Electron and proton transport in wheat exposed to salt stress: is the increase of the thylakoid membrane proton conductivity responsible for decreasing the photosynthetic activity in sensitive genotypes?
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA-1-0589-19
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
VEGA 1-0683-20
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
APVV-18-465
Agentúra na Podporu Výskumu a Vývoja
OPVaI-VA/DP/2018/No. 313011T813
OPVaI-VA
21-54-53015
National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
PubMed
34125427
PubMed Central
PMC8556197
DOI
10.1007/s11120-021-00853-z
PII: 10.1007/s11120-021-00853-z
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorophyll fluorescence, Noninvasive measurements, Salt stress, Wheat,
- MeSH
- chlorofyl MeSH
- elektrony MeSH
- fotosyntéza MeSH
- genotyp MeSH
- protony MeSH
- pšenice * genetika MeSH
- solný stres MeSH
- tylakoidy * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- protony MeSH
Effects of salinity caused by 150 mM NaCl on primary photochemical reactions and some physiological and biochemical parameters (K+/Na+ ratio, soluble sugars, proline, MDA) have been studied in five Triticum aestivum L. genotypes with contrasting salt tolerance. It was found that 150 mM NaCl significantly decreased the photosynthetic efficiency of two sensitive genotypes. The K+/Na+ ratio decreased in all genotypes exposed to salinity stress when compared with the control. Salinity stress also caused lipid peroxidation and accumulation of soluble sugars and proline. The amounts of soluble sugars and proline were higher in tolerant genotypes than sensitive ones, and lipid peroxidation was higher in sensitive genotypes. The noninvasive measurements of photosynthesis-related parameters indicated the genotype-dependent effects of salinity stress on the photosynthetic apparatus. The significant decrease of chlorophyll content (SPAD values) or adverse effects on photosynthetic functions at the PSII level (measured by the chlorophyll fluorescence parameters) were observed in the two sensitive genotypes only. Although the information obtained by different fast noninvasive techniques were consistent, the correlation analyses identified the highest correlation of the noninvasive records with MDA, K+/Na+ ratio, and free proline content. The lower correlation levels were found for chlorophyll content (SPAD) and Fv/Fm values derived from chlorophyll fluorescence. Performance index (PIabs) derived from fast fluorescence kinetics, and F735/F685 ratio correlated well with MDA and Na+ content. The most promising were the results of linear electron flow measured by MultispeQ sensor, in which we found a highly significant correlation with all parameters assessed. Moreover, the noninvasive simultaneous measurements of chlorophyll fluorescence and electrochromic band shift using this sensor indicated the apparent proton leakage at the thylakoid membranes resulting in a high proton conductivity (gH+), present in sensitive genotypes only. The possible consequences for the photosynthetic functions and the photoprotection are discussed.
Department of Plant Physiology Slovak University of Agriculture Nitra Slovakia
Institute of Basic Biological Problems Russian Academy of Sciences Pushchino Moscow 142290 Russia
Zobrazit více v PubMed
Ahmad P, Kumar A, Ashraf M, Akram NA. Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.) Afr J Biotechnol. 2012;11(11):2694–2703.
Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA. 1999;96(10):5862–5867. doi: 10.1073/pnas.96.10.5862. PubMed DOI PMC
Allen S, Grimshaw H, Rowland A. Chemical analysis. In: Chapman SB, Moore PD, editors. Methods in plant ecology. Oxford: Blackwell Scientific Publications; 1986.
Almeida DM, Oliveira MM, Saibo NJM. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol. 2017;40(1 suppl 1):326–345. doi: 10.1590/1678-4685-gmb-2016-0106. PubMed DOI PMC
Arif MR, Islam MT, Robin AHK. Salinity stress alters root morphology and root hair traits in Brassica napus. Plants. 2019;8(7):192. doi: 10.3390/plants8070192. PubMed DOI PMC
Asada K. The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:601–639. doi: 10.1146/annurev.arplant.50.1.601. PubMed DOI
Ashraf M, Foolad M. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59(2):206–216. doi: 10.1016/j.envexpbot.2005.12.006. DOI
Avenson TJ, Cruz JA, Kanazawa A, Kramer DM. Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA. 2005;102(27):9709–9713. doi: 10.1073/pnas.0503952102. PubMed DOI PMC
Avenson TJ, Cruz JA, Kramer DM. Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc Natl Acad Sci USA. 2004;101(15):5530–5535. doi: 10.1073/pnas.0401269101. PubMed DOI PMC
Azooz MM, Youssef AM, Ahmad P. Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int J Plant Physiol Biochem. 2011;3(14):253–264.
