Genetic Diversity of Selected Rice Genotypes under Water Stress Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33374424
PubMed Central
PMC7824656
DOI
10.3390/plants10010027
PII: plants10010027
Knihovny.cz E-zdroje
- Klíčová slova
- SSR markers, dendrogram, drought stress, genetic diversity, rice,
- Publikační typ
- časopisecké články MeSH
Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard's similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.
Department of Agronomy Faculty of Agriculture Kafrelsheikh University Kafr El Sheikh 33516 Egypt
Department of Biology College of Science Taif University P O Box 11099 Taif 21944 Saudi Arabia
Zobrazit více v PubMed
Long S.P., Ort D.R. More than taking the heat: Crops and global change. Curr. Opin. Plant Biol. 2010;13:1–8. doi: 10.1016/j.pbi.2010.04.008. PubMed DOI
Chakravarthi B.K., Naravaneni R. SSR marker-based DNA fingerprinting and diversity study in rice (Oryza sativa L.) Afr. J. Biotechnol. 2006;5:684–688.
Passioura J.B. The drought environment: Physical, biological and agricultural perspectives. J. Exp. Bot. 2007;58:113–117. doi: 10.1093/jxb/erl212. PubMed DOI
Wery J., Silim S.N., Knights E.J., Malhotra R.S., Cousin R. Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica. 1994;73:73–83. doi: 10.1007/BF00027184. DOI
Anis G., Hassan H., Saneoka H., El Sabagh A. Evaluation of new promising rice hybrid and its parental lines for floral, agronomic traits and genetic purity assessment. Pak. J. Agric. Sci. 2019;56:567–576.
Hossain M.M., Islam M.M., Hossain H., Ali M.S., Silva T.D. Genetic diversity analysis of aromatic landraces of rice (Oryza sativa L.) by microsatellite markers. Genes Genom. Genom. 2012;6:42–47.
Sivaranjani A.K.P., Pandey M.K., Sudharshan I., Kumar G.R., Madhav M.S. Assessment of genetic diversity among Basmati and non-Basmati aromatic rices of India using SSR markers. Curr. Sci. 2010;99:221–226.
Ravi M., Geethanjali S., Sameeyafarheen F., Maheswaran M. Molecular marker based genetic diversity analysis in rice (Oryza sativa L.) using RAPD and SSR markers. Euphytica. 2003;133:243–252. doi: 10.1023/A:1025513111279. DOI
Singh A., Sengar R.S. DNA fingerprinting based decoding of indica rice (Oryza sativa L) via molecular marker (SSR, ISSR, & RAPD) in aerobic condition. Adv. Crop. Sci. Technol. 2015;3:167.
Chukwu S.C., Rafii M.Y., Ramlee S.I., Ismail S.I., Oladosu Y., Kolapo K., Musa I., Halidu J., Muhammad I., Ahmed M. Marker-Assisted Introgression of Multiple Resistance Genes Confers Broad Spectrum Resistance against Bacterial Leaf Blight and Blast Diseases in PUTRA-1 Rice Variety. Agronomy. 2020;10:42. doi: 10.3390/agronomy10010042. DOI
Lapitan V.C., Brar D.S., Abe T., Redofia E.D. Assessment of genetic diversity of Philippine rice cultivars carrying good quality traits using SSR markers. Breed Sci. 2007;57:263–270. doi: 10.1270/jsbbs.57.263. DOI
Suh J.P., Won Y.J., Ahn E.K., Lee J.H., Ha W.G., Kim M.K., Cho Y.C., Jeong E.G., Kim B.K. Field performance and SSR analysis of drought QTL introgression lines of rice. Plant Breed Biotechnol. 2014;30:158–166. doi: 10.9787/PBB.2014.2.2.158. DOI
Vikram P., Swamy B.P.M., Dixit S., Cruz S., Ahmed H.U., Singh A.K., Kumar A. qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet. 2011;12:89. doi: 10.1186/1471-2156-12-89. PubMed DOI PMC
Venuprasad R., Dalid C.O., Del Valle M., Zhao D., Espiritu M., Sta Cruz M.T., Amante M., Kumar A., Atlin G.N. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theoret. Appl. Genet. 2009;120:177–190. doi: 10.1007/s00122-009-1168-1. PubMed DOI
Shamshudin N.A., Swamy B.M., Ratnam W., Cruz M.T., Raman A., Kumar A. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC genet. 2016;17:3. PubMed PMC
Abdallah A.A., Ammar M.H., Badawi A.T. Screening rice genotypes for drought resistance in Egypt. J. Plant Breed Crop. Sci. 2010;2:205–215.
Mumtaz M.Z., Saqib M., Abbas G., Akhtar J., Ul-Qamar Z. Drought stress impairs grain yield and quality of rice genotypes by impaired photosynthetic attributes and k nutrition. Rice Sci. 2020;27:5–9. doi: 10.1016/j.rsci.2019.12.001. DOI
Tabkhkar N., Rabiei B., Lahiji H.S., Chaleshtori M.H. Identification of a new set of drought-related miRNA-SSR markers and association analysis under drought stress in rice (Oryza sativa L.) Plant Gene. 2020;21:1–10. doi: 10.1016/j.plgene.2020.100220. DOI
Steel R.G.D., Torrie J.H., Dickey D.A. Principles and Procedures for Statistics. M.c. Graw Hill Book Co.; New York, NY, USA: 1997.
Zheng K., Huang N., Bennett J., Khush G.S. PCR-Based Marker Assisted Selection in Rice Breeding. International Rice Research Institute; Manila, Philippines: 1995. pp. 9–11. (Irri Discussion Paper Series No 12).
Chen X., Temnykh S., Xu Y., Cho Y.G., Mccouch S.R. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.) Theoret. Appl. Genet. 1997;95:553–567. doi: 10.1007/s001220050596. DOI
Wu K.S., Tanksley S.D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet. 1993;241:225–235. doi: 10.1007/BF00280220. PubMed DOI
Qu S., Desai A., Wing R., Sundaresan V. A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiol. 2008;146:189–199. doi: 10.1104/pp.107.111427. PubMed DOI PMC
Temnykh S., Park W.D., Ayres N.M., Cartinhour S., Hauck N., Lipovich L., Cho Y.G., Ishii T., Mccouch S.R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.) Theoret. Appld. Genet. 2000;100:697–712. doi: 10.1007/s001220051342. DOI
Temnykh S., Clerck D.G., Lukashova A., Lipovich L., Cartinhour S., Couch M.S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 2001;11:1441–1452. doi: 10.1101/gr.184001. PubMed DOI PMC
Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 1979;76:5269–5273. doi: 10.1073/pnas.76.10.5269. PubMed DOI PMC
Sun J., Zhao J., Schwartz M.A., Wang J.Y., Weidmer T., Sims P.J. c-Abl tyrosine kinase binds and phosphorylates phospholipid scramblase 1. J. Boil. Chem. 2001;276:28984–28990. doi: 10.1074/jbc.M102505200. PubMed DOI
Abdallah A., Gaballah M., Aml El-Saidy M., Ammar M. Drought Tolerance of Anther Culture Derived Rice Lines. J. Plant Prod. 2014;11:115–124. doi: 10.21608/jpp.2014.53893. DOI
Meng T.Y., Wei H.H., Li C., Dai Q.G., Xu K., Huo Z.Y., Wei H.Y., Guo B.W., Zhang H.C. Morphological and Physiological Traits of Large-Panicle Rice Varieties with High Filled-Grain Percentage. J. Integr. Agric. 2016;15:1751–1762. doi: 10.1016/S2095-3119(15)61215-1. DOI
Raman A., Verulkar S.B., Mandal N.P., Variar M., Shukla V.D., Dwivedi J.L., Singh B.N., Singh O.N., Swain P., Mall A.K., et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice. 2012;5:31. doi: 10.1186/1939-8433-5-31. PubMed DOI PMC
Zhang J., Babu R.C., Pantuwan G., Kamoshita A., Blum A., Wade L., Sarkarung S., O’Toole J.C., Nguyen H.T. Environments. In: Ito O., O’Toole J.C., Hardy B., editors. Molecular Dissection of Drought Tolerance in Rice: From Physio-Morphological Traits to Field Performance. International Rice Research Institute; Los Banos, Philippines: 1999. pp. 331–343.
Singh S., Pradhan S., Singh A., Singh O. Marker validation in recombinant inbred lines and random varieties of rice for drought tolerance. Aust. J. Crop. Sci. 2012;6:606–612.
Wang H., Inukai Y., Yamauchi A. Root development and nutrient uptake. Crit. Rev. Plant Sci. 2006;25:279–301. doi: 10.1080/07352680600709917. DOI
Gaballah M.M. Ph.D. Thesis. Kafer El-Sheikh University; Kafer, Egypt: 2009. Studies on Physiological and Morphological Traits Associated with Drought Resistance in Rice (Oryza sativa L.)
Gaballah M.M., Abdallah A.A. Effect of water irrigation shortage on some quantitative characters at different rice development growth stages. World Rural Obs. 2015;7:10–21.
Zubaer M.A., Chowdhury A.K., Islam M.Z., Ahmed T., Hasan M.A. Effects of water stress on growth and yield attributes of Aman rice genotypes. Int. J. Sustain. Crop. Prod. 2007;2:25–30.
Lafitte H.R., Li V.R., Gao C.H.M., Shi Y.M., Xu Y., Fu J.L., Yu B.Y., Ali S.B., Domingo A.J., Maghirang J., et al. Improvement of rice drought tolerance through backcross breeding: Evaluation of donors and selection in drought nurseries. Field Crop. Res. 2006;97:77–86. doi: 10.1016/j.fcr.2005.08.017. DOI
Kumar A., Basu S., Ramegowda V., Pereira A. Mechanisms of Drought Tolerance in Rice. Burleigh Dodds Sci. Publ. Ltd. 2018;12:1–34.
Mukamuhirwa A., Hovmalm H.P., Bolinsson H., Ortiz R., Nyamangyoku O., Johansson E. Concurrent Drought and Temperature Stress in Rice-a Possible Result of the Predicted Climate Change: Effects on Yield Attributes, Eating Characteristics, and Health Promoting Compounds. Int. J. Environ. Res. Public Health. 2019;16:1043. doi: 10.3390/ijerph16061043. PubMed DOI PMC
Sajib A.M., Hossain M.M., Mosnaz A.T.M., Hossain H., Islam M.M., Ali M.S., Prodhan S.H. SSR marker-based molecular characterization and genetic diversity analysis of aromatic landreces of rice (Oryza sativa L.) J. BioSci. Biotech. 2012;1:107–116.
Vanniarajan C., Vinod K.K., Pereira A. Molecular evaluation of genetic diversity and association studies in rice (Oryza sativa, L.) J. Genet. 2012;91:1–11. doi: 10.1007/s12041-012-0146-6. PubMed DOI
El-Malky M.M., Fahmy A.I., Kotb A.A. Detection of genetic diversity using microsatellites in rice (Oryza sative L.) Afr. Crop. Sci. Conf. Proc. 2007;8:597–603.
Liu B.H. Statistical Genomics: Linkage, Mapping and QTL Analysis. CRC Press; Boca Raton, FL, USA: 1998. p. 611.
Fasahat P., Muhammad K., Abdullah A., Wickneswari R. Identification of introgressed alien chromosome segments associated with grain quality in Oryza rufiogon x MR219 advanced breeding genotypes using SSR markers. Genet. Mol. Res. 2012;11:3534–3546. doi: 10.4238/2012.September.26.10. PubMed DOI
Islam M.D.S., Guswami A.A.P., Sarid-Ullah M., Hossain M.M., Prodhan H.F.M.S. Assessment of genetic diversity among moderately drought tolerant landraces of rice using RAPD markers. J. Biosci. Biotech. 2013;2:207–213.
El-Wahsh S.M., El-Refaee Y.Z., Emeran A.A., Mashaal S.F., Arafa R.A. Genetic diversity of rice blast fungus populations (Pyricularia grisea) using molecular markers. J. Agric. Chem. Biotechnol. 2016;7:57–65. doi: 10.21608/jacb.2016.40781. DOI
Nagy S., Poczai P., Cernak I., Gorji A.M., Hegedus G., Taller J. PIC calc: An online program to calculate polymorphic information content for molecular genetic studies. Biochem. Genet. 2012;50:670–672. doi: 10.1007/s10528-012-9509-1. PubMed DOI
Zeng L., Kwon T.R., Liu X., Wilson C., Grieve C.M., Gregorio G.B. Genetic diversity analyzed by microsatellite markers among rice (Oryza sativa, L.) genotypes with different adaptations to saline soils. Plant Sci. 2004;166:1275–1285. doi: 10.1016/j.plantsci.2004.01.005. DOI
Ram S.G., Thiruvengadam V., Vinod K.K. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J. Appl. Genet. 2007;48:337–345. doi: 10.1007/BF03195230. PubMed DOI
Kumar V., Kumar S., Chakrabarty S.K., Mohapatra T., Dadlani M. Molecular characterization of farmers’ varieties of rice (Oryza sativa) Indian J. Agric. Sci. 2015;85:118–124.
Aljumaili S.J., Rafii M.Y., Latif M.A., Sakimin S.Z., Arolu I.W., Miah G. Genetic diversity of aromatic rice germplasm revealed by SSR markers. BioMed Res. Int. 2018;2018:7658032. doi: 10.1155/2018/7658032. PubMed DOI PMC
Melaku G., Zhang S., Haileselassie T. Comparative evaluation of rice SSR markers on different Oryza species. J. Rice Res. Dev. 2018;1:38–48.
Kanbar A., Shashidhar H.E. Participatory selection assisted by DNA markers for enhanced drought resistance and productivity in rice (Oryza sativa, L.) Euphytica. 2011;178:137–150. doi: 10.1007/s10681-010-0284-y. DOI
Pachauri V., Taneja N., Vikram P., Singh N.K., Singh S. Molecular and morphological characterization of Indian farmers’ rice varieties (Oryza sativa L.) Aust. J. Crop. Sci. 2013;7:923–932.
Kanawapee N., Sanitchon J., Srihaban P., Theerakulpisut P. Genetic diversity analysis of rice cultivars (Oryza sativa L.) differing in salinity tolerance based on RAPD and SSR markers. Electr. J. Biotechnol. 2011;14:1–17.