Markers for the progression of IgA nephropathy
Jazyk angličtina Země Itálie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R01 GM098539
NIGMS NIH HHS - United States
K01 DK106341
NIDDK NIH HHS - United States
R01 DK078244
NIDDK NIH HHS - United States
R01 DK099228
NIDDK NIH HHS - United States
P30 DK079337
NIDDK NIH HHS - United States
R01 DK082753
NIDDK NIH HHS - United States
R56 DK078244
NIDDK NIH HHS - United States
PubMed
27142988
PubMed Central
PMC5548426
DOI
10.1007/s40620-016-0299-0
PII: 10.1007/s40620-016-0299-0
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarkers, End-stage renal disease, IgA nephropathy, Renal biopsy,
- MeSH
- biologické markery analýza MeSH
- biopsie MeSH
- chronické selhání ledvin etiologie MeSH
- IgA nefropatie komplikace diagnóza MeSH
- ledviny metabolismus MeSH
- lidé MeSH
- prognóza MeSH
- progrese nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
We have summarized the latest findings on markers for progression of immunoglobulin A (IgA) nephropathy (IgAN), the most common primary glomerulonephritis with a high prevalence among end-stage renal disease (ESRD) patients. The clinical predictors of renal outcome in IgAN nephropathy, such as proteinuria, hypertension, and decreased estimated glomerular filtration rate (eGFR) at the time of the diagnosis, are well known. The Oxford classification of IgAN identified four types of histological lesions (known as the MEST score) associated with the development of ESRD and/or a 50 % reduction in eGFR. In addition, the role of genetic risk factors associated with IgAN is being elucidated by genome-wide association studies, with multiple risk alleles described. Recently, biomarkers in serum (galactose-deficient IgA1, IgA/IgG autoantibodies against galactose-deficient IgA1, and soluble CD 89-IgA complexes) and urine (soluble transferrin receptor, interleukin-6/epidermal growth factor ratio, fractalkine, laminin G-like 3 peptide, κ light chains, and mannan-binding lectin) have been identified. Some of these biomarkers may represent candidates for the development of noninvasive diagnostic tests, that would be useful for detection of subclinical disease activity, monitoring disease progression, assessment of treatment, and at the same time circumventing the complications associated with renal biopsies. These advances, along with future disease-specific therapy, will be helpful in improving the treatment effectiveness, prognosis, and the quality of life in connection with IgAN.
Departments of Microbiology and Medicine University of Alabama at Birmingham Birmingham AL 35294 USA
Zobrazit více v PubMed
Moriyama T, Tanaka K, Iwasaki C, et al. Prognosis in IgA nephropathy: 30-year analysis of 1,012 patients at a single center in Japan. PLoS One. 2014;9:e91756. PubMed PMC
Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368:2402–2414. PubMed
Cattran DC, Coppo R, Cook HT, et al. Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76:534–545. PubMed
Coppo R, Troyanov S, Camilla R, et al. Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, The Oxford IgA nephropathy clinicopathological classification is valid for children as well as adults. Kidney Int. 2010;77:921–927. PubMed
Feehally J, Floege J. IgA nephropathy and Henoch-Schönlein nephritis. In: Feehally J, Floege J, Johnson RJ, editors. Comprehensive clinical nephrology. 3. Mosby; 2007. pp. 253–264.