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–207. doi: 10.1007/bf00018060. DOI
Bohnert HJ, Jensen RG. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 1996;4:89–97. doi: 10.1016/0167-7799(96)80929-2. DOI
Brestic M, Zivcak M (2013) PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: Molecular stress physiology of plants. Springer, Dordrecht, pp 87–131
Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev SI. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth Res. 2016;130(1–3):251–266. doi: 10.1007/s11120-016-0249-7. PubMed DOI
Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI. Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth Res. 2015;125(1–2):151–166. doi: 10.1007/s11120-015-0093-1. PubMed DOI
Bukhov NG, Wiese C, Neimanis S, Heber U. Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res. 1999;59(1):81–93. doi: 10.1023/a:1006149317411. DOI
Burg MB, Ferraris JD. Intracellular organic osmolytes: function and regulation. J Biol Chem. 2008;283:7309–7313. doi: 10.1074/jbc.R700042200. PubMed DOI PMC
Bürling K, Cerovic ZG, Cornic G, Ducruet J-M, Noga G, Hunsche M. Fluorescence-based sensing of drought-induced stress in the vegetative phase of four contrasting wheat genotypes. Environ Exp Bot. 2013;89:51–59. doi: 10.1016/j.envexpbot.2013.01.003. DOI
Buschmann C. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res. 2007;92(2):261–271. doi: 10.1007/s11120-007-9187-8. PubMed DOI
Butler WL, Kitajima M. Energy transfer between Photosystem II and Photosystem I in chloroplasts. Biochim Biophys Acta Bioenerg. 1975;396(1):72–85. doi: 10.1016/0005-2728(75)90190-5. PubMed DOI
Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I. The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ. 2002;25(12):1663–1676. doi: 10.1046/j.1365-3040.2002.00942.x. DOI
Cohen J. Statistical power analysis for the behavioral sciences. 2. Hillsdale: Á/L Erlbaum Press; 1988.
de Azevedo Neto AD, Prisco JT, Enéas-Filho J, Abreu CEBd, Gomes-Filho E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot. 2006;56(1):87–94. doi: 10.1016/j.envexpbot.2005.01.008. DOI
El-Hendawy SE, Hu Y, Schmidhalter U. Assessing the suitability of various physiological traits to screen wheat genotypes for salt tolerance. J Integr Plant Biol. 2007;49(9):1352–1360. doi: 10.1111/j.1744-7909.2007.00533.x. DOI
Elkahoui S, Hernández JA, Abdelly C, Ghrir R, Limam F. Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci. 2005;168(3):607–613. doi: 10.1016/j.plantsci.2004.09.006. DOI
Fales FW. The assimilation and degradation of carbohydrates by yeast cells. J Biol Chem. 1951;193(1):113–124. doi: 10.1016/S0021-9258(19)52433-4. PubMed DOI
Falleh H, Jalleli I, Ksouri R, Boulaaba M, Guyot S, Magné C, Abdelly C. Effect of salt treatment on phenolic compounds and antioxidant activity of two Mesembryanthemum edule provenances. Plant Physiol Biochem. 2012;52:1–8. doi: 10.1016/j.plaphy.2011.11.001. PubMed DOI
Fernández-Calleja M, Monteagudo A, Casas AM, Boutin C, Pin PA, Morales F, Igartua E. Rapid on-site phenotyping via field fluorimeter detects differences in photosynthetic performance in a hybrid—parent barley germplasm set. Sensors. 2020;20(5):1486. doi: 10.3390/s20051486. PubMed DOI PMC
Fougère F, Le Rudulier D, Streeter JG. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.) Plant Physiol. 1991;96:1228–1236. doi: 10.1104/pp.96.4.1228. PubMed DOI PMC
Gangopadhyay G, Basu S, Mukherjee B, Gupta S. Effects of salt and osmotic shocks on unadapted and adapted callus lines of tobacco. Plant Cell Tissue Organ Cult. 1997;49:45–52. doi: 10.1023/A:1005860718585. DOI
Georgieva K, Lichtenthaler HK. Photosynthetic response of different pea cultivars to low and high temperature treatments. Photosynthetica. 2006;44(4):569–578. doi: 10.1007/s11099-006-0073-y. DOI
Ghogdi EA. Effects of salinity on some physiological traits in wheat (Triticum aestivum L.) cultivars. Indian J Sci Technol. 2012;5(1):1–6. doi: 10.17485/ijst/2012/v5i1.23. DOI
