The TOR-Auxin Connection Upstream of Root Hair Growth
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministerstvo Školství, Mládeže a Tělovýchovy
19-13375Y
Grantová Agentura České Republiky
PubMed
33451169
PubMed Central
PMC7828656
DOI
10.3390/plants10010150
PII: plants10010150
Knihovny.cz E-zdroje
- Klíčová slova
- PIN-FORMED 2, ROP2, ROS, TOR signaling, auxin, plant adaptation, polar cell elongation, root growth, root hair growth,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.
Zobrazit více v PubMed
Van Gelderen K., Kang C., Pierik R. Light Signaling, Root Development, and Plasticity. Plant Physiol. 2018 doi: 10.1104/pp.17.01079. PubMed DOI PMC
Barrada A., Montané M.H., Robaglia C., Menand B. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective. Int. J. Mol. Sci. 2015;16:19671–19697. doi: 10.3390/ijms160819671. PubMed DOI PMC
Retzer K., Korbei B., Luschnig C. Auxin and Its Role in Plant Development. Springer; Berlin, Germany: 2014. Auxin and Tropisms.
Calleja-Cabrera J., Boter M., Oñate-Sánchez L., Pernas M. Root Growth Adaptation to Climate Change in Crops. Front. Plant Sci. 2020 doi: 10.3389/fpls.2020.00544. PubMed DOI PMC
Kircher S., Schopfer P. Photosynthetic Sucrose Acts as Cotyledon-Derived Long-Distance Signal to Control Root Growth during Early Seedling Development in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2012 doi: 10.1073/pnas.1203746109. PubMed DOI PMC
Bennett T., Leyser O. Auxin and Its Role in Plant Development. Springer; Berlin, Germany: 2014. The Auxin Question: A Philosophical Overview.
Dolan L., Duckett C.M., Grierson C., Linstead P., Schneider K., Lawson E., Dean C., Poethig S., Roberts K. Clonal Relationships and Cell Patterning in the Root Epidermis of Arabidopsis. Development. 1994;120:2465–2474.
Grierson C., Nielsen E., Ketelaarc T., Schiefelbein J. Root Hairs. Arab. Book. 2014;12:e0172. doi: 10.1199/tab.0172. PubMed DOI PMC
Jones A.R., Kramer E.M., Knox K., Swarup R., Bennett M.J., Lazarus C.M., Leyser H.M.O., Grierson C.S. Auxin Transport through Non-Hair Cells Sustains Root-Hair Development. Nat. Cell Biol. 2009 doi: 10.1038/ncb1815. PubMed DOI PMC
Leyser O. Auxin Signaling. Plant Physiol. 2018 doi: 10.1104/pp.17.00765. PubMed DOI PMC
Wu Y., Shi L., Li L., Fu L., Liu Y., Xiong Y., Sheen J. Integration of Nutrient, Energy, Light, and Hormone Signalling via TOR in Plants. J. Exp. Bot. 2019 doi: 10.1093/jxb/erz028. PubMed DOI PMC
Sauer M., Kleine-Vehn J. PIN-FORMED and PIN-LIKES Auxin Transport Facilitators. Development. 2019 doi: 10.1242/dev.168088. PubMed DOI
Muroyama A., Bergmann D. Plant Cell Polarity: Creating Diversity from inside the Box. Annu. Rev. Cell Dev. Biol. 2019 doi: 10.1146/annurev-cellbio-100818-125211. PubMed DOI
Adamowski M., Friml J. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell. 2015 doi: 10.1105/tpc.114.134874. PubMed DOI PMC
Qi J., Greb T. Cell Polarity in Plants: The Yin and Yang of Cellular Functions. Curr. Opin. Plant Biol. 2017 doi: 10.1016/j.pbi.2016.11.015. PubMed DOI PMC
Ötvös K., Marconi M., Vega A., O’Brien J., Johnson A., Abualia R., Antonielli L., Montesinos J.C., Zhang Y., Tan S., et al. Modulation of Root Growth by Nutrient-Defined Fine-Tuning of Polar Auxin Transport. bioRxiv. 2020 doi: 10.1101/2020.06.19.160994. PubMed DOI PMC
Band L.R., Wells D.M., Larrieu A., Sun J., Middleton A.M., French A.P., Brunoud G., Sato E.M., Wilson M.H., Peŕet B., et al. Root Gravitropism Is Regulated by a Transient Lateral Auxin Gradient Controlled by a Tipping-Point Mechanism. Proc. Natl. Acad. Sci. USA. 2012 doi: 10.1073/pnas.1201498109. PubMed DOI PMC
Park E., Nebenführ A. Cytoskeleton and Root Hair Growth. Plant Cytoskelet. 2011 doi: 10.1007/978-1-4419-0987-9_12. DOI
Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-Dependent Auxin Gradients Establish the Apical-Basal Axis of Arabidopsis. Nature. 2003 doi: 10.1038/nature02085. PubMed DOI
Smit M.E., Weijers D. The Role of Auxin Signaling in Early Embryo Pattern Formation. Curr. Opin. Plant Biol. 2015 doi: 10.1016/j.pbi.2015.10.001. PubMed DOI
Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell. 2003 doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI
Armengot L., Marquès-Bueno M.M., Jaillais Y. Regulation of Polar Auxin Transport by Protein and Lipid Kinases. J. Exp. Bot. 2016 doi: 10.1093/jxb/erw216. PubMed DOI PMC
Fendrych M., Akhmanova M., Merrin J., Glanc M., Hagihara S., Takahashi K., Uchida N., Torii K.U., Friml J. Rapid and Reversible Root Growth Inhibition by TIR1 Auxin Signalling. Nat. Plants. 2018 doi: 10.1038/s41477-018-0190-1. PubMed DOI PMC
Gallei M., Luschnig C., Friml J. Auxin Signalling in Growth: Schrödinger’s Cat out of the Bag. Curr. Opin. Plant Biol. 2020 doi: 10.1016/j.pbi.2019.10.003. PubMed DOI
Semeradova H., Montesinos J.C., Benkova E. All Roads Lead to Auxin: Post-Translational Regulation of Auxin Transport by Multiple Hormonal Pathways. Plant Commun. 2020 doi: 10.1016/j.xplc.2020.100048. PubMed DOI PMC
van Gelderen K., Kang C., Paalman R., Keuskamp D., Hayes S., Pierik R. Far-Red Light Detection in the Shoot Regulates Lateral Root Development through the HY5 Transcription Factor. Plant Cell. 2018 doi: 10.1105/tpc.17.00771. PubMed DOI PMC