Kiryluk K, Li Y, Sanna-Cherchi S, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012;8:e1002765. PubMed PMC
Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46:1187–1196. PubMed PMC
Tomana M, Matousovic K, Julian BA, et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 1997;52:509–516. PubMed
Tomana M, Novak J, Julian BA, et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999;104:73–81. PubMed PMC
Novak J, Raskova Kafkova L, Suzuki H, et al. IgA1 immune complexes from pediatric patients with IgA nephropathy activate cultured human mesangial cells. Nephrol Dial Transplant. 2011;26:3451–3457. PubMed PMC
Maillard N, Wyatt RJ, Julian BA, et al. Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol. 2015;26:1503–1512. PubMed PMC
Schmitt R, Stahl AL, Olin Al, et al. The combined role of galactose-deficient IgA1 and streptococcal IgA-binding M protein in inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy. J Immunol. 2014;193:317–326. PubMed PMC
Daha MR, van Kooten C. Role of complement in IgA nephropathy. J Nephrol. 2016;29:1–4. PubMed PMC
Suzuki H, Ohsawa I, Kodama F, et al. Fluctuation of serum C3 levels reflects disease activity and metabolic background in patients with IgAnephropathy. J Nephrol. 2013;26:708–15. PubMed
Lai KN, Leung JC, Chan LY, et al. Activation of podocytes by mesangial-derived TNF-alpha: glomerulo-podocytic communication in IgA nephropathy. Am J Physiol Renal Physiol. 2008;294:F945–955. PubMed
Maixnerova D, Bauerova L, Skibova J, et al. The retrospective analysis of 343 Czech patients with IgA nephropathy–one centre experience. Nephrol Dial Transplant. 2012;27:1492–1498. PubMed
Reich HN, Troyanov S, Scholey JW, et al. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol. 2007;18:3177–3183. PubMed
Alamartine E, Sauron C, Laurent B, et al. The use of Oxford classification of IgA nephropathy to predict renal survival. Clin J Am Soc Nephrol. 2011;6:2384–2388. PubMed PMC
Berthoux F, Mohey H, Laurent B, et al. Predicting the risk for dialysis or death in IgA nephropathy. J Am Soc Nephrol. 2011;22:752–61. PubMed PMC
Barbour SJ, Cattran DC, Espino-Hernandez G, et al. Identifying the ideal metric of proteinuria as a predictor of renal outcome in idiopathic glomerulonephritis. Kidney Int. 2015;88:1392–1401. PubMed
Barbour SJ, Reich HN. Risk stratification of patients with IgA nephropathy. Am J Kidney Dis. 2012;59:865–73. PubMed
Coppo R, D’Amico G. Factors predicting progression of IgA nephropathies. J Nephrol. 2005;18:503–512. PubMed
Kaartinen K, Syrjanen J, Porsti I, et al. Inflammatory markers and the progression of IgA glomerulonephritis. Nephrol Dial Transplant. 2008;23:1285–1290. PubMed
Roberts IS, Cook HT, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76:546–556. PubMed
Barbour SJ, Espino-Hernandez G, Reich HN, et al. Oxford Derivation, North American Validation and VALIGA Consortia. The MEST score provides earlier risk prediction in IgA nephropathy. Kidney Int. 2016;89:1671–75. PubMed
Coppo R, Troyanov S, Bellur S, et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014;86:828–836. PubMed PMC
Bellur SS, Troyanov S, Cook HT, et al. Immunostaining findings in IgA nephropathy: correlation with histology and clinical outcome in the Oxford classification patient cohort. Nephrol Dial Transplant. 2011;26:2533–2536. PubMed
Wada Y, Ogata H, Takeshige Y, et al. Clinical significance of IgG deposition in the glomerular mesangial area in patients with IgA nephropathy. Clin Exp Nephrol. 2013;17:73–82. PubMed PMC
Xu PC, Wei L, Shang WY, et al. Urinary kidney injury molecule-1 is related to pathologic involvement in IgA nephropathy with normotension, normal renal function and mild proteinuria. BMC Nephrol. 2014;7:107. PubMed PMC
Yanagawa H, Suzuki H, Suzuki Y, et al. A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS One. 2014;9:e98081. PubMed PMC
Nakata J, Suzuki Y, Suzuki H, et al. Changes in nephritogenic serum galactose-deficient IgA1 in IgA nephropathy following tonsillectomy and steroid therapy. PLoS One. 2014;9:e89707. PubMed PMC
Suzuki H, Raska M, Yamada K, et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem. 2014;289:5330–5339. PubMed PMC
Moldoveanu Z, Wyatt RJ, Lee J, et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 2007;71:1148–1154. PubMed
Hastings MC, Moldoveanu Z, Julian BA, et al. Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clin J Am Soc Nephrol. 2010;5:2069–2074. PubMed PMC
Zhao N, Hou P, Lv J, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82:790–796. PubMed PMC
Launay P, Grossetête B, Arcos-Fajardo M, et al. Fcα receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-IgA complexes in patients and CD89 transgenic mice. J Exp Med. 2000;191:1999–2009. PubMed PMC