Gitelson AA, Buschmann C, Lichtenthaler HK. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sens Environ. 1999;69(3):296–302. doi: 10.1016/s0034-4257(99)00023-1. DOI
Gitelson AA, Gritz YA, Merzlyak MN. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol. 2003;160(3):271–282. doi: 10.1078/0176-1617-00887. PubMed DOI
Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. 2014;2014:1–18. doi: 10.1155/2014/701596. PubMed DOI PMC
Harbinson J, Woodward FI. The use of light-induced absorbance changes at 820 nm to monitor the oxidation state of P-700 in leaves. Plant Cell Environ. 1987;10(2):131–140. doi: 10.1111/1365-3040.ep11602090. DOI
Havaux M, Tardy F, Ravenel J, Chanu D, Parot P. Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant Cell Environ. 1996;19(12):1359–1368. doi: 10.1111/j.1365-3040.1996.tb00014.x. DOI
Huang W, Tikkanen M, Cai Y-F, Wang J-H, Zhang S-B. hloroplastic ATP synthase optimizes the trade-off between photosynthetic CO2 assimilation and photoprotection during leaf maturation. Biochim Biophys Acta Bioenerg (1859) 2018;10:1067–1074. doi: 10.1016/j.bbabio.2018.06.009. PubMed DOI
Huang W, Yang Y-J, Zhang S-B. Photoinhibition of photosystem I under fluctuating light is linked to the insufficient ΔpH upon a sudden transition from low to high light. Environ Exp Bot. 2019;160:112–119. doi: 10.1016/j.envexpbot.2019.01.012. DOI
Humplík JF, Lazár D, Husičková A, Spíchal L. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—a review. Plant Methods. 2015 doi: 10.1186/s13007-015-0072-8. PubMed DOI PMC
Ji H, Pardo JM, Batelli G, et al. The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant. 2013;6:275–286. doi: 10.1093/mp/sst017. PubMed DOI
Cheeseman JM. Mechanisms of salinity tolerance in plants. Plant Physiol. 1988;87(3):547–550. doi: 10.1104/pp.87.3.547. PubMed DOI PMC
Chelli-Chaabouni A, Mosbah AB, Maalej M, Gargouri K, Gargouri-Bouzid R, Drira N (2010) In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L and P. atlantica Desf. Environ Exp Bot 69 (3):302–312
Cheng L, Fuchigami LH, Breen PJ. The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves. J Exp Bot. 2001;52(362):1865–1872. doi: 10.1093/jexbot/52.362.1865. PubMed DOI
Cherif J, Derbel N, Nakkach M, Hv B, Jemal F, Lakhdar ZB. Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. J Photochem Photobiol B. 2010;101(3):332–339. doi: 10.1016/j.jphotobiol.2010.08.005. PubMed DOI
Chovancek E, Zivcak M, Brestic M, Hussain S, Allakhverdiev SI. The different patterns of post-heat stress responses in wheat genotypes: the role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity. Photosynth Res. 2021 doi: 10.1007/s11120-020-00812-0. PubMed DOI
Ibrahimova UF, Mammadov AC, Feyziyev YM. The effect of NaCl on some physiological and biochemical parameters in Triticum aestivum L. genotypes. Plant Physiol Rep. 2019;24(3):370–375. doi: 10.1007/s40502-019-00461-z. DOI
Isayenkov SV, Maathuis FJM. Plant salinity stress: many unanswered questions remain. Front Plant Sci. 2019 doi: 10.3389/fpls.2019.00080. PubMed DOI PMC
Jena NR. DNA damage by reactive species: mechanisms, mutation and repair. J Biosci. 2012;37(3):503–517. doi: 10.1007/s12038-012-9218-2. PubMed DOI
Joliot P, Johnson GN. Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA. 2011;108(32):13317–13322. doi: 10.1073/pnas.1110189108. PubMed DOI PMC
Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant. 2016 doi: 10.1007/s11738-016-2113-y. DOI
Kalaji HM, Rastogi A, Zivcak M, Brestic M, Daszkowska-Golec A, Sitko K, Alsharafa KY, Lotfi R, Stypinski P, Samborska IA, Cetner MD. Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica. 2018;56(3):953–961. doi: 10.1007/s11099-018-0766-z. DOI
Kalaji MH, Goltsev VN, Zuk-Golaszewska K, Zivcak M, Brestic M. Chlorophyll fluorescence: understanding crop performance—basics and applications. 1. Boca Raton: CRC Press; 2017.