Sairanen I., Novák O., Pěnčík A., Ikeda Y., Jones B., Sandberg G., Ljung K. Soluble Carbohydrates Regulate Auxin Biosynthesis via PIF Proteins in Arabidopsis. Plant Cell. 2013 doi: 10.1105/tpc.112.104794. PubMed DOI PMC
Pierik R., Testerink C. The Art of Being Flexible: How to Escape from Shade, Salt, And Drought1. Plant Physiol. 2014 doi: 10.1104/pp.114.239160. PubMed DOI PMC
de Smet I. Lateral Root Initiation: One Step at a Time. New Phytol. 2012 doi: 10.1111/j.1469-8137.2011.03996.x. PubMed DOI
Orman-Ligeza B., Parizot B., Gantet P.P., Beeckman T., Bennett M.J., Draye X. Post-Embryonic Root Organogenesis in Cereals: Branching out from Model Plants. Trends Plant Sci. 2013 doi: 10.1016/j.tplants.2013.04.010. PubMed DOI
Habets M.E.J., Offringa R. PIN-Driven Polar Auxin Transport in Plant Developmental Plasticity: A Key Target for Environmental and Endogenous Signals. New Phytol. 2014:362–377. doi: 10.1111/nph.12831. PubMed DOI
Rakusová H., Fendrych M., Friml J. Intracellular Trafficking and PIN-Mediated Cell Polarity during Tropic Responses in Plants. Curr. Opin. Plant Biol. 2015:116–123. doi: 10.1016/j.pbi.2014.12.002. PubMed DOI
Wallner E.-S. The Value of Asymmetry: How Polarity Proteins Determine Plant Growth and Morphology. J. Exp. Bot. 2020;71:5733–5739. doi: 10.1093/jxb/eraa329. PubMed DOI PMC
Gupta A., Rico-Medina A., Caño-Delgado A.I. The Physiology of Plant Responses to Drought. Science. 2020 doi: 10.1126/science.aaz7614. PubMed DOI
Bögre L., Henriques R., Magyar Z. TOR tour to auxin. EMBO J. 2013 doi: 10.1038/emboj.2013.69. PubMed DOI PMC
Yokawa K., Baluška F. The TOR Complex: An Emergency Switch for Root Behavior. Plant Cell Physiol. 2016 doi: 10.1093/pcp/pcv191. PubMed DOI
Ryabova L.A., Robaglia C., Meyer C. Target of Rapamycin Kinase: Central Regulatory Hub for Plant Growth and Metabolism. J. Exp. Bot. 2019 doi: 10.1093/jxb/erz108. PubMed DOI PMC
Zhao Y., Wang X.Q. The Hot Issue: TOR Signalling Network in Plants. Funct. Plant Biol. 2020 doi: 10.1071/FP20071. PubMed DOI
Roustan V., Jain A., Teige M., Ebersberger I., Weckwerth W. An Evolutionary Perspective of AMPK-TOR Signaling in the Three Domains of Life. J. Exp. Bot. 2016 doi: 10.1093/jxb/erw211. PubMed DOI
Dobrenel T., Caldana C., Hanson J., Robaglia C., Vincentz M., Veit B., Meyer C. TOR Signaling and Nutrient Sensing. Annu. Rev. Plant Biol. 2016;67:261–285. doi: 10.1146/annurev-arplant-043014-114648. PubMed DOI
Soto-Burgos J., Bassham D.C. SnRK1 Activates Autophagy via the TOR Signaling Pathway in Arabidopsis Thaliana. PLoS ONE. 2017 doi: 10.1371/journal.pone.0182591. PubMed DOI PMC
Van Leene J., Han C., Gadeyne A., Eeckhout D., Matthijs C., Cannoot B., De Winne N., Persiau G., Van De Slijke E., Van de Cotte B., et al. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants. 2019;5:316–327. doi: 10.1038/s41477-019-0378-z. PubMed DOI
Mair A., Pedrotti L., Wurzinger B., Anrather D., Simeunovic A., Weiste C., Valerio C., Dietrich K., Kirchler T., Nägele T., et al. SnRK1-Triggered Switch of BZIP63 Dimerization Mediates the Low-Energy Response in Plants. eLife. 2015 doi: 10.7554/eLife.05828. PubMed DOI PMC
Xiong Y., Sheen J. Novel Links in the Plant TOR Kinase Signaling Network. Curr. Opin. Plant Biol. 2015 doi: 10.1016/j.pbi.2015.09.006. PubMed DOI PMC
Shi L., Wu Y., Sheen J. TOR Signaling in Plants: Conservation and Innovation. Development. 2018 doi: 10.1242/dev.160887. PubMed DOI PMC
Xiong Y., McCormack M., Li L., Hall Q., Xiang C., Sheen J. Glucose-TOR Signalling Reprograms the Transcriptome and Activates Meristems. Nature. 2013 doi: 10.1038/nature12030. PubMed DOI PMC
Nukarinen E., Ngele T., Pedrotti L., Wurzinger B., Mair A., Landgraf R., Börnke F., Hanson J., Teige M., Baena-Gonzalez E., et al. Quantitative Phosphoproteomics Reveals the Role of the AMPK Plant Ortholog SnRK1 as a Metabolic Master Regulator under Energy Deprivation. Sci. Rep. 2016 doi: 10.1038/srep31697. PubMed DOI PMC
Liu Y., Bassham D.C. TOR Is a Negative Regulator of Autophagy in Arabidopsis Thaliana. PLoS ONE. 2010 doi: 10.1371/journal.pone.0011883. PubMed DOI PMC
Pérez-Pérez M.E., Florencio F.J., Crespo J.L. Inhibition of Target of Rapamycin Signaling and Stress Activate Autophagy in Chlamydomonas Reinhardtii. Plant Physiol. 2010 doi: 10.1104/pp.109.152520. PubMed DOI PMC
Roustan V., Bakhtiari S., Roustan P.J., Weckwerth W. Quantitative in Vivo Phosphoproteomics Reveals Reversible Signaling Processes during Nitrogen Starvation and Recovery in the Biofuel Model Organism Chlamydomonas Reinhardtii. Biotechnol. Biofuels. 2017 doi: 10.1186/s13068-017-0949-z. PubMed DOI PMC
Roustan V., Weckwerth W. Quantitative Phosphoproteomic and System-Level Analysis of TOR Inhibition Unravel Distinct Organellar Acclimation in Chlamydomonas Reinhardtii. Front. Plant Sci. 2018 doi: 10.3389/fpls.2018.01590. PubMed DOI PMC
Batoko H., Dagdas Y., Baluska F., Sirko A. Understanding and Exploiting Autophagy Signaling in Plants. Essays Biochem. 2017 doi: 10.1042/EBC20170034. PubMed DOI PMC
Masclaux-Daubresse C. Autophagy Controls Carbon, Nitrogen, and Redox Homeostasis in Plants. Autophagy. 2016 doi: 10.4161/auto.36261. PubMed DOI PMC
Margalha L., Confraria A., Baena-González E. SnRK1 and TOR: Modulating Growth–Defense Trade-Offs in Plant Stress Responses. J. Exp. Bot. 2019 doi: 10.1093/jxb/erz066. PubMed DOI
