dowling K., Berger B., Eglinton J.K., March T.J. Genome-wide association of barley plant growth under drought stress using a nested association mapping population. BMC Plant Biol. 2019;19:134. doi: 10.1186/s12870-019-1723-0. PubMed DOI PMC

Ibrahimova U., Kumari P., Yadav S., Rastogi A., Antala M., Suleymanova Z., Zivcak M., Arif T.U., Hussain S., Abdelhamid M., et al. Progress in understanding salt stress response in plants using biotechnological tools. J. Biotechnol. 2021;329:180–191. doi: 10.1016/j.jbiotec.2021.02.007. PubMed DOI

Yu L.-X., Liu X., Boge W., Liu X.-P. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing. Front. Plant Sci. 2016;7:956. doi: 10.3389/fpls.2016.00956. PubMed DOI PMC

Wang W., Zhao X., Pan Y., Zhu L., Fu B., Li Z. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J. Genet. Genom. 2011;38:419–424. doi: 10.1016/j.jgg.2011.07.006. PubMed DOI

Hossain A., Skalicky M., Brestic M., Maitra S., Alam M.A., Abu Syed M., Hossain J., Sarkar S., Saha S., Bhadra P., et al. Consequences and Mitigation Strategies of Abiotic Stresses in Wheat (Triticum aestivum L.) under the Changing Climate. Agronomy. 2021;11:241. doi: 10.3390/agronomy11020241. DOI

Metzker M.L. Sequencing technologies—the next generation. Nat. Rev. Genet. 2010;11:31. doi: 10.1038/nrg2626. PubMed DOI

Unamba C.I.N., Nag A., Sharma R.K. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants. Front. Plant Sci. 2015;6:1074. doi: 10.3389/fpls.2015.01074. PubMed DOI PMC

Grada A., Weinbrecht K. Next-Generation Sequencing: Methodology and Application. J. Investig. Dermatol. 2013;133:1–4. doi: 10.1038/jid.2013.248. PubMed DOI

Koboldt D.C., Steinberg K.M., Larson D., Wilson R.K., Mardis E.R. The Next-Generation Sequencing Revolution and Its Impact on Genomics. Cell. 2013;155:27–38. doi: 10.1016/j.cell.2013.09.006. PubMed DOI PMC

Walter J., Hümpel A. Epigenetics. Springer; New York, NY, USA: 2017. Introduction to epigenetics; pp. 11–29.

Chan S.W.-L., Henderson I., Jacobsen S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 2005;6:351–360. doi: 10.1038/nrg1601. PubMed DOI

Singroha G., Sharma P. Epigenetics. IntechOpen; London, UK: 2019. Epigenetic Modifications in Plants under Abiotic Stress.

Banerjee A., Roychoudhury A. Epigenetic regulation during salinity and drought stress in plants: Histone modifications and DNA methylation. Plant Gene. 2017;11:199–204. doi: 10.1016/j.plgene.2017.05.011. DOI

Ding Y., Fromm M.E., Avramova Z. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat. Commun. 2012;3:740. doi: 10.1038/ncomms1732. PubMed DOI

Fang H., Liu X., Thorn G., Duan J., Tian L. Expression analysis of histone acetyltransferases in rice under drought stress. Biochem. Biophys. Res. Commun. 2013;443:400–405. doi: 10.1016/j.bbrc.2013.11.102. PubMed DOI

Kim J.-M., Sasaki T., Ueda M., Sako K., Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front. Plant Sci. 2015;6:114. doi: 10.3389/fpls.2015.00114. PubMed DOI PMC

Ferreira L.J., Azevedo V.S., Maroco J., Oliveira M.M., Santos A.P. Salt Tolerant and Sensitive Rice Varieties Display Differential Methylome Flexibility under Salt Stress. PLoS ONE. 2015;10:e0124060. doi: 10.1371/journal.pone.0124060. PubMed DOI PMC

Kaldis A., Tsementzi D., Tanriverdi O., Vlachonasios K.E. Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta. 2010;233:749–762. doi: 10.1007/s00425-010-1337-0. PubMed DOI

Duan C.-G., Wang C.-H., Guo H.-S. Application of RNA silencing to plant disease resistance. Silence. 2012;3:5. doi: 10.1186/1758-907X-3-5. PubMed DOI PMC

Ricaño-Rodríguez J., Adame-García J., Patlas-Martínez C.I., Hipólito-Romero E., Ramos-Prado J.M. Plant gene co-suppression; basis of the molecular machinery of interfering RNA. Plant Omics. 2016;9:261–269. doi: 10.21475/poj.16.09.04.p7802. DOI

Hunter C.P. Gene silencing: Shrinking the black box of RNAi. Curr. Biol. 2000;10:R137–R140. doi: 10.1016/S0960-9822(00)00325-0. PubMed DOI

Bekele D., Tesfaye K., Fikre A. Applications of Virus Induced Gene Silencing (VIGS) in Plant Functional Genomics Studies. J. Plant Biochem. Physiol. 2019;7:1–7. doi: 10.4172/2329-9029.1000229. DOI

Guo Q., Zhao L., Fan X., Xu P., Xu Z., Zhang X., Meng S., Shen X.J. Transcription Factor GarWRKY5 Is Involved in Salt Stress Response in Diploid Cotton Species (Gossypium aridum L.) Int. J. Mol. Sci. 2019;20:5244. doi: 10.3390/ijms20215244. PubMed DOI PMC

Kirungu J.N., Magwanga R.O., Pu L., Cai X., Xu Y., Hou Y., Zhou Y., Cai Y., Hao F., Zhou Z., et al. Knockdown of Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) Dehydrin genes, Reveals their potential role in enhancing osmotic and salt tolerance in cotton. Genomics. 2019;112:1902–1915. doi: 10.1016/j.ygeno.2019.11.003. PubMed DOI

Wang X., Ren Y., Li J., Wang Z., Xin Z., Lin T. Knock-down the expression of TaH2B-7D using virus-induced gene silencing reduces wheat drought tolerance. Biol. Res. 2019;52:14. doi: 10.1186/s40659-019-0222-y. PubMed DOI PMC

Oh D.-H., Leidi E., Zhang Q., Hwang S.-M., Li Y., Quintero F.J., Jiang X., D’Urzo M.P., Lee S.Y., Zhao Y. Loss of halophytism by interference with SOS1 expression. Plant Physiol. 2009;151:210–222. doi: 10.1104/pp.109.137802. PubMed DOI PMC

Zhai Y., Wang H., Liang M., Lu M. Both silencing-and over-expression of pepper CaATG8c gene compromise plant tolerance to heat and salt stress. Environ. Exp. Bot. 2017;141:10–18. doi: 10.1016/j.envexpbot.2017.06.009. DOI

Bai C., Wang P., Fan Q., Fu W.-D., Wang L., Zhang Z.-N., Song Z., Zhang G.-L., Wu J.-H. Analysis of the Role of the Drought-Induced Gene DRI15 and Salinity-Induced Gene SI1 in Alternanthera philoxeroides Plasticity Using a Virus-Based Gene Silencing Tool. Front. Plant Sci. 2017;8:1579. doi: 10.3389/fpls.2017.01579. PubMed DOI PMC

Li C., Yan J.-M., Li Y.-Z., Zhang Z.-C., Wang Q.-L., Liang Y. Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid—mediated drought tolerance. Int. J. Mol. Sci. 2013;14:21983–21996. doi: 10.3390/ijms141121983. PubMed DOI PMC

Manmathan H., Shaner D., Snelling J., Tisserat N., Lapitan N. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. J. Exp. Bot. 2013;64:1381–1392. doi: 10.1093/jxb/ert003. PubMed DOI PMC

Kirungu J.N., Magwanga R.O., Lu P., Cai X., Zhou Z., Wang X., Peng R., Wang K., Liu F. Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genet. 2019;20:62. doi: 10.1186/s12863-019-0756-6. PubMed DOI PMC

Li Z., Li L., Zhou K., Zhang Y., Han X., Ding Y., Ge X., Wang P., Li F., Ma Z. GhWRKY6 acts as a negative regulator in both transgenic Arabidopsis and cotton during drought and salt stress. Front. Genet. 2019;10:392. doi: 10.3389/fgene.2019.00392. PubMed DOI PMC

Belhaj K., Chaparro-Garcia A., Kamoun S., Nekrasov V. Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9:39. doi: 10.1186/1746-4811-9-39. PubMed DOI PMC

Liu X., Wu S., Xu J., Sui C., Wei J. Application of CRISPR/Cas9 in plant biology. Acta Pharm. Sin. B. 2017;7:292–302. doi: 10.1016/j.apsb.2017.01.002. PubMed DOI PMC

Jia H., Zhang Y., Orbović V., Xu J., White F.F., Jones J.B., Wang N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2016;15:817–823. doi: 10.1111/pbi.12677. PubMed DOI PMC

Fernandez i Marti A., Dodd R.S. Using CRISPR as a gene editing tool for validating adaptive gene function in tree landscape genomics. Front. Ecol. Evol. Dev. 2018;6:76. doi: 10.3389/fevo.2018.00076. DOI

Debbarma J., Sarki Y.N., Saikia B., Boruah H.P.D., Singha D.L., Chikkaputtaiah C. Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR–Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: A review. Mol. Biotechnol. 2019;61:153–172. doi: 10.1007/s12033-018-0144-x. PubMed DOI

Nieves-Cordones M., Mohamed S., Tanoi K., Kobayashi N.I., Takagi K., Vernet A., Guiderdoni E., Périn C., Sentenac H., Véry A.A. Production of low-Cs+ rice plants by inactivation of the K+ transporter Os HAK 1 with the CRISPR-Cas system. Plant J. 2017;92:43–56. doi: 10.1111/tpj.13632. PubMed DOI

Shao G., Xie L., Jiao G., Wei X., Sheng Z., Tang S., Hu P. CRISPR/CAS9-mediated editing of the fragrant gene Badh2 in rice. Chin. J. Rice Sci. 2017;31:216–222.

Wang F., Wang C., Liu P., Lei C., Hao W., Gao Y., Liu Y.-G., Zhao K. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS ONE. 2016;11:e0154027. doi: 10.1371/journal.pone.0154027. PubMed DOI PMC

Zhang A., Liu Y., Wang F., Li T., Chen Z., Kong D., Bi J., Zhang F., Luo X., Wang J., et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol. Breed. 2019;39:47. doi: 10.1007/s11032-019-0954-y. PubMed DOI PMC

Zhang H., Zhang J., Wei P., Zhang B., Gou F., Feng Z., Mao Y., Yang L., Zhang H., Xu N. The CRISPR/C as9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 2014;12:797–807. doi: 10.1111/pbi.12200. PubMed DOI

Zhu J., Song N., Sun S., Yang W., Zhao H., Song W., Lai J. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9. J. Genet. Genom. 2016;43:25–36. doi: 10.1016/j.jgg.2015.10.006. PubMed DOI

Hunter C.T. CRISPR/Cas9 Targeted Mutagenesis for Functional Genetics in Maize. Plants. 2021;10:723. doi: 10.3390/plants10040723. PubMed DOI PMC

Kim D., Alptekin B., Budak H. CRISPR/Cas9 genome editing in wheat. Funct. Integr. Genom. 2017;18:31–41. doi: 10.1007/s10142-017-0572-x. PubMed DOI

Chen Y., Ma J., Zhang X., Yang Y., Zhou D., Yu Q., Que Y., Xu L., Guo J. A Novel Non-specific Lipid Transfer Protein Gene from Sugarcane (NsLTPs), Obviously Responded to Abiotic Stresses and Signaling Molecules of SA and MeJA. Sugar Tech. 2016;19:17–25. doi: 10.1007/s12355-016-0431-4. DOI

Miao H., Sun P., Liu Q., Liu J., Xu B., Jin Z. The AGPase Family Proteins in Banana: Genome-Wide Identification, Phylogeny, and Expression Analyses Reveal Their Involvement in the Development, Ripening, and Abiotic/Biotic Stress Responses. Int. J. Mol. Sci. 2017;18:1581. doi: 10.3390/ijms18081581. PubMed DOI PMC

Ou W., Mao X., Huang C., Tie W., Yan Y., Ding Z., Wu C., Xia Z., Wang W., Zhou S., et al. Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava (Manihot esculenta Crantz) Front. Physiol. 2018;9:17. doi: 10.3389/fphys.2018.00017. PubMed DOI PMC

Ye J., Yang H., Shi H., Wei Y., Tie W., Ding Z., Yan Y., Luo Y., Xia Z., Wang W., et al. The MAPKKK gene family in cassava: Genome-wide identification and expression analysis against drought stress. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-13988-8. PubMed DOI PMC

He P., Zhao P., Wang L., Zhang Y., Wang X., Xiao H., Yu J., Xiao G. The PIN gene family in cotton (Gossypium hirsutum): Genome-wide identification and gene expression analyses during root development and abiotic stress responses. BMC Genom. 2017;18:507. doi: 10.1186/s12864-017-3901-5. PubMed DOI PMC

Dass A., Abdin M.Z., Reddy V.S., Leelavathi S. Isolation and characterization of the dehydration stress-inducible GhRDL1 promoter from the cultivated upland cotton (Gossypium hirsutum) J. Plant Biochem. Biotechnol. 2016;26:113–119. doi: 10.1007/s13562-016-0369-3. DOI

Arroyo-Herrera A., Yáñez F., Castano E., Santamaria J., Pereira-Santana A., Espadas-Alcocer J., Teyer L.F.S., Espadas-Gil F., Alcaraz L.D., López-Gómez R., et al. A novel Dreb2-type gene from Carica papaya confers tolerance under abiotic stress. Plant Cell Tissue Organ Cult. 2015;125:119–133. doi: 10.1007/s11240-015-0934-9. DOI

Kumar V.V.S., Verma R.K., Yadav S.K., Yadav P., Watts A., Rao M.V., Chinnusamy V. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol. Mol. Biol. Plants. 2020;26:1099–1110. doi: 10.1007/s12298-020-00819-w. PubMed DOI PMC

Li R., Liu C., Zhao R., Wang L., Chen L., Yu W., Zhang S., Sheng J., Shen L. CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol. 2019;19:38. doi: 10.1186/s12870-018-1627-4. PubMed DOI PMC

Liao S., Qin X., Luo L., Han Y., Wang X., Usman B., Nawaz G., Zhao N., Liu Y., Li R. CRISPR/Cas9-Induced Mutagenesis of Semi-Rolled Leaf1,2 Confers Curled Leaf Phenotype and Drought Tolerance by Influencing Protein Expression Patterns and ROS Scavenging in Rice (Oryza sativa L.) Agronomy. 2019;9:728. doi: 10.3390/agronomy9110728. DOI

Anzalone A.V., Randolph P.B., Davis J.R., Sousa A.A., Koblan L., Levy J.M., Chen P., Wilson C., Newby G.A., Raguram A., et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–157. doi: 10.1038/s41586-019-1711-4. PubMed DOI PMC

Wiens C.P., Shabala L., Zhang J., Pottosin I., Bose J., Zhu M., Fuglsang A.T., Velarde A., Massart A., Hill C. Cell-type specific H+-ATPase activity enables root K+ retention and mediates acclimatation to salinity. Plant Physiol. 2016;172:2445–2458. PubMed PMC

Gill M.B., Zeng F., Shabala L., Zhang G., Fan Y., Shabala S., Zhou M. Cell-Based Phenotyping Reveals QTL for Membrane Potential Maintenance Associated with Hypoxia and Salinity Stress Tolerance in Barley. Front. Plant Sci. 2017;8:1941. doi: 10.3389/fpls.2017.01941. PubMed DOI PMC

Monneveux P., Reynolds M.P., Aguilar J.G., Singh R.P., Weber W.E. Effects of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morphophysiological traits under different environments. Plant Breed. 2003;122:379–384. doi: 10.1046/j.1439-0523.2003.00856.x. DOI

Ashraf M., Foolad M.R. Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed. 2012;132:10–20. doi: 10.1111/pbr.12000. PubMed DOI

thi Lang N., Buu B., Ismail A. Molecular mapping and marker-assisted selection for salt tolerance in rice (Oryza sativa L.) OmonRice. 2008;16:50–56.

Prince S.J., Beena R., Gomez S.M., Senthivel S., Babu R.C. Mapping Consistent Rice (Oryza sativa L.) Yield QTLs under Drought Stress in Target Rainfed Environments. Rice. 2015;8:25. doi: 10.1186/s12284-015-0053-6. PubMed DOI PMC

Zhai L., Zheng T., Wang X., Wang Y., Chen K., Wang S., Xu J., Li Z. QTL mapping and candidate gene analysis of peduncle vascular bundle related traits in rice by genome-wide association study. Rice. 2018;11:13. doi: 10.1186/s12284-018-0204-7. PubMed DOI PMC

Shamsudin N.A.A., Swamy B.P.M., Ratnam W., Cruz M.T.S., Raman A., Kumar A. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet. 2016;17:1–14. doi: 10.1186/s12863-016-0334-0. PubMed DOI PMC

Badu-Apraku B., Talabi A.O., Fakorede M.A.B., Fasanmade Y., Gedil M., Magorokosho C., Asiedu R. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance. BMC Plant Biol. 2019;19:1–17. doi: 10.1186/s12870-019-1740-z. PubMed DOI PMC

Wang J., Li R., Mao X., Jing R. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.) Front. Plant Sci. 2017;8:1557. doi: 10.3389/fpls.2017.01557. PubMed DOI PMC

Bimpong I.K., Manneh B., Sock M., Diaw F., Amoah N.K.A., Ismail A.M., Gregorio G., Singh R.K., Wopereis M. Improving salt tolerance of lowland rice cultivar ‘Rassi’ through marker-aided backcross breeding in West Africa. Plant Sci. 2016;242:288–299. doi: 10.1016/j.plantsci.2015.09.020. PubMed DOI

Gu J., Yin X., Zhang C., Wang H., Struik P.C. Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress. Ann. Bot. 2014;114:499–511. doi: 10.1093/aob/mcu127. PubMed DOI PMC

Gill S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI

Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development. Development. 2018;145:dev164376. doi: 10.1242/dev.164376. PubMed DOI

You J., Chan Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. Front. Plant Sci. 2015;6:1092. doi: 10.3389/fpls.2015.01092. PubMed DOI PMC

Keunen E., Peshev D., Vangronsveld J., Ende W.V.D., Cuypers A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant Cell Environ. 2013;36:1242–1255. doi: 10.1111/pce.12061. PubMed DOI

Foyer C.H., Noctor G. Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. Plant Cell. 2005;17:1866–1875. doi: 10.1105/tpc.105.033589. PubMed DOI PMC

Lu W., Chu X., Li Y., Wang C., Guo X. Cotton GhMKK1 Induces the Tolerance of Salt and Drought Stress, and Mediates Defence Responses to Pathogen Infection in Transgenic Nicotiana benthamiana. PLoS ONE. 2013;8:e68503. doi: 10.1371/journal.pone.0068503. PubMed DOI PMC

Ning J., Li X., Hicks L., Xiong L. A Raf-Like MAPKKK Gene DSM1 Mediates Drought Resistance through Reactive Oxygen Species Scavenging in Rice. Plant Physiol. 2009;152:876–890. doi: 10.1104/pp.109.149856. PubMed DOI PMC

Du H., Wang N., Cui F., Li X., Xiao J., Xiong L. Characterization of the β-Carotene Hydroxylase Gene DSM2 Conferring Drought and Oxidative Stress Resistance by Increasing Xanthophylls and Abscisic Acid Synthesis in Rice. Plant Physiol. 2010;154:1304–1318. doi: 10.1104/pp.110.163741. PubMed DOI PMC

Nadarajah K.K. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020;21:5208. doi: 10.3390/ijms21155208. PubMed DOI PMC

Dongdong L., Ming Z., Lili H., Xiaobo C., Yang G., Xingqi G., Han L. GhMAPKKK49, a novel cotton (Gossypium hirsutum L.) MAPKKK gene, is involved in diverse stress responses. Acta Physiol. Plant. 2015;38:13. doi: 10.1007/s11738-015-2029-y. DOI

Gao M., Liu J., Bi D., Zhang Z., Cheng F., Chen S., Zhang Y. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res. 2008;18:1190–1198. doi: 10.1038/cr.2008.300. PubMed DOI

Bundó M., Coca M. Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinaseOsCPK4in rice. Plant Biotechnol. J. 2015;14:1357–1367. doi: 10.1111/pbi.12500. PubMed DOI PMC

Asano T., Hayashi N., Kobayashi M., Aoki N., Miyao A., Mitsuhara I., Ichikawa H., Komatsu S., Hirochika H., Kikuchi S., et al. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J. 2011;69:26–36. doi: 10.1111/j.1365-313X.2011.04766.x. PubMed DOI

Yu T.-F., Zhao W.-Y., Fu J.-D., Liu Y.-W., Chen M., Zhou Y.-B., Ma Y.-Z., Xu Z.-S., Xi Y.-J. Genome-Wide Analysis of CDPK Family in Foxtail Millet and Determination of SiCDPK24 Functions in Drought Stress. Front. Plant Sci. 2018;9:651. doi: 10.3389/fpls.2018.00651. PubMed DOI PMC

Deng X., Hu W., Wei S., Zhou S., Zhang F., Han J., Chen L., Li Y., Feng J., Fang B., et al. TaCIPK29, a CBL-Interacting Protein Kinase Gene from Wheat, Confers Salt Stress Tolerance in Transgenic Tobacco. PLoS ONE. 2013;8:e69881. doi: 10.1371/journal.pone.0069881. PubMed DOI PMC

Wang R.-K., Li L.-L., Cao Z.-H., Zhao Q., Li M., Zhang L.-Y., Hao Y.-J. Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol. Biol. 2012;79:123–135. doi: 10.1007/s11103-012-9899-9. PubMed DOI

Hu D.-G., Ma Q.-J., Sun C.-H., Sun M.-H., You C.-X., Hao Y.-J. Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. Physiol. Plant. 2015;156:201–214. doi: 10.1111/ppl.12354. PubMed DOI

Singh N.K., Shukla P., Kirti P.B. A CBL-interacting protein kinase AdCIPK5 confers salt and osmotic stress tolerance in transgenic tobacco. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-019-57383-x. PubMed DOI PMC

Li C.-H., Wang G., Zhao J.-L., Zhang L.-Q., Ai L.-F., Han Y.-F., Sun D.-Y., Zhang S.-W., Sun Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell. 2014;26:2538–2553. doi: 10.1105/tpc.114.125187. PubMed DOI PMC

Ueno Y., Yoshida R., Kishi-Kaboshi M., Matsushita A., Jiang C.-J., Goto S., Takahashi A., Hirochika H., Takatsuji H. Abiotic Stresses Antagonize the Rice Defence Pathway through the Tyrosine-Dephosphorylation of OsMPK6. PLoS Pathog. 2015;11:e1005231. doi: 10.1371/journal.ppat.1005231. PubMed DOI PMC

Zhu D., Chang Y., Pei T., Zhang X., Liu L., Li Y., Zhuang J., Yang H., Qin F., Song C., et al. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant J. 2019;102:747–760. doi: 10.1111/tpj.14660. PubMed DOI

Yan Y., Wang L., Ding Z., Tie W., Ding X., Zeng C., Wei Y., Zhao H., Peng M., Hu W. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava. Front. Plant Sci. 2016;7:1294. doi: 10.3389/fpls.2016.01294. PubMed DOI PMC

Zhang M., Pan J., Kong X., Zhou Y., Liu Y., Sun L., Li D. ZmMKK3, a novel maize group B mitogen-activated protein kinase kinase gene, mediates osmotic stress and ABA signal responses. J. Plant Physiol. 2012;169:1501–1510. doi: 10.1016/j.jplph.2012.06.008. PubMed DOI

You J., Zong W., Hu H., Li X., Xiao J., Xiong L. A SNAC1-regulated protein phosphatase gene OsPP18 modulates drought and oxidative stress tolerance through ABA-independent reactive oxygen species scavenging in rice. Plant Physiol. 2014;166:2100–2114. doi: 10.1104/pp.114.251116. PubMed DOI PMC

Deveshwar P., Prusty A., Sharma S., Tyagi A.K. Phytohormone-Mediated Molecular Mechanisms Involving Multiple Genes and QTL Govern Grain Number in Rice. Front. Genet. 2020;11:586462. doi: 10.3389/fgene.2020.586462. PubMed DOI PMC

Huang X.-Y., Chao D.-Y., Gao J.-P., Zhu M.-Z., Shi M., Lin H.-X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev. Chang. 2009;23:1805–1817. doi: 10.1101/gad.1812409. PubMed DOI PMC

Zhang H., Liu Y., Wen F., Yao D., Wang L., Guo J., Ni L., Zhang A., Tan M., Jiang M. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J. Exp. Bot. 2014;65:5795–5809. doi: 10.1093/jxb/eru313. PubMed DOI PMC

Jan A., Maruyama K., Todaka D., Kidokoro S., Abo M., Yoshimura E., Shinozaki K., Nakashima K., Yamaguchi-Shinozaki K. OsTZF1, a CCCH-Tandem Zinc Finger Protein, Confers Delayed Senescence and Stress Tolerance in Rice by Regulating Stress-Related Genes. Plant Physiol. 2013;161:1202–1216. doi: 10.1104/pp.112.205385. PubMed DOI PMC

Shen H., Liu C., Zhang Y., Meng X., Zhou X., Chu C., Wang X. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol. Biol. 2012;80:241–253. doi: 10.1007/s11103-012-9941-y. PubMed DOI

Manjunath K., Mahadeva A., Sreevathsa R., Ramachandra Swamy N., Swamy N. In Vitro Screening and Identification of Putative Sunflower (Helianthus annus L.) Transformants Expressing ECNAC1 Gene by Salt Stress Method. Trends Biosci. 2013;6:108–111.

Lee S., Seo P.J., Lee H.-J., Park C.-M. A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J. 2012;70:831–844. doi: 10.1111/j.1365-313X.2012.04932.x. PubMed DOI

Babitha K., Vemanna R.S., Nataraja K.N., Udayakumar M. Overexpression of EcbHLH57 transcription factor from Eleusine coracana L. in tobacco confers tolerance to salt, oxidative and drought stress. PLoS ONE. 2015;10:e0137098. doi: 10.1371/journal.pone.0137098. PubMed DOI PMC

Zhangwu H., Liu W., Wan L., Li F., Dai L., Li D., Zhang Z., Huang R. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res. 2010;19:809–818. doi: 10.1007/s11248-009-9357-x. PubMed DOI

McKersie B.D., Bowley S.R., Harjanto E., Leprince O. Water-Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase. Plant Physiol. 1996;111:1177–1181. doi: 10.1104/pp.111.4.1177. PubMed DOI PMC

Zhang Q., Cui M., Xin X., Ming X., Jing L., WU J.-X. Overexpression of a cytosolic ascorbate peroxidase gene, OsAPX2, increases salt tolerance in transgenic alfalfa. J. Integr. Agric. 2014;13:2500–2507. doi: 10.1016/S2095-3119(13)60691-7. DOI

Islam T., Manna M., Reddy M.K. Glutathione Peroxidase of Pennisetum glaucum (PgGPx) Is a Functional Cd2+ Dependent Peroxiredoxin that Enhances Tolerance against Salinity and Drought Stress. PLoS ONE. 2015;10:e0143344. doi: 10.1371/journal.pone.0143344. PubMed DOI PMC

Oberschall A., Deák M., Török K., Sass L., Vass I., Kovács I., Fehér A., Dudits D., Horváth G.V. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J. 2000;24:437–446. doi: 10.1046/j.1365-313x.2000.00885.x. PubMed DOI

Nepal N., Yactayo-Chang J.P., Medina-Jiménez K., Acosta-Gamboa L.M., González-Romero M.E., Arteaga-Vázquez M.A., Lorence A. Mechanisms underlying the enhanced biomass and abiotic stress tolerance phenotype of an Arabidopsis MIOX over-expresser. Plant Direct. 2019;3:e00165. doi: 10.1002/pld3.165. PubMed DOI PMC

Yang Q., Liu K., Niu X., Wang Q., Wan Y., Yang F., Li G., Wang Y., Wang R. Genome-wide Identification of PP2C Genes and Their Expression Profiling in Response to Drought and Cold Stresses in Medicago truncatula. Sci. Rep. 2018;8:1–14. doi: 10.1038/s41598-018-29627-9. PubMed DOI PMC

Zhou L., Liu Z., Liu Y., Kong D., Li T., Yu S., Mei H., Xu X., Liu H., Chen L., et al. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci. Rep. 2016;6:30264. doi: 10.1038/srep30264. PubMed DOI PMC

Wen F., Qin T., Wang Y., Dong W., Zhang A., Tan M., Jiang M. OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice. J. Integr. Plant Biol. 2014;57:213–228. doi: 10.1111/jipb.12222. PubMed DOI

Yuan B., Chen M., Li S. Isolation and Identification of Ipomoea cairica (L.) Sweet Gene IcSRO1 Encoding a SIMILAR TO RCD-ONE Protein, Which Improves Salt and Drought Tolerance in Transgenic Arabidopsis. Int. J. Mol. Sci. 2020;21:1017. doi: 10.3390/ijms21031017. PubMed DOI PMC

Ye N., Zhu G., Liu Y., Li Y., Zhang J. ABA Controls H2O2 Accumulation Through the Induction of OsCATB in Rice Leaves Under Water Stress. Plant Cell Physiol. 2011;52:689–698. doi: 10.1093/pcp/pcr028. PubMed DOI

Yamauchi T., Yoshioka M., Fukazawa A., Mori H., Nishizawa N.K., Tsutsumi N., Yoshioka H., Nakazono M. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions. Plant Cell. 2017;29:775–790. doi: 10.1105/tpc.16.00976. PubMed DOI PMC

Chen X., Wang J., Zhu M., Jia H., Liu D., Hao L., Guo X. A cotton Raf-like MAP3K gene, GhMAP3K40, mediates reduced tolerance to biotic and abiotic stress in Nicotiana benthamiana by negatively regulating growth and development. Plant Sci. 2015;240:10–24. doi: 10.1016/j.plantsci.2015.08.012. PubMed DOI

Na Y.-J., Choi H.-K., Park M.Y., Choi S.-W., Vo K.T.X., Jeon J.-S., Kim S.Y. OsMAPKKK63 is involved in salt stress response and seed dormancy control. Plant Signal. Behav. 2019;14:e1578633. doi: 10.1080/15592324.2019.1578633. PubMed DOI PMC

Wang G., Liang Y.-H., Zhang J.-Y., Cheng Z.-M. Cloning, molecular and functional characterization by overexpression in Arabidopsis of MAPKK genes from grapevine (Vitis vinifera) BMC Plant Biol. 2020;20:194. doi: 10.1186/s12870-020-02378-4. PubMed DOI PMC

Jagodzik P., Tajdel-Zielinska M., Cieśla A., Marczak M., Ludwikow A. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. Front. Plant Sci. 2018;9:1387. doi: 10.3389/fpls.2018.01387. PubMed DOI PMC

Farooq S., Azam F. Co-Existence of Salt and Drought Tolerance in Triticeae. Hereditas. 2004;135:205–210. doi: 10.1111/j.1601-5223.2001.00205.x. PubMed DOI

Agarwal P., Baranwal V.K., Khurana P. Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress. Sci. Rep. 2019;9:1–18. doi: 10.1038/s41598-019-40659-7. PubMed DOI PMC

Huang X.-S., Liu J.-H., Chen X.-J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol. 2010;10:230. doi: 10.1186/1471-2229-10-230. PubMed DOI PMC

Joo J., Lee Y.H., Song S.I. Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA. Plant Biotechnol. Rep. 2014;8:431–441. doi: 10.1007/s11816-014-0335-2. DOI

Kang J.-Y., Choi H.-I., Im M.-Y., Kim S.Y. Arabidopsis Basic Leucine Zipper Proteins That Mediate Stress-Responsive Abscisic Acid Signaling. Plant Cell. 2002;14:343–357. doi: 10.1105/tpc.010362. PubMed DOI PMC

Li Q., Zhao H., Wang X., Kang J., Lv B., Dong Q., Li C., Chen H., Wu Q. Tartary Buckwheat Transcription Factor FtbZIP5, Regulated by FtSnRK2.6, Can Improve Salt/Drought Resistance in Transgenic Arabidopsis. Int. J. Mol. Sci. 2020;21:1123. doi: 10.3390/ijms21031123. PubMed DOI PMC

Liu C., Mao B., Ou S., Wang W., Liu L., Wu Y., Chu C., Wang X. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol. Biol. 2013;84:19–36. doi: 10.1007/s11103-013-0115-3. PubMed DOI

Lu G., Gao C., Zheng X., Han B. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta. 2008;229:605–615. doi: 10.1007/s00425-008-0857-3. PubMed DOI

Ma H., Liu C., Li Z., Ran Q., Xie G., Wang B., Fang S., Chu J., Zhang J. ZmbZIP4 Contributes to Stress Resistance in Maize by Regulating ABA Synthesis and Root Development. Plant Physiol. 2018;178:753–770. doi: 10.1104/pp.18.00436. PubMed DOI PMC

Tang N., Zhang H., Li X., Xiao J., Xiong L. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol. 2012;158:1755–1768. doi: 10.1104/pp.111.190389. PubMed DOI PMC

Xiang Y., Tang N., Du H., Ye H., Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 2008;148:1938–1952. doi: 10.1104/pp.108.128199. PubMed DOI PMC

Babitha K., Ramu S., Pruthvi V., Mahesh P., Nataraja K.N., Udayakumar M. Co-expression of at bHLH17 and at WRKY 28 confers resistance to abiotic stress in Arabidopsis. PLoS ONE. 2013;22:327–341. PubMed

Dombrecht B., Xue G.P., Sprague S.J., Kirkegaard J.A., Ross J.J., Reid J.B., Fitt G.P., Sewelam N., Schenk P.M., Manners J.M., et al. MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions inArabidopsis. Plant Cell. 2007;19:2225–2245. doi: 10.1105/tpc.106.048017. PubMed DOI PMC

Dong Y., Wang C., Han X., Tang S., Liu S., Xia X., Yin W. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem. Biophys. Res. Commun. 2014;450:453–458. doi: 10.1016/j.bbrc.2014.05.139. PubMed DOI

Krishnamurthy P., Vishal B., Khoo K., Rajappa S., Loh C.-S., Kumar P.P. Expression of AoNHX1 increases salt tolerance of rice and Arabidopsis, and bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis. Plant Cell Rep. 2019;38:1299–1315. doi: 10.1007/s00299-019-02450-w. PubMed DOI

Le Hir R., Castelain M., Chakraborti D., Moritz T., Dinant S., Bellini C. At bHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Physiol. Plant. 2017;160:312–327. doi: 10.1111/ppl.12549. PubMed DOI

Seo J.-S., Joo J., Kim M.-J., Kim Y.-K., Nahm B.H., Song S.I., Cheong J.-J., Lee J.S., Kim J.-K., Choi Y.D. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J. 2011;65:907–921. doi: 10.1111/j.1365-313X.2010.04477.x. PubMed DOI

Yao P., Sun Z., Li C., Zhao X., Li M., Deng R., Huang Y., Zhao H., Chen H., Wu Q. Overexpression of Fagopyrum ta-taricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis. Front. Plant Sci. 2018;125:85–94. PubMed

Yao P.-F., Li C.-L., Zhao X.-R., Li M.-F., Zhao H.-X., Guo J.-Y., Cai Y., Chen H., Wu Q. Overexpression of a Tartary Buckwheat Gene, FtbHLH3, Enhances Drought/Oxidative Stress Tolerance in Transgenic Arabidopsis. Front. Plant Sci. 2017;8:625. doi: 10.3389/fpls.2017.00625. PubMed DOI PMC

Shoucheng C., Chai S., McIntyre C., Xue G.-P. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Rep. 2017;37:225–237. doi: 10.1007/s00299-017-2224-y. PubMed DOI

Jeong J.S., Kim Y.S., Baek K.H., Jung H., Ha S.-H., Choi Y.D., Kim M., Reuzeau C., Kim J.-K. Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions. Plant Physiol. 2010;153:185–197. doi: 10.1104/pp.110.154773. PubMed DOI PMC

Jeong J.S., Kim Y.S., Redillas M.C.F.R., Jang G., Jung H., Bang S.W., Choi Y.D., Ha S.-H., Reuzeau C., Kim J.-K. OsNAC5overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol. J. 2012;11:101–114. doi: 10.1111/pbi.12011. PubMed DOI

Lee D.K., Chung P.J., Jeong J.S., Jang G., Bang S.W., Jung H., Kim Y.S., Ha S.H., Choi Y.D., Kim J.K. The rice Os NAC 6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol. J. 2017;15:754–764. doi: 10.1111/pbi.12673. PubMed DOI PMC

Ohnishi T., Sugahara S., Yamada T., Kikuchi K., Yoshiba Y., Hirano H.-Y., Tsutsumi N. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet. Syst. 2005;80:135–139. doi: 10.1266/ggs.80.135. PubMed DOI

Redillas M.C., Jeong J.S., Kim Y.S., Jung H., Bang S.W., Choi Y.D., Ha S.H., Reuzeau C., Kim J.K. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol. J. 2012;10:792–805. doi: 10.1111/j.1467-7652.2012.00697.x. PubMed DOI

Shahnejat-Bushehri S., Mueller-Roeber B., Balazadeh S. Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signal. Behav. 2012;7:1518–1521. doi: 10.4161/psb.22092. PubMed DOI PMC

Tran L.-S., Nakashima K., Sakuma Y., Simpson S.D., Fujita Y., Maruyama K., Fujita M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter. Plant Cell. 2004;16:2481–2498. doi: 10.1105/tpc.104.022699. PubMed DOI PMC

Xu Z., Gong Z., Wang C., Xue F., Zhang H., Ji W. Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiol. Biochem. 2015;96:356–363. doi: 10.1016/j.plaphy.2015.08.013. PubMed DOI

Yang X., Kim M.Y., Ha J., Lee S.-H. Overexpression of the Soybean NAC Gene GmNAC109 Increases Lateral Root Formation and Abiotic Stress Tolerance in Transgenic Arabidopsis Plants. Front. Plant Sci. 2019;10:1036. doi: 10.3389/fpls.2019.01036. PubMed DOI PMC

Zhang H., Ma F., Wang X., Liu S., Saeed U.H., Hou X., Zhang Y., Luo D., Meng Y., Zhang W., et al. Molecular and Functional Characterization of CaNAC035, an NAC Transcription Factor From Pepper (Capsicum annuum L.) Front. Plant Sci. 2020;11:14. doi: 10.3389/fpls.2020.00014. PubMed DOI PMC

Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. OsDREBgenes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003;33:751–763. doi: 10.1046/j.1365-313X.2003.01661.x. PubMed DOI

Hsieh E.-J., Cheng M.-C., Lin T.-P. Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol. Biol. 2013;82:223–237. doi: 10.1007/s11103-013-0054-z. PubMed DOI

Jisha V., Dampanaboina L., Vadassery J., Mithöfer A., Kappara S., Ramanan R. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice. PLoS ONE. 2015;10:e0127831. doi: 10.1371/journal.pone.0127831. PubMed DOI PMC

Li J., Guo X., Zhang M., Wang X., Zhao Y., Yin Z., Zhang Z., Wang Y., Xiong H., Zhang H., et al. OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis. Plant Sci. 2018;270:131–139. doi: 10.1016/j.plantsci.2018.01.017. PubMed DOI

Pan Y., Seymour G.B., Lu C., Hu Z., Chen X., Chen G. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep. 2011;31:349–360. doi: 10.1007/s00299-011-1170-3. PubMed DOI

Park S., Lee C., Doherty C.J., Gilmour S.J., Kim Y., Thomashow M.F. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J. 2015;82:193–207. doi: 10.1111/tpj.12796. PubMed DOI

Qin F., Kakimoto M., Sakuma Y., Maruyama K., Osakabe Y., Tran L.S.P., Shinozaki K., Yamaguchi-Shinozaki K. Regu-lation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007;50:54–69. doi: 10.1111/j.1365-313X.2007.03034.x. PubMed DOI

Yao Y., He R.J., Xie Q.L., Zhao X.H., Deng X.M., He J.B., Song L., He J., Marchant A., Chen X.Y. Ethylene Response Factor 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol. 2017;213:1667–1681. doi: 10.1111/nph.14278. PubMed DOI

Zhang B., Su L., Hu B., Li L.J. Expression of AhDREB1, an AP2/ERF transcription factor gene from peanut, is af-fected by histone acetylation and increases abscisic acid sensitivity and tolerance to osmotic stress in Arabidopsis. Int. J. Mol. Sci. 2018;19:1441. doi: 10.3390/ijms19051441. PubMed DOI PMC

Zhang G., Chen M., Li L., Xu Z., Chen X., Guo J., Ma Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 2009;60:3781–3796. doi: 10.1093/jxb/erp214. PubMed DOI PMC

Zhao C., Zhang Z., Xie S., Si T., Li Y., Zhu J.-K. Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis. Plant Physiol. 2016;171:2744–2759. doi: 10.1104/pp.16.00533. PubMed DOI PMC

Cui M.H., Yoo K.S., Hyoung S., Nguyen H.T.K., Kim Y.Y., Kim H.J., Ok S.H., Yoo S.D., Shin J.S. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett. 2013;587:1773–1778. doi: 10.1016/j.febslet.2013.04.028. PubMed DOI

Jung C., Seo J.S., Han S.W., Koo Y.J., Kim C.H., Song S.I., Nahm B.H., Choi Y.D., Cheong J.-J. Overexpression of AtMYB44 Enhances Stomatal Closure to Confer Abiotic Stress Tolerance in Transgenic Arabidopsis. Plant Physiol. 2007;146:323–324. doi: 10.1104/pp.107.110981. PubMed DOI PMC

Lee S.B., Kim H., Kim R.J., Suh M.C. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep. 2014;33:1535–1546. doi: 10.1007/s00299-014-1636-1. PubMed DOI

Liao Y., Zou H.-F., Wang H.-W., Zhang W.-K., Ma B., Zhang J.-S., Chen S.-Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res. 2008;18:1047–1060. doi: 10.1038/cr.2008.280. PubMed DOI

Song S., Qi T., Huang H., Ren Q., Wu D., Chang C., Peng W., Liu Y., Peng J., Xie D. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell. 2011;23:1000–1013. doi: 10.1105/tpc.111.083089. PubMed DOI PMC

Tang Y., Bao X., Zhi Y., Wu Q., Guo Y., Yin X., Zeng L., Li J., Zhang J., He W., et al. Overexpression of a MYB Family Gene, OsMYB6, Increases Drought and Salinity Stress Tolerance in Transgenic Rice. Front. Plant Sci. 2019;10:168. doi: 10.3389/fpls.2019.00168. PubMed DOI PMC

Vannini C., Locatelli F., Bracale M., Magnani E., Marsoni M., Osnato M., Mattana M., Baldoni E., Coraggio I. Overex-pression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J. 2004;37:115–127. doi: 10.1046/j.1365-313X.2003.01938.x. PubMed DOI

Xiong H., Li J., Liu P., Duan J., Zhao Y., Guo X., Li Y., Zhang H., Ali J., Li Z. Overexpression of OsMYB48-1, a Novel MYB-Related Transcription Factor, Enhances Drought and Salinity Tolerance in Rice. PLoS ONE. 2014;9:e92913. doi: 10.1371/journal.pone.0092913. PubMed DOI PMC

Zhu N., Cheng S., Liu X., Du H., Dai M., Zhou D.-X., Yang W., Zhao Y. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci. 2015;236:146–156. doi: 10.1016/j.plantsci.2015.03.023. PubMed DOI

He G.-H., Xu J.-Y., Wang Y.-X., Liu J.-M., Li P.-S., Chen M., Ma Y.-Z., Xu Z.-S. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol. 2016;16:1–16. doi: 10.1186/s12870-016-0806-4. PubMed DOI PMC

Li H., Gao Y., Xu H., Dai Y., Deng D., Chen J. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul. 2013;70:207–216. doi: 10.1007/s10725-013-9792-9. DOI

Mzid R., Zorrig W., ben Ayed R., Ben Hamed K., Ayadi M., Damak Y., Lauvergeat V., Hanana M. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum. 3 Biotech. 2018;8:277. doi: 10.1007/s13205-018-1301-4. PubMed DOI PMC

Qiu Y., Yu D. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ. Exp. Exp. Bot. 2009;65:35–47. doi: 10.1016/j.envexpbot.2008.07.002. DOI

Villano C., Esposito S., D’Amelia V., Garramone R., Alioto D., Zoina A., Aversano R., Carputo D. WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-63823-w. PubMed DOI PMC

Wu X., Shiroto Y., Kishitani S., Ito Y., Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep. 2009;28:21–30. doi: 10.1007/s00299-008-0614-x. PubMed DOI

Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–498. doi: 10.1016/j.tplants.2004.08.009. PubMed DOI

Lin K.-H., Sei S.-C., Su Y.-H., Chiang C.-M. Overexpression of the Arabidopsis and winter squash superoxide dismutase genes enhances chilling tolerance via ABA-sensitive transcriptional regulation in transgenic Arabidopsis. Plant Signal. Behav. 2019;14:1685728. doi: 10.1080/15592324.2019.1685728. PubMed DOI PMC

Zhou C., Zhu C., Fu H., Li X., Chen L., Lin Y., Lai Z., Guo Y. Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis) PLoS ONE. 2019;14:e0223609. doi: 10.1371/journal.pone.0223609. PubMed DOI PMC

Caverzan A., Passaia G., Rosa S.B., Ribeiro C.W., Lazzarotto F., Margis-Pinheiro M. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 2012;35:1011–1019. doi: 10.1590/S1415-47572012000600016. PubMed DOI PMC

Pandey S., Fartyal D., Agarwal A., Shukla T., James D., Kaul T., Negi Y.K., Arora S., Reddy M.K. Abiotic stress toler-ance in plants: Myriad roles of ascorbate peroxidase. Front. Plant Sci. 2017;8:581. doi: 10.3389/fpls.2017.00581. PubMed DOI PMC

Liu J.-X., Feng K., Duan A.-Q., Li H., Yang Q.-Q., Xu Z.-S., Xiong A.-S. Isolation, purification and characterization of an ascorbate peroxidase from celery and overexpression of the AgAPX1 gene enhanced ascorbate content and drought tolerance in Arabidopsis. BMC Plant Biol. 2019;19:1–13. doi: 10.1186/s12870-019-2095-1. PubMed DOI PMC

Liu Z., Bao H., Cai J., Han J., Zhou L. A Novel Thylakoid Ascorbate Peroxidase from Jatrophacurcas Enhances Salt Tolerance in Transgenic Tobacco. Int. J. Mol. Sci. 2013;15:171–185. doi: 10.3390/ijms15010171. PubMed DOI PMC

Chen Y., Cai J., Yang F., Zhou B., Zhou L. Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis. Genet. Mol. Res. 2015;14:4879–4889. doi: 10.4238/2015.May.11.20. PubMed DOI

Filiz E., Ozyigit I.I., Saracoglu I.A., Uras M.E., Sen U., Yalcin B. Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: Microarray data evaluation. Biotechnol. Biotechnol. Equip. 2019;33:128–143. doi: 10.1080/13102818.2018.1556120. DOI

Nie Q., Gao G.-L., Fan Q.-J., Qiao G., Wen X.-P., Liu T., Peng Z.-J., Cai Y.-Q. Isolation and characterization of a catalase gene “HuCAT3” from pitaya (Hylocereus undatus) and its expression under abiotic stress. Gene. 2015;563:63–71. doi: 10.1016/j.gene.2015.03.007. PubMed DOI

Zhou Y., Liu S., Yang Z., Yang Y., Jiang L., Hu L. CsCAT3, a catalase gene from Cucumis sativus, confers resistance to a variety of stresses to Escherichia coli. Biotechnol. Biotechnol. Equip. 2017;31:886–896. doi: 10.1080/13102818.2017.1360797. DOI

Milla M.A.R., Maurer A., Huete A.R., Gustafson J.P. Glutathione peroxidase genes in Arabidopsis are ubiquitous and reg-ulated by abiotic stresses through diverse signaling pathways. Plant J. 2003;36:602–615. doi: 10.1046/j.1365-313X.2003.01901.x. PubMed DOI

Zhou Y., Li J., Wang J., Yang W., Yang Y. Identification and Characterization of the Glutathione Peroxidase (GPX) Gene Family in Watermelon and Its Expression under Various Abiotic Stresses. Agronomy. 2018;8:206. doi: 10.3390/agronomy8100206. DOI

Diao Y., Xu H., Li G., Yu A., Yu X., Hu W., Zheng X., Li S., Wang Y., Hu Z. Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice. Mol. Biol. Rep. 2014;41:4919–4927. doi: 10.1007/s11033-014-3358-4. PubMed DOI

Wang X., Fang G., Yang J., Li Y. A Thioredoxin-Dependent Glutathione Peroxidase (OsGPX5) Is Required for Rice Normal Development and Salt Stress Tolerance. Plant Mol. Biol. Rep. 2017;35:333–342. doi: 10.1007/s11105-017-1026-2. DOI

Sultana S., Khew C.Y., Morshed M., Namasivayam P., Napis S., Ho C.-L. Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. J. Plant Physiol. 2011;169:311–318. doi: 10.1016/j.jplph.2011.09.004. PubMed DOI

Eltayeb A.E., Kawano N., Badawi G.H., Kaminaka H., Sanekata T., Shibahara T., Inanaga S., Tanaka K. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta. 2006;225:1255–1264. doi: 10.1007/s00425-006-0417-7. PubMed DOI

Kabir M.H., Wang M.-H. Expression Pattern of Two Dehydroascorbate Reductase Genes from Tomato (Solanum lycopersicum L.) in Response to Stress. J. Korean Soc. Appl. Biol. Chem. 2010;53:668–676. doi: 10.3839/jksabc.2010.102. DOI

Hao Z., Wang X., Zong Y., Wen S., Cheng Y., Li H. Enzymatic activity and functional analysis under multiple abiotic stress conditions of a dehydroascorbate reductase gene derived from Liriodendron Chinense. Environ. Exp. Bot. 2019;167:103850. doi: 10.1016/j.envexpbot.2019.103850. DOI

Zhang Y., Li Z., Peng Y., Wang X., Peng D., Li Y., McPhee D.J., Zhang X., Ma X., Huang L., et al. Clones of FeSOD, MDHAR, DHAR Genes from White Clover and Gene Expression Analysis of ROS-Scavenging Enzymes during Abiotic Stress and Hormone Treatments. Molecules. 2015;20:20939–20954. doi: 10.3390/molecules201119741. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...