Kanazawa A, Kramer DM. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci USA. 2002;99(20):12789–12794. doi: 10.1073/pnas.182427499. PubMed DOI PMC
Kanazawa A, Ostendorf E, Kohzuma K, Hoh D, Strand DD, Sato-Cruz M, Savage L, Cruz JA, Fisher N, Froehlich JE, Kramer DM. Chloroplast ATP synthase modulation of the thylakoid proton motive force: implications for Photosystem I and Photosystem II photoprotection. Front Plant Sci. 2017 doi: 10.3389/fpls.2017.00719. PubMed DOI PMC
Keutgen AJ, Pawelzik E. Quality and nutritional value of strawberry fruit under long term salt stress. Food Chem. 2008;107(4):1413–1420. doi: 10.1016/j.foodchem.2007.09.071. DOI
Kiani-Pouya A, Rasouli F. The potential of leaf chlorophyll content to screen bread-wheat genotypes in saline condition. Photosynthetica. 2014;52(2):288–300. doi: 10.1007/s11099-014-0033-x. DOI
Koca H, Bor M, Özdemir F, Türkan İ. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot. 2007;60(3):344–351. doi: 10.1016/j.envexpbot.2006.12.005. DOI
Kohzuma K, Cruz JA, Akashi K, Hoshiyasu S, Munekage YN, Yokota A, Kramer DM. The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ. 2009;32(3):209–219. doi: 10.1111/j.1365-3040.2008.01912.x. PubMed DOI
Krall JP, Edwards GE. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant. 1992;86:180–187. doi: 10.1111/j.1399-3054.1992.tb01328.x. DOI
Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem. 2007;45(3–4):244–249. doi: 10.1016/j.plaphy.2007.02.001. PubMed DOI
Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers MI, Roth MG, Bi K, TerAvest D, Weebadde P, Kramer DM. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. R Soc Open Sci. 2016;3(10):160592. doi: 10.1098/rsos.160592. PubMed DOI PMC
Kumar GNM, Knowles NR. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiol. 1993;102(1):115–124. doi: 10.1104/pp.102.1.115. PubMed DOI PMC
Li JW, Zhang JX, Zhao Z, Lei XD, Xu XL, Lu XX, Weng DL, Gao Y, Cao LK. Use of fluorescence-based sensors to determine the nitrogen status of paddy rice. J Agric Sci. 2013;151(6):862–871. doi: 10.1017/s0021859612001025. DOI
Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity vol 19, pp 713–736. 10.1007/978-1-4020-3218-9_28
Lu C, Vonshak A. Characterization of PSII photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis. N Phytol. 1999;141(2):231–239. doi: 10.1046/j.1469-8137.1999.00340.x. PubMed DOI
Machado R, Serralheiro R. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae. 2017;3(2):30. doi: 10.3390/horticulturae3020030. DOI
Madan S, Nainawatee HS, Jain RK, Chowdhury JB. Proline and proline metabolising enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. Ann Bot (lond) 1995;76:51–57. doi: 10.1006/anbo.1995.1077. DOI
Mathur S, Mehta P, Jajoo A. Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum) Physiol Mol Biol Plants. 2012;19(2):179–188. doi: 10.1007/s12298-012-0151-5. PubMed DOI PMC
Mbarki S, Sytar O, Zivcak M, Abdelly C, Cerda A, Brestic M. Anthocyanins of coloured wheat genotypes in specific response to SalStress. Molecules. 2018;23(7):1518. doi: 10.3390/molecules23071518. PubMed DOI PMC
Mehta P, Allakhverdiev SI, Jajoo A. Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum) Photosynth Res. 2010;105(3):249–255. doi: 10.1007/s11120-010-9588-y. PubMed DOI
Mehta P, Jajoo A, Mathur S, Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol Biochem. 2010;48(1):16–20. doi: 10.1016/j.plaphy.2009.10.006. PubMed DOI
Misra AN, Srivastava A, Strasser RJ. Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. J Plant Physiol. 2001;158(9):1173–1181. doi: 10.1078/s0176-1617(04)70144-3. DOI