Margalha L., Valerio C., Baena-González E. Plant SnRK1 Kinases: Structure, Regulation, and Function. Act. Protein Kinase. 2016 doi: 10.1007/978-3-319-43589-3_17. PubMed DOI
Dobrenel T., Mancera-Martínez E., Forzani C., Azzopardi M., Davanture M., Moreau M., Schepetilnikov M., Chicher J., Langella O., Zivy M., et al. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6. Front. Plant Sci. 2016 doi: 10.3389/fpls.2016.01611. PubMed DOI PMC
Mahfouz M.M., Kim S., Delauney A.J., Verma D.P.S. Arabidopsis TARGET of RAPAMYCIN Interacts with RAPTOR, Which Regulates the Activity of S6 Kinase in Response to Osmotic Stress Signals. Plant Cell. 2006 doi: 10.1105/tpc.105.035931. PubMed DOI PMC
Schepetilnikov M., Dimitrova M., Mancera-Martínez E., Geldreich A., Keller M., Ryabova L.A. TOR and S6K1 Promote Translation Reinitiation of UORF-Containing MRNAs via Phosphorylation of EIF3h. EMBO J. 2013 doi: 10.1038/emboj.2013.61. PubMed DOI PMC
Ljung K. Auxin Metabolism and Homeostasis during Plant Development. Development. 2013 doi: 10.1242/dev.086363. PubMed DOI
Simon S., Petrášek J. Why Plants Need More than One Type of Auxin. Plant Sci. 2011 doi: 10.1016/j.plantsci.2010.12.007. PubMed DOI
Morffy N., Strader L.C. Old Town Roads: Routes of Auxin Biosynthesis across Kingdoms. Curr. Opin. Plant Biol. 2020 doi: 10.1016/j.pbi.2020.02.002. PubMed DOI PMC
Deng K., Yu L., Zheng X., Zhang K., Wang W., Dong P., Zhang J., Ren M. Target of Rapamycin Is a Key Player for Auxin Signaling Transduction in Arabidopsis. Front. Plant Sci. 2016 doi: 10.3389/fpls.2016.00291. PubMed DOI PMC
Dong Y., Silbermann M., Speiser A., Forieri I., Linster E., Poschet G., Allboje Samami A., Wanatabe M., Sticht C., Teleman A.A., et al. Sulfur Availability Regulates Plant Growth via Glucose-TOR Signaling. Nat. Commun. 2017 doi: 10.1038/s41467-017-01224-w. PubMed DOI PMC
Schepetilnikov M., Ryabova L.A. Auxin Signaling in Regulation of Plant Translation Reinitiation. Front. Plant Sci. 2017 doi: 10.3389/fpls.2017.01014. PubMed DOI PMC
Deprost D., Yao L., Sormani R., Moreau M., Leterreux G., Bedu M., Robaglia C., Meyer C. The Arabidopsis TOR Kinase Links Plant Growth, Yield, Stress Resistance and MRNA Translation. EMBO Rep. 2007 doi: 10.1038/sj.embor.7401043. PubMed DOI PMC
Mishra B.S., Singh M., Aggrawal P., Laxmi A. Glucose and Auxin Signaling Interaction in Controlling Arabidopsis Thaliana Seedlings Root Growth and Development. PLoS ONE. 2009 doi: 10.1371/journal.pone.0004502. PubMed DOI PMC
Salem M.A., Li Y., Wiszniewski A., Giavalisco P. Regulatory-Associated Protein of TOR (RAPTOR) Alters the Hormonal and Metabolic Composition of Arabidopsis Seeds, Controlling Seed Morphology, Viability and Germination Potential. Plant J. 2017 doi: 10.1111/tpj.13667. PubMed DOI
Schepetilnikov M., Makarian J., Srour O., Geldreich A., Yang Z., Chicher J., Hammann P., Ryabova L.A. GTP Ase ROP 2 Binds and Promotes Activation of Target of Rapamycin, TOR, in Response to Auxin. EMBO J. 2017 doi: 10.15252/embj.201694816. PubMed DOI PMC
Jones M.A., Shen J.J., Fu Y., Li H., Yang Z., Grierson C.S. The Arabidopsis Rop2 GTPase Is a Positive Regulator of Both Root Hair Initiation and Tip Growth. Plant Cell. 2002 doi: 10.1105/tpc.010359. PubMed DOI PMC
Korver R.A., Koevoets I.T., Testerink C. Out of Shape During Stress: A Key Role for Auxin. Trends Plant Sci. 2018 doi: 10.1016/j.tplants.2018.05.011. PubMed DOI PMC
Freschet G., Pagès L., Iversen C., Comas L., Rewald B., Roumet C., Klimešová J., Zadworny M., Poorter H., Postma J. A Starting Guide to Root Ecology: Strengthening Ecological Concepts and Standardizing Root Classification, Sampling, Processing and Trait Measurements. Hal; Lyon, France: 2020. Hal-02918834. PubMed PMC
Schepetilnikov M., Ryabova L.A. Recent Discoveries on the Role of Tor (Target of Rapamacin) Signaling in Translation in Plants. Plant Physiol. 2018 doi: 10.1104/pp.17.01243. PubMed DOI PMC
Datta S., Kim C.M., Pernas M., Pires N.D., Proust H., Tam T., Vijayakumar P., Dolan L. Root Hairs: Development, Growth and Evolution at the Plant-Soil Interface. Plant Soil. 2011 doi: 10.1007/s11104-011-0845-4. DOI
Dolan L. How and Where to Build a Root Hair. Curr. Opin. Plant Biol. 2001 doi: 10.1016/S1369-5266(00)00214-4. PubMed DOI
Salazar-Henao J.E., Vélez-Bermúdez I.C., Schmidt W. The Regulation and Plasticity of Root Hair Patterning and Morphogenesis. Development. 2016 doi: 10.1242/dev.132845. PubMed DOI
Boutté Y., Grebe M. Cellular Processes Relying on Sterol Function in Plants. Curr. Opin. Plant Biol. 2009 doi: 10.1016/j.pbi.2009.09.013. PubMed DOI
Lee R.D.-W., Cho H.-T. Auxin, the Organizer of the Hormonal/Environmental Signals for Root Hair Growth. Front. Plant Sci. 2013;4:448. doi: 10.3389/fpls.2013.00448. PubMed DOI PMC
Wei Z., Li J. Receptor-like Protein Kinases: Key Regulators Controlling Root Hair Development in Arabidopsis thaliana. J. Integr. Plant Biol. 2018 doi: 10.1111/jipb.12663. PubMed DOI
Ganguly A., Lee S.H., Cho M., Lee O.R., Yoo H., Cho H.T. Differential Auxin-Transporting Activities of PIN-FORMED Proteins in Arabidopsis Root Hair Cells. Plant Physiol. 2010 doi: 10.1104/pp.110.156505. PubMed DOI PMC
Jozef L., Katarzyna R., Christian L., Eva Z. Encyclopedia of Life Sciences. John Wiley Sons; Hoboken, NJ, USA: 2017. Polar Auxin Transport.