Berthelot L, Papista C, Maciel TT, et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med. 2012;209:793–806. PubMed PMC
Vuong MT, Hahn-Zoric M, Lundberg S, et al. Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int. 2010;78:1281–1287. PubMed
Lechner SM, Papista C, Chemouny JM, et al. Role of IgA receptors in the pathogenesis of IgA nephropathy. J Nephrol. 2016;29:5–11. PubMed
Delanghe SE, Speeckaert MM, Segers H, et al. Soluble transferrin receptor in urine, a new biomarker for IgA nephropathy and Henoch-Schönlein purpura nephritis. Clin Biochem. 2013;46:591–597. PubMed
Peters HP, Waanders F, Meijer E, et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of end-stage renal disease in patients with IgA nephropathy. Nephrol Dial Transplant. 2011;26:3581–3588. PubMed
Peters HP, van den Brand JA, Wetzels JF. Urinary excretion of low-molecular-weight proteins as prognostic markers in IgA nephropathy. Neth J Med. 2009;67:54–61. PubMed
Yasutake J, Suzuki Y, Suzuki H, et al. Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy. Nephrol Dial Transplant. 2015;30:1315–1321. PubMed PMC
Berthoux F, Suzuki H, Thibaudin L, et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol. 2012;23:1579–1587. PubMed PMC
Hastings MC, Moldoveanu Z, Suzuki H, et al. Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Expert Opin Med Diagn. 2013;7:615–27. PubMed PMC
Caliskan Y, Kiryluk K. Novel biomarkers in glomerular disease. Adv Chronic Kidney Dis. 2014;21:205–216. PubMed PMC
Szeto CC, Li PK. Micro RNAs in IgA nephropathy. Nat Rev Nephrol. 2014;10:249–256. PubMed
Serino G, Sallustio F, Cox SN, et al. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol. 2012;23:814–824. PubMed PMC
Wang N, Bu R, Duan Z, et al. Profiling and initial validation of urinary microRNAs as biomarkers in IgA nephropathy. PeerJ. 2015;3:e990. doi: 10.7717/peerj.990. PubMed DOI PMC
Li-Na Xing, Wang H, Yin PH, et al. Reduced mir-29b-3p expression up-regulate CDK6 and contributes to IgA nephropathy. Int J Clin Exp Med. 2014;7:5275–5281. PubMed PMC
Bao H, Chen H, Zhu X, et al. MiR 223 downregulation promotes glomerular endothelial cell activation by upregulating importin α4 and α5 in IgA nephropathy. Kidney Int. 2014;85:624–635. PubMed
Berthelot L, Robert T, Vuiblet V, et al. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int. 2015;88:815–822. PubMed
Ranieri E, Gesualdo L, Petrarulo F, et al. Urinary IL-6/EGF ratio: a useful prognostic marker for the progression of renal damage in IgA nephropathy. Kidney Int. 1996;50:1990–2001. PubMed
Torres DD, Rossini M, Manno C, et al. The ratio of epidermal growth factor to monocyte chemotactic peptide-1 in the urine predicts renal prognosis in IgA nephropathy. Kidney Int. 2008;73:327–333. PubMed
Aizawa T, Imaizumi T, Tsuruga K, et al. Urinary fractalkine and monocyte chemoattractant protein-1 as possible predictors of disease activity of childhood glomerulonephritis. Tohoku J Exp Med. 2013;231:265–270. PubMed
Rocchetti MT, Papale M, d’Apollo AM, et al. Association of urinary laminin G-like 3 and free kappa light chains with disease activity and histological injury in IgA nephropathy. Clin J Am Soc Nephrol. 2013;8:1115–1125. PubMed PMC
Wu J, Wang N, Wang J, et al. Identification of a uromodulin fragment for diagnosis of IgA nephropathy. Rapid Commun Mass Spectrom. 2010;24:1971–1978. PubMed
Candiano G, Musante L, Bruschi M, et al. Repetitive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol. 2006;17:3139–3148. PubMed
Asao R, Asanuma K, Kodama F, et al. Relationships between levels of urinary podocalyxin, number of urinary podocytes, and histologic injury in adult patients with IgA nephropathy. Clin J Am Soc Nephrol. 2012;7:1385–1393. PubMed PMC
Good DM, Zürbig P, Argiles A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010;9:2424–2437. PubMed PMC
Liu LL, Jiang Y, Wang LN, et al. Urinary mannose-binding lectin is a biomarker for predicting the progression of immunoglobulin (Ig) A nephropathy. Clin Exp Immunol. 2012;169:148–155. PubMed PMC
Sogabe A, Uto H, Kanmura S, et al. Correlation of serum levels of complement C4a desArg with pathologically estimated severity of glomerular lesions and mesangial hypercellularity scores in patients with IgA nephropathy. Int J Mol Med. 2013;32:307–314. PubMed
Gharavi AG, Kiryluk K, Choi M, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011;43:321–327. PubMed PMC
Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46(11):1187–96. PubMed PMC
Li M, Foo JN, Wang JQ, et al. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun. 2015;6:7270. doi: 10.1038/ncomms8270. PubMed DOI PMC
Suzuki H, Kiryluk K, Novak J, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22:1795–1803. PubMed PMC
Toward Noninvasive Diagnosis of IgA Nephropathy: A Pilot Urinary Metabolomic and Proteomic Study