Miyake C, Miyata M, Shinzaki Y, Tomizawa K-i. CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant Cell Physiol. 2005;46(4):629–637. doi: 10.1093/pcp/pci067. PubMed DOI
Munns R. Genes and salt tolerance: bringing them together. N Phytol. 2005;167(3):645–663. doi: 10.1111/j.1469-8137.2005.01487.x. PubMed DOI
Munns R, James RA. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil. 2003;253(1):201–218. doi: 10.1023/a:1024553303144. DOI
Munns R, James RA, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot. 2006;57(5):1025–1043. doi: 10.1093/jxb/erj100. PubMed DOI
Murakeözy ÉP, Nagy Z, Duhazé C, Bouchereau A, Tuba Z. Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol. 2003;160(4):395–401. doi: 10.1078/0176-1617-00790. PubMed DOI
Nepal N, Yactayo-Chang JP, Gable R, Wilkie A, Martin J, Aniemena CL, Gaxiola R, Lorence A. Phenotypic characterization of Arabidopsis thaliana lines overexpressing AVP1 and MIOX4 in response to abiotic stresses. Appl Plant Sci. 2020 doi: 10.1002/aps3.11384. PubMed DOI PMC
Nieves-Cordones M, Al Shiblawi FR, Sentenac H. Roles and transport of sodium and potassium in plants. Met Ions Life Sci. 2016;16:291–324. doi: 10.1007/978-3-319-21756-7_9. PubMed DOI
Petrusa LM, Winicov I. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem. 1997;35:303–310.
Prinzenberg AE, Víquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. Chlorophyll fluorescence imaging reveals genetic variation and loci for a photosynthetic trait in diploid potato. Physiol Plant. 2018;164(2):163–175. doi: 10.1111/ppl.12689. PubMed DOI
Pšidová E, Živčák M, Stojnić S, Orlović S, Gömöry D, Kučerová J, Ditmarová Ľ, Střelcová K, Brestič M, Kalaji HM. Altitude of origin influences the responses of PSII photochemistry to heat waves in European beech (Fagus sylvatica L.) Environ Exp Bot. 2018;152:97–106. doi: 10.1016/j.envexpbot.2017.12.001. DOI
Radi AA, Farghaly FA, Hamada AM. Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J Biol Earth Sci. 2013;3(1):B72–B88.
Rahneshan Z, Nasibi F, Moghadam AA. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact. 2018;13(1):73–82. doi: 10.1080/17429145.2018.1424355. DOI
Rasel M, Tahjib-Ul-Arif M, Hossain MA, Hassan L, Farzana S, Brestic M. Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism multidimensional roles in salt-stressed plants. J Plant Growth Regul. 2020 doi: 10.1007/s00344-020-10235-9. DOI
Rastogi A, Kovar M, He X, Zivcak M, Kataria S, Kalaji HM, Skalicky M, Ibrahimova UF, Hussain S, Mbarki S, Brestic M. Special issue in honour of Prof. Reto J. Strasser—JIP-test as a tool to identify salinity tolerance in sweet sorghum genotypes. Photosynthetica. 2020;58(Special Issue):518–528. doi: 10.32615/ps.2019.169. DOI
Rastogi A, Pospíšil P. Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells. Plant Physiol Biochem. 2010;48(2–3):117–123. doi: 10.1016/j.plaphy.2009.12.011. PubMed DOI
Rastogi A, Pospíšil P. Production of hydrogen peroxide and hydroxyl radical in potato tuber during the necrotrophic phase of hemibiotrophic pathogen Phytophthora infestans infection. J Photochem Photobiol B. 2012;117:202–206. doi: 10.1016/j.jphotobiol.2012.10.001. PubMed DOI
Rastogi A, Yadav DK, Szymańska R, Kruk J, SedlářovÁ M, Pospíšil P. Singlet oxygen scavenging activity of tocopherol and plastochromanol in Arabidopsis thaliana: relevance to photooxidative stress. Plant Cell Environ. 2014;37(2):392–401. doi: 10.1111/pce.12161. PubMed DOI
Rengasamy P. World salinization with emphasis on Australia. J Exp Bot. 2006;57(5):1017–1023. doi: 10.1093/jxb/erj108. PubMed DOI
Rhodes D. Metabolic responses to stress. In: Davies DD, editor. The biochemistry of plants. New York: Academic; 1987.