Petrášek J., Friml J. Auxin Transport Routes in Plant Development. Development. 2009 doi: 10.1242/dev.030353. PubMed DOI
Löfke C., Scheuring D., Dünser K., Schöller M., Luschnig C., Kleine-Vehn J. Tricho- and Atrichoblast Cell Files Show Distinct PIN2 Auxin Efflux Carrier Exploitations and Are Jointly Required for Defined Auxin-Dependent Root Organ Growth. J. Exp. Bot. 2015 doi: 10.1093/jxb/erv282. PubMed DOI PMC
Dolan L., Davies J. Cell Expansion in Roots. Curr. Opin. Plant Biol. 2004 doi: 10.1016/j.pbi.2003.11.006. PubMed DOI
Fischer U., Ikeda Y., Grebe M. Planar Polarity of Root Hair Positioning in Arabidopsis. Biochem. Soc. Trans. 2007 doi: 10.1042/BST0350149. PubMed DOI
Pitts R.J., Cernac A., Estelle M. Auxin and Ethylene Promote Root Hair Elongation in Arabidopsis. Plant J. 1998 doi: 10.1046/j.1365-313x.1998.00321.x. PubMed DOI
Velasquez S.M., Barbez E., Kleine-Vehn J., Estevez J.M. Auxin and Cellular Elongation. Plant Physiol. 2016 doi: 10.1104/pp.15.01863. PubMed DOI PMC
Fischer U., Ikeda Y., Ljung K., Serralbo O., Singh M., Heidstra R., Palme K., Scheres B., Grebe M. Vectorial Information for Arabidopsis Planar Polarity Is Mediated by Combined AUX1, EIN2, and GNOM Activity. Curr. Biol. 2006 doi: 10.1016/j.cub.2006.08.091. PubMed DOI
Majda M., Robert S. The Role of Auxin in Cell Wall Expansion. Int. J. Mol. Sci. 2018;19:951. doi: 10.3390/ijms19040951. PubMed DOI PMC
Franck C.M., Westermann J., Boisson-Dernier A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. Annu. Rev. Plant Biol. 2018 doi: 10.1146/annurev-arplant-042817-040557. PubMed DOI
Grones P., Friml J. Auxin Transporters and Binding Proteins at a Glance. J. Cell Sci. 2015 doi: 10.1242/jcs.159418. PubMed DOI
Geisler M., Wang B., Zhu J. Auxin Transport during Root Gravitropism: Transporters and Techniques. Plant Biol. 2014 doi: 10.1111/plb.12030. PubMed DOI
Retzer K., Butt H., Korbei B., Luschnig C. The Far Side of Auxin Signaling: Fundamental Cellular Activities and Their Contribution to a Defined Growth Response in Plants. Protoplasma. 2014 doi: 10.1007/s00709-013-0572-1. PubMed DOI PMC
Luschnig C., Vert G. The Dynamics of Plant Plasma Membrane Proteins: PINs and Beyond. Development. 2014 doi: 10.1242/dev.103424. PubMed DOI
Kaiser S., Scheuring D. To Lead or to Follow: Contribution of the Plant Vacuole to Cell Growth. Front. Plant Sci. 2020 doi: 10.3389/fpls.2020.00553. PubMed DOI PMC
Boutté Y., Jaillais Y. Metabolic Cellular Communications: Feedback Mechanisms between Membrane Lipid Homeostasis and Plant Development. Dev. Cell. 2020 doi: 10.1016/j.devcel.2020.05.005. PubMed DOI
Péret B., Swarup K., Ferguson A., Seth M., Yang Y., Dhondt S., James N., Casimiro I., Perry P., Syed A., et al. AUX/LAX Genes Encode a Family of Auxin Influx Transporters That Perform Distinct Functions during Arabidopsis Development. Plant Cell. 2012;24:2874–2885. doi: 10.1105/tpc.112.097766. PubMed DOI PMC
Swarup R., Bhosale R. Developmental Roles of AUX1/LAX Auxin Influx Carriers in Plants. Front. Plant Sci. 2019 doi: 10.3389/fpls.2019.01306. PubMed DOI PMC
Singh G., Retzer K., Vosolsobě S., Napier R. Advances in Understanding the Mechanism of Action of the Auxin Permease Aux1. Int. J. Mol. Sci. 2018;19:3391. doi: 10.3390/ijms19113391. PubMed DOI PMC
Kleine-Vehn J., Dhonukshe P., Swarup R., Bennett M., Friml J. Subcellular Trafficking of the Arabidopsis Auxin Influx Carrier AUX1 Uses a Novel Pathway Distinct from PIN1. Plant Cell. 2006 doi: 10.1105/tpc.106.042770. PubMed DOI PMC
Krouk G., Lacombe B., Bielach A., Perrine-Walker F., Malinska K., Mounier E., Hoyerova K., Tillard P., Leon S., Ljung K., et al. Nitrate-Regulated Auxin Transport by NRT1.1 Defines a Mechanism for Nutrient Sensing in Plants. Dev. Cell. 2010 doi: 10.1016/j.devcel.2010.05.008. PubMed DOI
Parker J.L., Newstead S. Molecular Basis of Nitrate Uptake by the Plant Nitrate Transporter NRT1.1. Nature. 2014 doi: 10.1038/nature13116. PubMed DOI PMC
Sun J., Bankston J.R., Payandeh J., Hinds T.R., Zagotta W.N., Zheng N. Crystal Structure of the Plant Dual-Affinity Nitrate Transporter NRT1.1. Nature. 2014 doi: 10.1038/nature13074. PubMed DOI PMC
Swarup R., Kramer E.M., Perry P., Knox K., Leyser H.M.O., Haseloff J., Beemster G.T.S., Bhalerao R., Bennett M.J. Root Gravitropism Requires Lateral Root Cap and Epidermal Cells for Transport and Response to a Mobile Auxin Signal. Nat. Cell Biol. 2005 doi: 10.1038/ncb1316. PubMed DOI
Lee S.H., Cho H.-T. Auxin and Root Hair Morphogenesis. Root Hairs. 2009 doi: 10.1007/978-3-540-79405-9_16. DOI
Rea P.A. Plant ATP-Binding Cassette Transporters. Annu. Rev. Plant Biol. 2007 doi: 10.1146/annurev.arplant.57.032905.105406. PubMed DOI
Remy E., Duque P. Beyond Cellular Detoxification: A Plethora of Physiological Roles for MDR Transporter Homologs in Plants. Front. Physiol. 2014 doi: 10.3389/fphys.2014.00201. PubMed DOI PMC
Fukui K., Hayashi K.I. Manipulation and Sensing of Auxin Metabolism, Transport and Signaling. Plant Cell Physiol. 2018 doi: 10.1093/pcp/pcy076. PubMed DOI
Geisler M., Aryal B., Di Donato M., Hao P. A Critical View on ABC Transporters and Their Interacting Partners in Auxin Transport. Plant Cell Physiol. 2017 doi: 10.1093/pcp/pcx104. PubMed DOI
Cho M., Cho H.T. The Function of ABCB Transporters in Auxin Transport. Plant Signal. Behav. 2013 doi: 10.4161/psb.22990. PubMed DOI PMC
