Translational Potential of MicroRNAs for Preoperative Staging and Prediction of Chemoradiotherapy Response in Rectal Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
16-31765A
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
31614848
PubMed Central
PMC6827048
DOI
10.3390/cancers11101545
PII: cancers11101545
Knihovny.cz E-zdroje
- Klíčová slova
- biomarker, circulating microRNA, colorectal cancer, miRNA, microRNA,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Abstract: Colorectal cancer is the third most common cancer and the second cause of cancer-related deaths. Rectal cancer presents roughly one-third of all colorectal cancer cases and differs from it on both anatomical and molecular levels. While standard treatment of colon cancer patients is radical surgery, rectal cancer is usually treated with pre-operative chemoradiotherapy followed by total mesorectal excision, which requires precise estimation of TNM staging. Unfortunately, stage evaluation is based solely on imaging modalities, and they often do not correlate with postoperative pathological findings. Moreover, approximately half of rectal cancer patients do not respond to such pre-operative therapy, so they are exposed to its toxic effects without any clinical benefit. Thus, biomarkers that could precisely predict pre-operative TNM staging, and especially response to therapy, would significantly advance rectal cancer treatment-but till now, no such biomarker has been identified. In cancer research, microRNAs are emerging biomarkers due to their connection with carcinogenesis and exceptional stability. Circulating miRNAs are promising non-invasive biomarkers that could allow monitoring of a patient throughout the whole therapeutic process. This mini-review aims to summarize the current knowledge on miRNAs and circulating miRNAs involved in the prediction of response to treatment and pre-operative staging in rectal cancer patients.
Department of Molecular Medicine European Institute of Technology 625 00 Brno Czech Republic
Department of Surgery University Hospital Brno 625 00 Brno Czech Republic
Zobrazit více v PubMed
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Christensen T.D., Jensen S.G., Larsen F.O., Nielsen D.L. Systematic review: Incidence, risk factors, survival and treatment of bone metastases from colorectal cancer. J. Bone Oncol. 2018;13:97–105. doi: 10.1016/j.jbo.2018.09.009. PubMed DOI PMC
Frambach P., Pucciarelli S., Perin A., Zuin M., Toppan P., Maretto I., Urso E.D.L., Spolverato G. Metastatic pattern and new primary tumours after neoadjuvant therapy and surgery in rectal cancer. Colorectal Dis. 2018;20:O326–O334. doi: 10.1111/codi.14427. PubMed DOI
Edge S.B., Compton C.C. The American Joint Committee on Cancer: The 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM. Ann. Surg. Oncol. 2010;17:1471–1474. doi: 10.1245/s10434-010-0985-4. PubMed DOI
Tawadros P.S., Paquette I.M., Hanly A.M., Mellgren A.F., Rothenberger D.A., Madoff R.D. Adenocarcinoma of the Rectum in Patients Under Age 40 Is Increasing: Impact of Signet-Ring Cell Histology. Dis. Colon. Rectum. 2015;58:474–478. doi: 10.1097/DCR.0000000000000318. PubMed DOI
Grass F., Mathis K. Novelties in treatment of locally advanced rectal cancer. F1000 Res. 2018;7:1868. doi: 10.12688/f1000research.16194.1. PubMed DOI PMC
Bernier L., Balyasnikova S., Tait D., Brown G. Watch-and-Wait as a Therapeutic Strategy in Rectal Cancer. Curr. Colorectal. Cancer Rep. 2018;14:37–55. doi: 10.1007/s11888-018-0398-5. PubMed DOI PMC
Smith J.J., Strombom P., Chow O.S., Roxburgh C.S., Lynn P., Eaton A., Widmar M., Ganesh K., Yaeger R., Cercek A. Assessment of a Watch-and-Wait Strategy for Rectal Cancer in Patients With a Complete Response After Neoadjuvant Therapy. JAMA Oncol. 2019;5:e185896. doi: 10.1001/jamaoncol.2018.5896. PubMed DOI PMC