Richter M, Daufenbach J, Drebing S, Vucetic V, Nguyen DT. Light-induced proton slip and proton leak at the thylakoid membrane. J Plant Physiol. 2004;161(12):1325–1337. doi: 10.1016/j.jplph.2004.03.007. PubMed DOI
Rinderle U, Lichtenthaler HK (1988) The chlorophyll fluorescence ratio F690/F735 as a possible stress indicator. pp 189–196. 10.1007/978-94-009-2823-7_23
Robinson SP, Downton WJS, Millhouse JA. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol. 1983;73(2):238–242. doi: 10.1104/pp.73.2.238. PubMed DOI PMC
Sairam RK, Srivastava GC, Agarwal S, Meena RC. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant. 2005;49(1):85–91. doi: 10.1007/s10535-005-5091-2. DOI
Seaton GGR, Walker DA. Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proc R Soc Lond B. 1990;242(1303):29–35. doi: 10.1098/rspb.1990.0099. DOI
Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:1–26. doi: 10.1155/2012/217037. DOI
Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. pp 49–70. 10.1007/978-3-642-79354-7_3
Schreiber U, Klughammer C, Neubauer C. Measuring P700 absorbance changes around 830 nm with a new type of pulse modulation system. Z Nat C. 1988;43(9–10):686–698. doi: 10.1515/znc-1988-9-1010. DOI
Schreiber U, Neubauer C. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the Photosystem II donor side and possible ways of interpretation. Z Nat C. 1987;42(11–12):1255–1264. doi: 10.1515/znc-1987-11-1218. DOI
Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res. 1986;10:51–62. doi: 10.1007/BF00024185. PubMed DOI
Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 1989;28(4):1057–1060. doi: 10.1016/0031-9422(89)80182-7. DOI
Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 1–2:236–257 PubMed
Stirbet A, Lazár D, Guo Y, Govindjee G. Photosynthesis: basics, history and modelling. Ann Bot. 2020;126(4):511–537. doi: 10.1093/aob/mcz171. PubMed DOI PMC
Stirbet A, Lazar D, Kromdijk J, Govindjee G. Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica. 2018;56(1):86–104. doi: 10.1007/s11099-018-0770-3. DOI
Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta Bioenerg. 2010;1797(6–7):1313–1326. doi: 10.1016/j.bbabio.2010.03.008. PubMed DOI
Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient vol 19, pp 321–362. 10.1007/978-1-4020-3218-9_12
Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15(2):89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI
Sui N, Li M, Li K, Song J, Wang BS. Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity. Photosynthetica. 2010;48(4):623–629. doi: 10.1007/s11099-010-0080-x. DOI
Sun X-l, Yang S, Wang L-Y, Zhang Q-Y, Zhao S-J, Meng Q-W. The unsaturation of phosphatidylglycerol in thylakoid membrane alleviates PSII photoinhibition under chilling stress. Plant Cell Rep. 2011;30(10):1939–1947. doi: 10.1007/s00299-011-1102-2. PubMed DOI
Tahal R, Mills D, Heimer Y, Tal M. The relation between low K+/Na+ ratio and salt-tolerance in the wild tomato species Lycopersicon pennellii. J Plant Physiol. 2000;157(1):59–64. doi: 10.1016/s0176-1617(00)80136-4. DOI
Takagi D, Takumi S, Hashiguchi M, Sejima T, Miyake C. Superoxide and singlet oxygen produced within the thylakoid membranes both cause Photosystem I photoinhibition. Plant Physiol. 2016;171(3):1626–1634. doi: 10.1104/pp.16.00246. PubMed DOI PMC
Takizawa K, Cruz JA, Kanazawa A, Kramer DM. The thylakoid proton motive force in vivo. Quantitative, noninvasive probes, energetics, and regulatory consequences of light-induced PMF. Biochim Biophys Acta Bioenerg. 2007;1767(10):1233–1244. doi: 10.1016/j.bbabio.2007.07.006. PubMed DOI
Tammam A, Alhamd M, Hemeda M. Study of salt tolerance in wheat (Triticum aestivum L.) cultivar Banysoif 1. Aust J Crop Sci. 2008;1(3):115–125.