Yang H., Murphy A.S. Functional Expression and Characterization of Arabidopsis ABCB, AUX 1 and PIN Auxin Transporters in Schizosaccharomyces pombe. Plant J. 2009 doi: 10.1111/j.1365-313X.2009.03856.x. PubMed DOI
Kamimoto Y., Terasaka K., Hamamoto M., Takanashi K., Fukuda S., Shitan N., Sugiyama A., Suzuki H., Shibata D., Wang B., et al. Arabidopsis ABCB21 Is a Facultative Auxin Importer/Exporter Regulated by Cytoplasmic Auxin Concentration. Plant Cell Physiol. 2012;53:2090–2100. doi: 10.1093/pcp/pcs149. PubMed DOI
Kubeš M., Yang H., Richter G.L., Cheng Y., Młodzińska E., Wang X., Blakeslee J.J., Carraro N., Petrášek J., Zažímalová E., et al. The Arabidopsis Concentration-Dependent Influx/Efflux Transporter ABCB4 Regulates Cellular Auxin Levels in the Root Epidermis. Plant J. 2012 doi: 10.1111/j.1365-313X.2011.04818.x. PubMed DOI
Titapiwatanakun B., Blakeslee J.J., Bandyopadhyay A., Yang H., Mravec J., Sauer M., Cheng Y., Adamec J., Nagashima A., Geisler M., et al. ABCB19/PGP19 Stabilises PIN1 in Membrane Microdomains in Arabidopsis. Plant J. 2009 doi: 10.1111/j.1365-313X.2008.03668.x. PubMed DOI
Zazímalová E., Murphy A.S., Yang H., Hoyerová K., Hosek P. Auxin Transporters—Why so Many? Cold Spring Harb. Perspect. Biol. 2010 doi: 10.1101/cshperspect.a001552. PubMed DOI PMC
Parry G., Delbarre A., Marchant A., Swarup R., Napier R., Perrot-Rechenmann C., Bennett M.J. Novel Auxin Transport Inhibitors Phenocopy the Auxin Influx Carrier Mutation Aux1. Plant J. 2001 doi: 10.1046/j.1365-313X.2001.00970.x. PubMed DOI
Petrášek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertová D., Wiśniewska J., Tadele Z., Kubeš M., Čovanová M., et al. PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux. Science. 2006 doi: 10.1126/science.1123542. PubMed DOI
Zourelidou M., Absmanner B., Weller B., Barbosa I.C.R., Willige B.C., Fastner A., Streit V., Port S.A., Colcombet J., van Bentem S., et al. Auxin Efflux by PIN-FORMED Proteins Is Activated by Two Different Protein Kinases, D6 PROTEIN KINASE and PINOID. eLife. 2014 doi: 10.7554/eLife.02860. PubMed DOI PMC
Wisniewska J., Xu J., Seifartová D., Brewer P.B., Růžička K., Blilou L., Rouquié D., Benková E., Scheres B., Friml J. Polar PIN Localization Directs Auxin Flow in Plants. Science. 2006 doi: 10.1126/science.1121356. PubMed DOI
Vieten A., Vanneste S., Wiśniewska J., Benková E., Benjamins R., Beeckman T., Luschnig C., Friml J. Functional Redundancy of PIN Proteins Is Accompanied by Auxin-Dependent Cross-Regulation of PIN Expression. Development. 2005 doi: 10.1242/dev.02027. PubMed DOI
Dettmer J., Friml J. Cell Polarity in Plants: When Two Do the Same, It Is Not the Same.... Curr. Opin. Cell Biol. 2011 doi: 10.1016/j.ceb.2011.09.006. PubMed DOI
Okada K., Ueda J., Komaki M.K., Bell C.J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991 doi: 10.1105/tpc.3.7.677. PubMed DOI PMC
Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., Palme K. Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue. Science. 1998 doi: 10.1126/science.282.5397.2226. PubMed DOI
Billou I., Xu J., Wildwater M., Willemsen V., Paponov I., Frimi J., Heldstra R., Aida M., Palme K., Scheres B. The PIN Auxin Efflux Facilitator Network Controls Growth and Patterning in Arabidopsis Roots. Nature. 2005 doi: 10.1038/nature03184. PubMed DOI
Friml J., Wiŝniewska J., Benková E., Mendgen K., Palme K. Lateral Relocation of Auxin Efflux Regulator PIN3 Mediates Tropism in Arabidopsis. Nature. 2002 doi: 10.1038/415806a. PubMed DOI
Kleine-Vehn J., Ding Z., Jones A.R., Tasaka M., Morita M.T., Friml J. Gravity-Induced PIN Transcytosis for Polarization of Auxin Fluxes in Gravity-Sensing Root Cells. Proc. Natl. Acad. Sci. USA. 2010 doi: 10.1073/pnas.1013145107. PubMed DOI PMC
Weiste C., Pedrotti L., Selvanayagam J., Muralidhara P., Fröschel C., Novák O., Ljung K., Hanson J., Dröge-Laser W. The Arabidopsis BZIP11 Transcription Factor Links Low-Energy Signalling to Auxin-Mediated Control of Primary Root Growth. PLoS Genet. 2017 doi: 10.1371/journal.pgen.1006607. PubMed DOI PMC
Yuan X., Xu P., Yu Y., Xiong Y. Glucose-TOR signaling regulates PIN2 stability to orchestrate auxin gradient and cell expansion in Arabidopsis root. Proc. Natl. Acad. Sci. USA. 2020 doi: 10.1073/pnas.2015400117. PubMed DOI PMC
Bieleski R.L. Phosphate Pools, Phosphate Transport, and Phosphate Availability. Annu. Rev. Plant Physiol. 1973 doi: 10.1146/annurev.pp.24.060173.001301. DOI
Ma Z., Bielenberg D.G., Brown K.M., Lynch J.P. Regulation of Root Hair Density by Phosphorus Availability in Arabidopsis thaliana. Plant Cell Environ. 2001 doi: 10.1046/j.1365-3040.2001.00695.x. DOI
Zhang Y.J., Lynch J.P., Brown K.M. Ethylene and Phosphorus Availability Have Interacting yet Distinct Effects on Root Hair Development. J. Exp. Bot. 2003 doi: 10.1093/jxb/erg250. PubMed DOI
Zhang S., Huang L., Yan A., Liu Y., Liu B., Yu C., Zhang A., Schiefelbein J., Gan Y. Multiple Phytohormones Promote Root Hair Elongation by Regulating a Similar Set of Genes in the Root Epidermis in Arabidopsis. J. Exp. Bot. 2016 doi: 10.1093/jxb/erw400. PubMed DOI PMC
Kapulnik Y., Resnick N., Mayzlish-Gati E., Kaplan Y., Wininger S., Hershenhorn J., Koltai H. Strigolactones Interact with Ethylene and Auxin in Regulating Root-Hair Elongation in Arabidopsis. J. Exp. Bot. 2011 doi: 10.1093/jxb/erq464. PubMed DOI