Kim S.H., Chang H.J., Kim D.Y., Park J.W., Baek J.Y., Kim S.Y., Park S.C., Oh J.H., Yu A., Nam B.H. What Is the Ideal Tumor Regression Grading System in Rectal Cancer Patients after Preoperative Chemoradiotherapy? Cancer Res. Treat. 2016;48:998–1009. doi: 10.4143/crt.2015.254. PubMed DOI PMC
Du B., Wang X., Wu D., Wang T., Yang X., Wang J., Shi X., Chen L., Zhang W. MicroRNA expression profiles identify biomarkers for predicting the response to chemoradiotherapy in rectal cancer. Mol. Med. Rep. 2018;18:1909–1916. doi: 10.3892/mmr.2018.9215. PubMed DOI PMC
Slattery M.L., Herrick J.S., Mullany L.E., Samowitz W.S., Sevens J.R., Sakoda L., Wolff R.K. The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer. Genes Chromosomes Cancer. 2017;56:769–787. doi: 10.1002/gcc.22481. PubMed DOI PMC
Greystoke A., Ayub M., Rothwell D.G., Morris D., Burt D., Hodgkinson C.L., Morrow C.J., Smith N., Aung K., Valle J., et al. Development of a circulating miRNA assay to monitor tumor burden: From mouse to man. Mol. Oncol. 2016;10:282–291. doi: 10.1016/j.molonc.2015.10.004. PubMed DOI PMC
Ishikawa H., Yamada H., Taromaru N., Kondo K., Nagura A., Yamazaki M., Ando Y., Munetsuna E., Suzuki K., Ohashi K., et al. Stability of serum high-density lipoprotein-microRNAs for preanalytical conditions. Ann. Clin. Biochem. 2017;54:134–142. doi: 10.1177/0004563216647086. PubMed DOI
MacFarlane L.A.R., Murphy P. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genomics. 2010;11:537–561. doi: 10.2174/138920210793175895. PubMed DOI PMC
Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838. PubMed DOI
Winter J., Jung S., Keller S., Gregory R.I., Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 2009;11:228–234. doi: 10.1038/ncb0309-228. PubMed DOI
Huntley R.P., Sitnikov D., Orlic-Milacic M., Balakrishnan R., D’Eustachio P., Gillespie M.E., Howe D., Kalea A.Z., Maegdefessel L., Osumi-Sutherland D., et al. Guidelines for the functional annotation of microRNAs using the Gene Ontology. RNA. 2016;22:667–676. doi: 10.1261/rna.055301.115. PubMed DOI PMC
Kozomara A., Griffiths-Jones S. Mirbase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–D73. doi: 10.1093/nar/gkt1181. PubMed DOI PMC
Sohel M.H. Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and Challenges. Achiev. Life Sci. 2016;10:175–186. doi: 10.1016/j.als.2016.11.007. DOI
Eslamizadeh S., Heidari M., Agah S., Faghihloo E., Ghazi H., Mirzaei A., Akbari A. The Role of MicroRNA Signature as Diagnostic Biomarkers in Different Clinical Stages of Colorectal Cancer. Cell J. Yakhteh. 2018;20:220–230. doi: 10.22074/cellj.2018.5366. PubMed DOI PMC
Tang S., Wu W.K., Li X., Wong S.H., Wong N., Chan M.T., Sung J.J., Yu J. Stratification of Digestive Cancers with Different Pathological Features and Survival Outcomes by MicroRNA Expression. Sci. Rep. 2016;15:24466. doi: 10.1038/srep24466. PubMed DOI PMC
Weber D., Amar L., Gödde D., Prinz C. Extensive screening of microRNA populations identifies hsa-miR-375 and hsa-miR-133a-3p as selective markers for human rectal and colon cancer. Oncotarget. 2018;9:27256–27267. doi: 10.18632/oncotarget.25535. PubMed DOI PMC
Bullock M.D., Pickard K.M., Nielsen B.S., Sayan A.E., Jenei V., Mellone M., Mitter R., Primrose J.N., Thomas G.J., Packham G.K., et al. Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression. Cell Death Dis. 2013;4:e684. doi: 10.1038/cddis.2013.213. PubMed DOI PMC
Wu W. Identification of aberrantly expressed miRNAs in rectal cancer. Oncol. Rep. 2012;37:662–668. doi: 10.3892/or.2012.1769. PubMed DOI