Traub J, Porch T, Naeem M, Urrea CA, Austic G, Kelly JD, Loescher W. Screening for heat tolerance in Phaseolus spp. using multiple methods. Crop Sci. 2018;58(6):2459–2469. doi: 10.2135/cropsci2018.04.0275. DOI
Tremblay N, Wang Z, Cerovic ZG. Sensing crop nitrogen status with fluorescence indicators. A review. Agron Sustain Dev. 2011;32(2):451–464. doi: 10.1007/s13593-011-0041-1. DOI
Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids. 2008;35(4):753–759. doi: 10.1007/s00726-008-0061-6. PubMed DOI
Wu X, Shu S, Wang Y, Yuan R, Guo S. Exogenous putrescine alleviates photoinhibition caused by salt stress through cooperation with cyclic electron flow in cucumber. Photosynth Res. 2019;141(3):303–314. doi: 10.1007/s11120-019-00631-y. PubMed DOI
Yan K, Shao HB, Shao Ch, Chen P, Zhao S, Brestic M, Chen X. Physiological adaptive mechanisms of plant grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant. 2013 doi: 10.1007/s11738-013-1325-7. DOI
Yancey PH. Compatible and counteracting solutes. In: Strange K, editor. Cellular and molecular physiology of cell volume regulation. Boca Raton: CRC Press; 1994. pp. 81–109.
Yancey PH, Clark ME, Hand SC, et al. Living with water stress: evolution of osmolyte systems. Science. 1982;217:1214–1222. doi: 10.1126/science.7112124. PubMed DOI
Yang Q, Chen ZZ, Zhou XF, et al. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant. 2009;2:22–31. doi: 10.1093/mp/ssn058. PubMed DOI PMC
Yildiz M, Terzi H. Effect of NaCl stress on chlorophyll biosynthesis, proline, lipid peroxidation and antioxidative enzymes in leaves of salt-tolerant and salt-sensitive barley cultivars. J Agric Sci. 2013;19(2):79–88.
Zafar SA, Shokat S, Ahmed HGM-D, Khan A, Ali MZ, Atif RM. Assessment of salinity tolerance in rice using seedling based morpho-physiological indices. Adv Life Sci. 2015;2(4):142–149.
Zeeshan M, Lu M, Sehar S, Holford P, Wu F. Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy. 2020;10(1):127. doi: 10.3390/agronomy10010127. DOI
Zheng YH, Li X, Li YG, Miao BH, Xu H, Simmons M, Yang XH. Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution. Plant Physiol Biochem. 2012;52:169–178. doi: 10.1016/j.plaphy.2012.01.007. PubMed DOI
Zhu JK. Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol. 2001;4:401–406. doi: 10.1016/S1369-5266(00)00192-8. PubMed DOI
Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res. 2013;117(1–3):529–546. doi: 10.1007/s11120-013-9885-3. PubMed DOI
Zivcak M, Brückova K, Sytar O, Brestic M, Olsovska K, Allakhverdiev SI. Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio. Planta. 2017;245(6):1215–1229. doi: 10.1007/s00425-017-2676-x. PubMed DOI
Zivcak M, Kalaji HM, Shao HB, Olsovska K, Brestic M. Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photochem Photobiol B. 2014 doi: 10.1016/j.jphotobiol.2014.01.007. PubMed DOI
Živčák M, Brestič M, Olšovská K, Slamka P. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ. 2008;54(4):133–139. doi: 10.17221/392-PSE. DOI