Pandey A., Devi L.L., Singh A.P. Review: Emerging Roles of Brassinosteroid in Nutrient Foraging. Plant Sci. 2020 doi: 10.1016/j.plantsci.2020.110474. PubMed DOI
Li L., Xu J., Xu Z.H., Xue H.W. Brassinosteroids Stimulate Plant Tropisms through Modulation of Polar Auxin Transport in Brassica and Arabidopsis. Plant Cell. 2005 doi: 10.1105/tpc.105.034397. PubMed DOI PMC
Retzer K., Akhmanova M., Konstantinova N., Malínská K., Leitner J., Petrášek J., Luschnig C. Brassinosteroid Signaling Delimits Root Gravitropism via Sorting of the Arabidopsis PIN2 Auxin Transporter. Nat. Commun. 2019 doi: 10.1038/s41467-019-13543-1. PubMed DOI PMC
Fridman Y., Savaldi-Goldstein S. Brassinosteroids in Growth Control: How, When and Where. Plant Sci. 2013 doi: 10.1016/j.plantsci.2013.04.002. PubMed DOI
Lanza M., Garcia-Ponce B., Castrillo G., Catarecha P., Sauer M., Rodriguez-Serrano M., Páez-García A., Sánchez-Bermejo E., Tc M., Leo del Puerto Y., et al. Role of Actin Cytoskeleton in Brassinosteroid Signaling and in Its Integration with the Auxin Response in Plants. Dev. Cell. 2012 doi: 10.1016/j.devcel.2012.04.008. PubMed DOI
Müssig C., Shin G.H., Altmann T. Brassinosteroids Promote Root Growth in Arabidopsis. Plant Physiol. 2003 doi: 10.1104/pp.103.028662. PubMed DOI PMC
Wang Z.Y., Zhu J.Y., Sae-Seaw J. Brassinosteroid Signaling. Development. 2013 doi: 10.1242/dev.060590. PubMed DOI PMC
Rigas S., Ditengou F.A., Ljung K., Daras G., Tietz O., Palme K., Hatzopoulos P. Root Gravitropism and Root Hair Development Constitute Coupled Developmental Responses Regulated by Auxin Homeostasis in the Arabidopsis Root Apex. New Phytol. 2013 doi: 10.1111/nph.12092. PubMed DOI
Cheng Y., Zhu W., Chen Y., Ito S., Asami T., Wang X. Brassinosteroids Control Root Epidermal Cell Fate via Direct Regulation of a MYB-BHLH-WD40 Complex by GSK3-like Kinases. eLife. 2014 doi: 10.7554/eLife.02525. PubMed DOI PMC
Kumar M., Pandya-Kumar N., Dam A., Haor H., Mayzlish-Gati E., Belausov E., Wininger S., Abu-Abied M., McErlean C.S.P., Bromhead L.J., et al. Arabidopsis Response to Low-Phosphate Conditions Includes Active Changes in Actin Filaments and PIN2 Polarization and Is Dependent on Strigolactone Signalling. J. Exp. Bot. 2015 doi: 10.1093/jxb/eru513. PubMed DOI PMC
Kapulnik Y., Delaux P.M., Resnick N., Mayzlish-Gati E., Wininger S., Bhattacharya C., Séjalon-Delmas N., Combier J.P., Bécard G., Belausov E., et al. Strigolactones Affect Lateral Root Formation and Root-Hair Elongation in Arabidopsis. Planta. 2011 doi: 10.1007/s00425-010-1310-y. PubMed DOI
Silva-Navas J., Conesa C.M., Saez A., Navarro-Neila S., Garcia-Mina J.M., Zamarreño A.M., Baigorri R., Swarup R., del Pozo J.C. Role of Cis-Zeatin in Root Responses to Phosphate Starvation. New Phytol. 2019 doi: 10.1111/nph.16020. PubMed DOI
Silva-Navas J., Moreno-Risueno M.A., Manzano C., Pallero-Baena M., Navarro-Neila S., Téllez-Robledo B., Garcia-Mina J.M., Baigorri R., Gallego F.J., Del Pozo J.C. D-Root: A System for Cultivating Plants with the Roots in Darkness or under Different Light Conditions. Plant J. 2015 doi: 10.1111/tpj.12998. PubMed DOI
Rounds C.M., Bezanilla M. Growth Mechanisms in Tip-Growing Plant Cells. Annu. Rev. Plant Biol. 2013 doi: 10.1146/annurev-arplant-050312-120150. PubMed DOI
Takatsuka H., Ito M. Cytoskeletal Control of Planar Polarity in Root Hair Development. Front. Plant Sci. 2020 doi: 10.3389/fpls.2020.580935. PubMed DOI PMC
Žárský V., Cvrčková F., Potocký M., Hála M. Exocytosis and Cell Polarity in Plants–Exocyst and Recycling Domains. New Phytol. 2009 doi: 10.1111/j.1469-8137.2009.02880.x. PubMed DOI
Dvorak P., Krasylenko Y., Zeiner A., Samaj J., Takac T. Signaling toward ROS-Scavenging Enzymes in Plants. Front. Plant Sci. 2020 doi: 10.3389/fpls.2020.618835. PubMed DOI PMC
Zhou X., Xiang Y., Li C., Yu G. Modulatory Role of Reactive Oxygen Species in Root Development in Model Plant of Arabidopsis thaliana. Front. Plant Sci. 2020 doi: 10.3389/fpls.2020.485932. PubMed DOI PMC
Bibikova T.N., Jacob T., Dahse I., Gilroy S. Localized Changes in Apoplastic and Cytoplasmic PH Are Associated with Root Hair Development in Arabidopsis thaliana. Development. 1998;125:2925–2934. PubMed
Monshausen G.B., Bibikova T.N., Messerli M.A., Shi C., Gilroy S. Oscillations in Extracellular PH and Reactive Oxygen Species Modulate Tip Growth of Arabidopsis Root Hairs. Proc. Natl. Acad. Sci. USA. 2007 doi: 10.1073/pnas.0708586104. PubMed DOI PMC
Felle H.H., Hepler P.K. The Cytosolic Ca2+ Concentration Gradient of Sinapis Alba Root Hairs as Revealed by Ca2+-Selective Microelectrode Tests and Fura-Dextran Ratio Imaging. Plant Physiol. 1997 doi: 10.1104/pp.114.1.39. PubMed DOI PMC
Cole R.A., Fowler J.E. Polarized Growth: Maintaining Focus on the Tip. Curr. Opin. Plant Biol. 2006 doi: 10.1016/j.pbi.2006.09.014. PubMed DOI
Yokawa K., Koshiba T., Baluška F. Light-Dependent Control of Redox Balance and Auxin Biosynthesis in Plants. Plant Signal. Behav. 2014 doi: 10.4161/psb.29522. PubMed DOI PMC
Silva-Navas J., Moreno-Risueno M.A., Manzano C., Téllez-Robledo B., Navarro-Neila S., Carrasco V., Pollmann S., Gallego F.J., Del Pozo J.C. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition. Plant Cell. 2016 doi: 10.1105/tpc.15.00857. PubMed DOI PMC