Gaedcke J., Grade M., Camps J., Sokilde R., Kaczkowski B., Schetter A.J., Difilippantonio M.J., Harris C.C., Ghadimi B.M., Møller S., et al. The Rectal Cancer microRNAome-microRNA Expression in Rectal Cancer and Matched Normal Mucosa. Clin. Cancer Res. 2012;18:4919–4930. doi: 10.1158/1078-0432.CCR-12-0016. PubMed DOI PMC
Mu J.F., Wang X.D., Sun P.D. Expression of miR-31 in rectal cancer patients and its effect on proliferation ability of rectal cancer cells SW837. Eur. Rev. Med. Pharmacol. Sci. 2018;22:8675–8681. doi: 10.26355/eurrev_201812_16632. PubMed DOI
Igarashi H., Kurihara H., Mitsuhashi K., Ito M., Okuda H., Kanno S., Naito T., Yoshii S., Takahashi H., Kusumi T., et al. Association of MicroRNA-31-5p with Clinical Efficacy of Anti-EGFR Therapy in Patients with Metastatic Colorectal Cancer. Ann. Surg. Oncol. 2015;22:2640–2648. doi: 10.1245/s10434-014-4264-7. PubMed DOI
Mosakhani N., Lahti L., Borze I., Karjalainen-Lindsberg M.L., Sundström J., Ristamäki R., Osterlund P., Knuutila S., Sarhadi V.K. MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF. Cancer Genet. 2012;205:545–551. doi: 10.1016/j.cancergen.2012.08.003. PubMed DOI
Manceau G., Imbeaud S., Thiebaut R., Liebaert F., Fontaine K., Rousseau F., Génin B., Le Corre D., Didelot A., Vincent M., et al. Hsa-miR-31-3p Expression Is Linked to Progression-free Survival in Patients with KRAS Wild-type Metastatic Colorectal Cancer Treated with Anti-EGFR Therapy. Clin. Cancer Res. 2014;20:3338–3347. doi: 10.1158/1078-0432.CCR-13-2750. PubMed DOI
Laurent-Puig P., Grisoni M.L., Heinemann V., Liebaert F., Neureiter D., Jung A., Montestruc F., Gaston-Mathe Y., Thiébaut R., Stintzing S. Validation of miR-31-3p Expression to Predict Cetuximab Efficacy When Used as First-Line Treatment in RAS Wild-Type Metastatic Colorectal Cancer. Clin. Cancer Res. 2019;25:134–141. doi: 10.1158/1078-0432.CCR-18-1324. PubMed DOI
Mlcochova J., Faltejskova-Vychytilova P., Ferracin M., Zagatti B., Radova L., Svoboda M., Nemecek R., John S., Kiss I., Vyzula R., et al. MicroRNA expression profiling identifies miR-31-5p/3p as associated with time to progression in wild-type RAS metastatic colorectal cancer treated with cetuximab. Oncotarget. 2015;6:38695–38704. doi: 10.18632/oncotarget.5735. PubMed DOI PMC
Yang Y., Tang T., Peng W., Xia L., Wang X., Duan B., Shu Y. The comparison of miR-155 with computed tomography and computed tomography plus serum amyloid A protein in staging rectal cancer. J. Surg. Res. 2015;193:764–771. doi: 10.1016/j.jss.2014.08.040. PubMed DOI
Li Y., Wang J., Ma X.W., Tan L., Yan Y.L., Xue C.F., Hui B.N., Liu R., Ma H.L., Ren J. A Review of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. Int. J. Biol. Sci. 2016;12:1022–1031. doi: 10.7150/ijbs.15438. PubMed DOI PMC
Heo S.H. Multimodal imaging evaluation in staging of rectal cancer. World J. Gastroenterol. 2014;20:4244. doi: 10.3748/wjg.v20.i15.4244. PubMed DOI PMC
Balyasnikova S., Brown G. Optimal Imaging Strategies for Rectal Cancer Staging and Ongoing Management. Curr. Treat. Options Oncol. 2016;17:32. doi: 10.1007/s11864-016-0403-7. PubMed DOI PMC
Jhaveri K.S., Hosseini-Nik H. MRI of Rectal Cancer: An Overview and Update on Recent Advances. Am. J. Roentgenol. 2015;205:W42–W55. doi: 10.2214/AJR.14.14201. PubMed DOI
Hotchi M. MicroRNA expression is able to predict response to chemoradiotherapy in rectal cancer. Mol. Clin. Oncol. 2012;1:137–142. doi: 10.3892/mco.2012.9. PubMed DOI PMC
Svoboda M., Sana J., Fabian P., Kocakova I., Gombosova J., Nekvindova J., Radova L., Vyzula R., Slaby O. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat. Oncol. 2012;7:195. doi: 10.1186/1748-717X-7-195. PubMed DOI PMC