Chapman J.M., Muhlemann J.K., Gayomba S.R., Muday G.K. RBOH-Dependent ROS Synthesis and ROS Scavenging by Plant Specialized Metabolites to Modulate Plant Development and Stress Responses. Chem. Res. Toxicol. 2019 doi: 10.1021/acs.chemrestox.9b00028. PubMed DOI PMC
Foreman J., Demidchik V., Bothwell J.H.F., Mylona P., Miedema H., Angel Torres M., Linstead P., Costa S., Brownlee C., Jones J.D.G., et al. Reactive Oxygen Species Produced by NADPH Oxidase Regulate Plant Cell Growth. Nature. 2003 doi: 10.1038/nature01485. PubMed DOI
Vernoud V., Horton A.C., Yang Z., Nielsen E. Analysis of the Small GTPase Gene Superfamily of Arabidopsis. Plant Physiol. 2003 doi: 10.1104/pp.013052. PubMed DOI PMC
Yoo C.M., Blancaflor E.B. Overlapping and Divergent Signaling Pathways for ARK1 and AGD1 in the Control of Root Hair Polarity in Arabidopsis thaliana. Front. Plant Sci. 2013 doi: 10.3389/fpls.2013.00528. PubMed DOI PMC
Pei W., Du F., Zhang Y., He T., Ren H. Control of the Actin Cytoskeleton in Root Hair Development. Plant Sci. 2012 doi: 10.1016/j.plantsci.2012.01.008. PubMed DOI
Vanneste S., Friml J. Auxin: A Trigger for Change in Plant Development. Cell. 2009 doi: 10.1016/j.cell.2009.03.001. PubMed DOI
Xu T., Wen M., Nagawa S., Fu Y., Chen J.G., Wu M.J., Perrot-Rechenmann C., Friml J., Jones A.M., Yang Z. Cell Surface- and Rho GTPase-Based Auxin Signaling Controls Cellular Interdigitation in Arabidopsis. Cell. 2010 doi: 10.1016/j.cell.2010.09.003. PubMed DOI PMC
Bloch D., Yalovsky S. Cell Polarity Signaling. Curr. Opin. Plant Biol. 2013 doi: 10.1016/j.pbi.2013.10.009. PubMed DOI
Denninger P., Reichelt A., Schmidt V.A.F., Mehlhorn D.G., Asseck L.Y., Stanley C.E., Keinath N.F., Evers J.F., Grefen C., Grossmann G. Distinct RopGEFs Successively Drive Polarization and Outgrowth of Root Hairs. Curr. Biol. 2019 doi: 10.1016/j.cub.2019.04.059. PubMed DOI
Jones M.A., Raymond M.J., Yang Z., Smirnoff N. NADPH Oxidase-Dependent Reactive Oxygen Species Formation Required for Root Hair Growth Depends on ROP GTPase. J. Exp. Bot. 2007 doi: 10.1093/jxb/erl279. PubMed DOI
Duan Q., Kita D., Li C., Cheung A.Y., Wu H.M. FERONIA Receptor-like Kinase Regulates RHO GTPase Signaling of Root Hair Development. Proc. Natl. Acad. Sci. USA. 2010 doi: 10.1073/pnas.1005366107. PubMed DOI PMC
Takeda S., Gapper C., Kaya H., Bell E., Kuchitsu K., Dolan L. Local Positive Feedback Regulation Determines Cell Shape in Root Hair Cells. Science. 2008 doi: 10.1126/science.1152505. PubMed DOI
Singh A.P., Fridman Y., Friedlander-Shani L., Tarkowska D., Strnad M., Savaldi-Goldstein S. Activity of the Brassinosteroid Transcription Factors Brassinazole Resistant1 and Brassinosteroid Insensitive1-Ethyl Methanesulfonate-Suppressor1/Brassinazole Resistant2 Blocks Developmental Reprogramming in Response to Low Phosphate Availability. Plant Physiol. 2014;166:678–688. doi: 10.1104/pp.114.245019. PubMed DOI PMC
Fu Y., Li H., Yang Z. The ROP2 GTPase Controls the Formation of Cortical Fine F-Actin and the Early Phase of Directional Cell Expansion during Arabidopsis Organogenesis. Plant Cell. 2002 doi: 10.1105/tpc.001537. PubMed DOI PMC
Yalovsky S., Bloch D., Sorek N., Kost B. Regulation of Membrane Trafficking, Cytoskeleton Dynamics, and Cell Polarity by ROP/RAC GTPases. Plant Physiol. 2008 doi: 10.1104/pp.108.122150. PubMed DOI PMC
Baluška F., Salaj J., Mathur J., Braun M., Jasper F., Šamaj J., Chua N.H., Barlow P.W., Volkmann D. Root Hair Formation: F-Actin-Dependent Tip Growth Is Initiated by Local Assembly of Profilin-Supported F-Actin Meshworks Accumulated within Expansin-Enriched Bulges. Dev. Biol. 2000 doi: 10.1006/dbio.2000.9908. PubMed DOI
Molendijk A.J., Bischoff F., Rajendrakumar C.S.V., Friml J., Braun M., Gilroy S., Palme K. Arabidopsis Thaliana Rop GTPases Are Localized to Tips of Root Hairs and Control Polar Growth. EMBO J. 2001 doi: 10.1093/emboj/20.11.2779. PubMed DOI PMC
Gu F., Nielsen E. Targeting and Regulation of Cell Wall Synthesis during Tip Growth in Plants. J. Integr. Plant Biol. 2013 doi: 10.1111/jipb.12077. PubMed DOI
Yang G., Gao P., Zhang H., Huang S., Zheng Z.L. A Mutation in MRH2 Kinesin Enhances the Root Hair Tip Growth Defect Caused by Constitutively Activated ROP2 Small GTPase in Arabidopsis. PLoS ONE. 2007 doi: 10.1371/journal.pone.0001074. PubMed DOI PMC
Miller R.K., Matheos D., Rose M.D. The Cortical Localization of the Microtubule Orientation Protein, Kar9p, Is Dependent upon Actin and Proteins Required for Polarization. J. Cell Biol. 1999 doi: 10.1083/jcb.144.5.963. PubMed DOI PMC
Bruaene N., Joss G., Van Oostveldt P. Reorganization and In Vivo Dynamics of Microtubules during Arabidopsis Root Hair Development. Plant Physiol. 2004 doi: 10.1104/pp.103.031591. PubMed DOI PMC
Ringli C., Baumberger N., Diet A., Frey B., Keller B. ACTIN2 Is Essential for Bulge Site Selection and Tip Growth during Root Hair Development of Arabidopsis. Plant Physiol. 2002 doi: 10.1104/pp.005777. PubMed DOI PMC
Wasteneys G.O., Yang Z. The Cytoskeleton Becomes Multidisciplinary. Plant Physiol. 2004 doi: 10.1104/pp.104.900130. PubMed DOI PMC
Kiefer C.S., Claes A.R., Nzayisenga J.C., Pietra S., Stanislas T., Hüser A., Ikeda Y., Grebe M. Arabidopsis AIP1-2 Restricted by WER-Mediated Patterning Modulates Planar Polarity. Development. 2015 doi: 10.1242/dev.122697. PubMed DOI PMC