Kheirelseid E.A.H., Miller N., Chang K.H., Curran C., Hennessey E., Sheehan M., Newell J., Lemetre C., Balls G., Kerin M.J. MiRNA expressions in rectal cancer as predictors of response to neoadjuvant chemoradiation therapy. Int. J. Colorectal. Dis. 2013;28:247–260. doi: 10.1007/s00384-012-1549-9. PubMed DOI
Lopes-Ramos C.M., Habr-Gama A., Quevedo B.d.S., Felício N.M., Bettoni F., Koyama F.C., Asprino P.F., Galante P.A., Gama-Rodrigues J., Camargo A.A., et al. Overexpression of miR-21-5p as a predictive marker for complete tumor regression to neoadjuvant chemoradiotherapy in rectal cancer patients. BMC Med. Genomics. 2014;7:68. doi: 10.1186/s12920-014-0068-7. PubMed DOI PMC
Caramés C., Cristobal I., Moreno V., Marín J., González-Alonso P., Torrejón B., Minguez P., Leon A., Martín J.I., Hernández R., et al. MicroRNA-31 Emerges as a Predictive Biomarker of Pathological Response and Outcome in Locally Advanced Rectal Cancer. Int. J. Mol. Sci. 2016;17:878. doi: 10.3390/ijms17060878. PubMed DOI PMC
Salvi S., Molinari C., Foca F., Teodorani N., Saragoni L., Puccetti M., Passardi A., Tamberi S., Avanzolini A., Lucci E., et al. MiR-17-92a-1 cluster host gene (MIR17HG) evaluation and response to neoadjuvant chemoradiotherapy in rectal cancer. OncoTargets Ther. 2016;9:2735–2742. doi: 10.2147/OTT.S105760. PubMed DOI PMC
Millino C., Maretto I., Pacchioni B., Digito M., De Paoli A., Canzonieri V., D’Angelo E., Agostini M., Rizzolio F., Giordano A., et al. Gene and MicroRNA Expression Are Predictive of Tumor Response in Rectal Adenocarcinoma Patients Treated with Preoperative Chemoradiotherapy: COMBINED miRNAS AND GENE EXPRESSION. J. Cell Physiol. 2017;232:426–435. doi: 10.1002/jcp.25441. PubMed DOI
Eriksen A.H.M., Sørensen F.B., Andersen R.F., Jakobsen A., Hansen T.F. Association between the expression of microRNAs and the response of patients with locally advanced rectal cancer to preoperative chemoradiotherapy. Oncol. Lett. 2017;14:201–209. doi: 10.3892/ol.2017.6141. PubMed DOI PMC
D’Angelo E., Zanon C., Sensi F., Digito M., Rugge M., Fassan M., Scarpa M., Pucciarelli S., Nitti D., Agostini M. MiR-194 as predictive biomarker of responsiveness to neoadjuvant chemoradiotherapy in patients with locally advanced rectal adenocarcinoma. J. Clin. Pathol. 2018;71:344–350. doi: 10.1136/jclinpath-2017-204690. PubMed DOI
Campayo M., Navarro A., Benítez J.C., Santasusagna S., Ferrer C., Monzó M., Cirera L. MiR-21, miR-99b and miR-375 combination as predictive response signature for preoperative chemoradiotherapy in rectal cancer. PLoS ONE. 2018;13:e0206542. doi: 10.1371/journal.pone.0206542. PubMed DOI PMC
Luo J., Liu L., Zhou N., Shen J., Sun Q., Zhu Y. miR-519b-3p promotes responsiveness to preoperative chemoradiotherapy in rectal cancer patients by targeting ARID4B. Gene. 2018;655:84–90. doi: 10.1016/j.gene.2018.02.056. PubMed DOI
Pettit C., Webb A., Walston S., Chatterjee M., Chen W., Frankel W., Croce C., Williams T.M. MicroRNA molecular profiling identifies potential signaling pathways conferring resistance to chemoradiation in locally-advanced rectal adenocarcinoma. Oncotarget. 2018;9:28951–28964. doi: 10.18632/oncotarget.25652. PubMed DOI PMC
Orosz E., Kiss I., GyöNgyi Z., Varjas T. Expression of Circulating miR-155, miR-21, miR-221, miR-30a, miR-34a and miR-29a: Comparison of Colonic and Rectal Cancer. In Vivo. 2018;32:1333–1337. doi: 10.21873/invivo.11383. PubMed DOI PMC
Meltzer S., Bjørnetrø T., Lyckander L.G., Flatmark K., Dueland S., Samiappan R., Johansen C., Kalanxhi E., Ree A.H., Redalen K.R. Circulating Exosomal miR-141-3p and miR-375 in Metastatic Progression of Rectal Cancer. Transl. Oncol. 2019;12:1038–1044. doi: 10.1016/j.tranon.2019.04.014. PubMed DOI PMC
Mjelle R., Sellæg K., Sætrom P., Thommesen L., Sjursen W., Hofsli E. Identification of metastasis-associated microRNAs in serum from rectal cancer patients. Oncotarget. 2017;8:90077–90089. doi: 10.18632/oncotarget.21412. PubMed DOI PMC
Azizian A., Kramer F., Jo P., Wolff H.A., Beißbarth T., Skarupke R., Bernhardt M., Grade M., Ghadimi B.M., Gaedcke J. Preoperative Prediction of Lymph Node Status by Circulating Mir-18b and Mir-20a During Chemoradiotherapy in Patients with Rectal Cancer. World J. Surg. 2015;39:2329–2335. doi: 10.1007/s00268-015-3083-8. PubMed DOI
D’Angelo E., Fassan M., Maretto I., Pucciarelli S., Zanon C., Digito M., Rugge M., Nitti D., Agostini M. Serum miR-125b is a non-invasive predictive biomarker of the pre-operative chemoradiotherapy responsiveness in patients with rectal adenocarcinoma. Oncotarget. 2016;7:28647–28657. doi: 10.18632/oncotarget.8725. PubMed DOI PMC
Yu J., Li N., Wang X., Ren H., Wang W., Wang S., Rugge M., Nitti D., Agostini M. Circulating serum microRNA-345 correlates with unfavorable pathological response to preoperative chemoradiotherapy in locally advanced rectal cancer. Oncotarget. 2016;7:64233–64243. doi: 10.18632/oncotarget.11649. PubMed DOI PMC
Hiyoshi Y., Akiyoshi T., Inoue R., Murofushi K., Yamamoto N., Fukunaga Y., Ueno M., Baba H., Mori S., Yamaguchi T. Serum miR-143 levels predict the pathological response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Oncotarget. 2017;8:79201–79211. doi: 10.18632/oncotarget.16760. PubMed DOI PMC
Bjørnetrø T., Redalen K.R., Meltzer S., Thusyanthan N.S., Samiappan R., Jegerschöld C., Handeland K.R., Ree A.H. An experimental strategy unveiling exosomal microRNAs 486-5p, 181a-5p and 30d-5p from hypoxic tumour cells as circulating indicators of high-risk rectal cancer. J. Extracell. Vesicles. 2019;8:1567219. doi: 10.1080/20013078.2019.1567219. PubMed DOI PMC
Sun W., Li G., Wan J., Zhu J., Shen W., Zhang Z. Circulating tumor cells: A promising marker of predicting tumor response in rectal cancer patients receiving neoadjuvant chemo-radiation therapy. Oncotarget. 2016;7:69507–69517. doi: 10.18632/oncotarget.10875. PubMed DOI PMC
Troncarelli Flores B.C., Souza e Silva V., Ali Abdallah E., Mello C.A.L., Gobo Silva M.L., Gomes Mendes G., Camila Braun A., Aguiar Junior S., Thomé Domingos Chinen L. Molecular and Kinetic Analyses of Circulating Tumor Cells as Predictive Markers of Treatment Response in Locally Advanced Rectal Cancer Patients. Cells. 2019;8:641. doi: 10.3390/cells8070641. PubMed DOI PMC
Sclafani F., Chau I., Cunningham D., Hahne J.C., Vlachogiannis G., Eltahir Z., Lampis A., Braconi C., Kalaitzaki E., De Castro D.G., et al. KRAS and BRAF mutations in circulating tumour DNA from locally advanced rectal cancer. Sci. Rep. 2018;8:1445. doi: 10.1038/s41598-018-19212-5. PubMed DOI PMC
Glinge C., Clauss S., Boddum K., Jabbari R., Jabbari J., Risgaard B., Tomsits P., Hildebrand B., Kääb S., Wakili R., et al. Stability of Circulating Blood-Based MicroRNAs–Pre-Analytic Methodological Considerations. PLoS ONE. 2017;12:e0167969. doi: 10.1371/journal.pone.0167969. PubMed DOI PMC
Poel D., Buffart T.E., Oosterling-Jansen J., Verheul H.M., Voortman J. Evaluation of several methodological challenges in circulating miRNA qPCR studies in patients with head and neck cancer. Exp. Mol. Med. 2018;50:e454. doi: 10.1038/emm.2017.288. PubMed DOI PMC
Lo Nigro C., Ricci V., Vivenza D., Granetto C., Fabozzi T., Miraglio E., Merlano M.C. Prognostic and predictive biomarkers in metastatic colorectal cancer anti-EGFR therapy. World J. Gastroenterol. 2016;22:6944. doi: 10.3748/wjg.v22.i30.6944. PubMed DOI PMC
Rapisuwon S., Vietsch E.E., Wellstein A. Circulating biomarkers to monitor cancer progression and treatment. Comput. Struct. Biotechnol. J. 2016;14:211–222. doi: 10.1016/j.csbj.2016.05.004. PubMed DOI PMC