Ketelaar T. The Actin Cytoskeleton in Root Hairs: All Is Fine at the Tip. Curr. Opin. Plant Biol. 2013 doi: 10.1016/j.pbi.2013.10.003. PubMed DOI
Noack L.C., Jaillais Y. Precision Targeting by Phosphoinositides: How PIs Direct Endomembrane Trafficking in Plants. Curr. Opin. Plant Biol. 2017 doi: 10.1016/j.pbi.2017.06.017. PubMed DOI
Preuss M.L., Serna J., Falbel T.G., Bednarek S.Y., Nielsen E. The Arabidopsis Rab GTPase RabA4b Localizes to the Tips of Growing Root Hair Cells. Plant Cell. 2004 doi: 10.1105/tpc.021634. PubMed DOI PMC
Preuss M.L., Schmitz A.J., Thole J.M., Bonner H.K.S., Otegui M.S., Nielsen E. A Role for the RabA4b Effector Protein PI-4Kβ1 in Polarized Expansion of Root Hair Cells in Arabidopsis thaliana. J. Cell Biol. 2006 doi: 10.1083/jcb.200508116. PubMed DOI PMC
Thole J.M., Vermeer J.E.M., Zhang Y., Gadella T.W.J., Nielsen E. Root Hair Defective4 Encodes a Phosphatidylinositol-4-Phosphate Phosphatase Required for Proper Root Hair Development in Arabidopsis thaliana. Plant Cell. 2008 doi: 10.1105/tpc.107.054304. PubMed DOI PMC
Kusano H., Testerink C., Vermeer J.E.M., Tsuge T., Shimada H., Oka A., Munnik T., Aoyama T. The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 Is a Key Regulator of Root Hair Tip Growth. Plant Cell. 2008 doi: 10.1105/tpc.107.056119. PubMed DOI PMC
Stenzel I., Ischebeck T., König S., Hołubowska A., Sporysz M., Hause B., Heilmanna I. The Type B Phosphatidylinositol-4-Phosphate 5-Kinase 3 Is Essential for Root Hair Formation in Arabidopsis thaliana. Plant Cell. 2008 doi: 10.1105/tpc.107.052852. PubMed DOI PMC
Yoo C.M., Quan L., Cannon A.E., Wen J., Blancaflor E.B. AGD1, a Class 1 ARF-GAP, Acts in Common Signaling Pathways with Phosphoinositide Metabolism and the Actin Cytoskeleton in Controlling Arabidopsis Root Hair Polarity. Plant J. 2012 doi: 10.1111/j.1365-313X.2011.04856.x. PubMed DOI
Bubb M.R., Baines I.C., Korn E.D. Localization of Actobindin, Profilin I, Profilin II, and Phosphatidylinositol-4,5-Bisphosphate (PIP2) in Acanthamoeba castellanii. Cell Motil. 1998 doi: 10.1002/(SICI)1097-0169(1998)39:2134::AID-CM43.0.CO;2-6. PubMed DOI
Synek L., Schlager N., Eliáš M., Quentin M., Hauser M.T., Žárský V. AtEXO70A1, a Member of a Family of Putative Exocyst Subunits Specifically Expanded in Land Plants, Is Important for Polar Growth and Plant Development. Plant J. 2006 doi: 10.1111/j.1365-313X.2006.02854.x. PubMed DOI PMC
Drdová E.J., Synek L., Pečenková T., Hála M., Kulich I., Fowler J.E., Murphy A.S., Žárský V. The Exocyst Complex Contributes to PIN Auxin Efflux Carrier Recycling and Polar Auxin Transport in Arabidopsis. Plant J. 2013 doi: 10.1111/tpj.12074. PubMed DOI
Ovečka M., Lang I., Baluška F., Ismail A., Illeš P., Lichtscheidl I.K. Endocytosis and Vesicle Trafficking during Tip Growth of Root Hairs. Protoplasma. 2005 doi: 10.1007/s00709-005-0103-9. PubMed DOI
Leiber R.M., John F., Verhertbruggen Y., Diet A., Knox J.P., Ringli C. The TOR Pathway Modulates the Structure of Cell Walls in Arabidopsis. Plant Cell. 2010 doi: 10.1105/tpc.109.073007. PubMed DOI PMC
Westermann J., Streubel S., Franck C.M., Lentz R., Dolan L., Boisson-Dernier A. An Evolutionarily Conserved Receptor-like Kinases Signaling Module Controls Cell Wall Integrity During Tip Growth. Curr. Biol. 2019 doi: 10.1016/j.cub.2019.09.069. PubMed DOI PMC
Zhu S., Martínez Pacheco J., Estevez J.M., Yu F. Autocrine Regulation of Root Hair Size by the RALF-FERONIA-RSL4 Signaling Pathway. New Phytol. 2020 doi: 10.1111/nph.16497. PubMed DOI
Kim D., Yang J., Gu F., Park S., Combs J., Adams A., Mayes H.B., Jeon S.J., Bahk J.D., Nielsen E. A Temperature-Sensitive FERONIA Mutant Allele That Alters Root Hair Growth. Plant Physiol. 2020 doi: 10.1093/plphys/kiaa051. PubMed DOI PMC
Dong Q.K., Zhang Z.W., Liu Y.T., Tao L.Z., Liu H.L. FERONIA Regulates Auxin-Mediated Lateral Root Development and Primary Root Gravitropism. FEBS Lett. 2019 doi: 10.1002/1873-3468.13292. PubMed DOI
Krüger F., Schumacher K. Pumping up the Volume—Vacuole Biogenesis in Arabidopsis thaliana. Semin. Cell Dev. Biol. 2018 doi: 10.1016/j.semcdb.2017.07.008. PubMed DOI
Kaiser S., Eisa A., Kleine-Vehn J., Scheuring D. NET4 Modulates the Compactness of Vacuoles in Arabidopsis thaliana. Int. J. Mol. Sci. 2019;20:4752. doi: 10.3390/ijms20194752. PubMed DOI PMC
Dünser K., Gupta S., Herger A., Feraru M.I., Ringli C., Kleine-Vehn J. Extracellular Matrix Sensing by FERONIA and Leucine-Rich Repeat Extensins Controls Vacuolar Expansion during Cellular Elongation in Arabidopsis thaliana. EMBO J. 2019 doi: 10.15252/embj.2018100353. PubMed DOI PMC
Barbez E., Dünser K., Gaidora A., Lendl T., Busch W. Auxin Steers Root Cell Expansion via Apoplastic PH Regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2017 doi: 10.1073/pnas.1613499114. PubMed DOI PMC
Höfte H. The Yin and Yang of Cell Wall Integrity Control: Brassinosteroid and FERONIA Signaling. Plant Cell Physiol. 2015 doi: 10.1093/pcp/pcu182. PubMed DOI
Yu M., Li R., Cui Y., Chen W., Li B., Zhang X., Bu Y., Cao Y., Xing J., Jewaria P.K., et al. The RALF1-FERONIA Interaction Modulates Endocytosis to Mediate Control of Root Growth in Arabidopsis. Develompent. 2020 doi: 10.1242/dev.189902. PubMed DOI
Editorial: Highlights of the 2nd D(dark grown)-root meeting
Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination