Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination

. 2021 Nov 26 ; 22 (23) : . [epub] 20211126

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34884591

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministry of Education, Youth and Sports of Czech Republic MŠMT ČR

The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status.

Zobrazit více v PubMed

Pierik R., Testerink C. The Art of Being Flexible: How to Escape from Shade, Salt, and Drought1. Plant Physiol. 2014;166:5–22. doi: 10.1104/pp.114.239160. PubMed DOI PMC

Bailey-Serres J., Pierik R., Ruban A., Wingler A. The Dynamic Plant: Capture, Transformation, and Management of Energy. Plant Physiol. 2018;176:961–966. doi: 10.1104/pp.18.00041. PubMed DOI PMC

Van Gelderen K., Kang C., Pierik R. Light Signaling, Root Development, and Plasticity. Plant Physiol. 2018;176:1049–1060. doi: 10.1104/pp.17.01079. PubMed DOI PMC

Retzer K., Weckwerth W. The Tor–Auxin Connection Upstream of Root Hair Growth. Plants. 2021;10:150. doi: 10.3390/plants10010150. PubMed DOI PMC

Calleja-Cabrera J., Boter M., Oñate-Sánchez L., Pernas M. Root Growth Adaptation to Climate Change in Crops. Front. Plant Sci. 2020;11:544. doi: 10.3389/fpls.2020.00544. PubMed DOI PMC

Miotto Y., Da Costa C.T., Offringa R., Kleine-Vehn J., Maraschin F.D. Effects of Light Intensity on Root Development in a D-Root Growth System. Front. Plant Sci. 2021;92:122–125. PubMed PMC

Vandenbrink J.P., Kiss J.Z. Plant Responses to Gravity. Semin. Cell Dev. Biol. 2019;92:122–125. doi: 10.1016/j.semcdb.2019.03.011. PubMed DOI

Szepesi Á. Halotropism: Phytohormonal Aspects and Potential Applications. Front. Plant Sci. 2020;11:571025. doi: 10.3389/fpls.2020.571025. PubMed DOI PMC

Yokawa K., Fasano R., Kagenishi T., Baluška F. Light as Stress Factor to Plant Roots—Case of Root Halotropism. Front. Plant Sci. 2014;5:718. doi: 10.3389/fpls.2014.00718. PubMed DOI PMC

Li H., Testerink C., Zhang Y. How Roots and Shoots Communicate through Stressful Times. Trends Plant Sci. 2021;26:940–952. doi: 10.1016/j.tplants.2021.03.005. PubMed DOI

Geisler M., Wang B., Zhu J. Auxin Transport during Root Gravitropism: Transporters and Techniques. Plant Biol. 2014;16:50–57. doi: 10.1111/plb.12030. PubMed DOI

Fürtauer L., Weiszmann J., Weckwerth W., Nägele T. Dynamics of Plant Metabolism during Cold Acclimation. Int. J. Mol. Sci. 2019;20:5411. doi: 10.3390/ijms20215411. PubMed DOI PMC

Walter A., Nagel K.A. Root Growth Reacts Rapidly and More Pronounced than Shoot Growth towards Increasing Light Intensity in Tobacco Seedlings. Plant Signal. Behav. 2006;1:225–226. doi: 10.4161/psb.1.5.3447. PubMed DOI PMC

Nagel K.A., Schurr U., Walter A. Dynamics of Root Growth Stimulation in Nicotiana Tabacum in Increasing Light Intensity. Plant Cell Environ. 2006;29:1936–1945. doi: 10.1111/j.1365-3040.2006.01569.x. PubMed DOI

Grierson C., Nielsen E., Ketelaarc T., Schiefelbein J. Root Hairs. Arab. B. 2014;12:e0172. doi: 10.1199/tab.0172. PubMed DOI PMC

Ötvös K., Marconi M., Vega A., O’Brien J., Johnson A., Abualia R., Antonielli L., Montesinos J.C., Zhang Y., Tan S., et al. Modulation of Plant Root Growth by Nitrogen Source-defined Regulation of Polar Auxin Transport. EMBO J. 2021;40:e106862. doi: 10.15252/embj.2020106862. PubMed DOI PMC

Zhang Y., Friml J. Auxin Guides Roots to Avoid Obstacles during Gravitropic Growth. New Phytol. 2020;225:1049–1052. doi: 10.1111/nph.16203. PubMed DOI PMC

Konstantinova N., Korbei B., Luschnig C. Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response. Int. J. Mol. Sci. 2021;22:2749. doi: 10.3390/ijms22052749. PubMed DOI PMC

Jozef L., Katarzyna R., Christian L., Eva Z. Polar Auxin Transport. eLS. 2017:1–11. doi: 10.1002/9780470015902.a0020116.pub2. DOI

Retzer K., Korbei B., Luschnig C. Auxin and Its Role in Plant Development. Springer; Vienna, Austria: 2014. Auxin and Tropisms. DOI

Zdarska M., Dobisová T., Gelová Z., Pernisová M., Dabravolski S., Hejátko J. Illuminating Light, Cytokinin, and Ethylene Signalling Crosstalk in Plant Development. J. Exp. Bot. 2015;66:4913–4931. doi: 10.1093/jxb/erv261. PubMed DOI

Yamoune A., Cuyacot A.R., Zdarska M., Hejatko J. Hormonal Orchestration of Root Apical Meristem Formation and Maintenance in Arabidopsis. J. Exp. Bot. 2021;72:6768–6788. doi: 10.1093/jxb/erab360. PubMed DOI

Wan Y., Yokawa K., Baluška F. Arabidopsis Roots and Light: Complex Interactions. Mol. Plant. 2019;12:1428–1430. doi: 10.1016/j.molp.2019.10.001. PubMed DOI

Mishra B.S., Singh M., Aggrawal P., Laxmi A. Glucose and Auxin Signaling Interaction in Controlling Arabidopsis Thaliana Seedlings Root Growth and Development. PLoS ONE. 2009;4:e4502. doi: 10.1371/journal.pone.0004502. PubMed DOI PMC

Jiang K., Moe-Lange J., Hennet L., Feldman L.J. Salt Stress Affects the Redox Status of Arabidopsis Root Meristems. Front. Plant Sci. 2016;7:81. doi: 10.3389/fpls.2016.00081. PubMed DOI PMC

Silva-Navas J., Moreno-Risueno M.A., Manzano C., Pallero-Baena M., Navarro-Neila S., Téllez-Robledo B., Garcia-Mina J.M., Baigorri R., Gallego F.J., Del Pozo J.C. D-Root: A System for Cultivating Plants with the Roots in Darkness or under Different Light Conditions. Plant J. 2015;84:244–255. doi: 10.1111/tpj.12998. PubMed DOI

Silva-Navas J., Moreno-Risueno M.A., Manzano C., Téllez-Robledo B., Navarro-Neila S., Carrasco V., Pollmann S., Gallego F.J., Del Pozo J.C. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition. Plant Cell. 2016;28:1372–1387. doi: 10.1105/tpc.15.00857. PubMed DOI PMC

Silva-Navas J., Conesa C.M., Saez A., Navarro-Neila S., Garcia-Mina J.M., Zamarreño A.M., Baigorri R., Swarup R., del Pozo J.C. Role of Cis-Zeatin in Root Responses to Phosphate Starvation. New Phytol. 2019;224:242–257. doi: 10.1111/nph.16020. PubMed DOI

García-González J., Lacek J., Retzer K. Dissecting Hierarchies between Light, Sugar and Auxin Action Underpinning Root and Root Hair Growth. Plants. 2021;10:111. doi: 10.3390/plants10010111. PubMed DOI PMC

García-González J., Lacek J., Weckwerth W., Retzer K. Exogenous Carbon Source Supplementation Counteracts Root and Hypocotyl Growth Limitations under Increased Cotyledon Shading, with Glucose and Sucrose Differentially Modulating Growth Curves. Plant Signal. Behav. 2021;16:1969818. doi: 10.1080/15592324.2021.1969818. PubMed DOI PMC

Darwin C., Darwin F. The Power of Movement in Plants. John Murray; London, UK: 1880. DOI

Mo M., Yokawa K., Wan Y., Baluska F. How and Why Do Root Apices Sense Light under the Soil Surface? Front. Plant Sci. 2015;6:775. doi: 10.3389/fpls.2015.00775. PubMed DOI PMC

Retzer K., Akhmanova M., Konstantinova N., Malínská K., Leitner J., Petrášek J., Luschnig C. Brassinosteroid Signaling Delimits Root Gravitropism via Sorting of the Arabidopsis PIN2 Auxin Transporter. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-019-13543-1. PubMed DOI PMC

Mishra B.S., Sharma M., Laxmi A. Role of Sugar and Auxin Crosstalk in Plant Growth and Development. Physiol. Plant. 2021 doi: 10.1111/ppl.13546. PubMed DOI

Retzer K., Lacek J., Skokan R., Del Genio C.I., Vosolsobě S., Laňková M., Malínská K., Konstantinova N., Zažímalová E., Napier R.M., et al. Evolutionary Conserved Cysteines Function as Cis-Acting Regulators of Arabidopsis PIN-FORMED 2 Distribution. Int. J. Mol. Sci. 2017;18:2274. doi: 10.3390/ijms18112274. PubMed DOI PMC

Van Gelderen K., Kang C., Paalman R., Keuskamp D., Hayes S., Pierik R. Far-Red Light Detection in the Shoot Regulates Lateral Root Development through the HY5 Transcription Factor. Plant Cell. 2018;30:101–116. doi: 10.1105/tpc.17.00771. PubMed DOI PMC

Halat L.S., Gyte K., Wasteneys G.O. Microtubule-Associated Protein CLASP Is Translationally Regulated in Light-Dependent Root Apical Meristem Growth. Plant Physiol. 2020;184:2154–2167. doi: 10.1104/pp.20.00474. PubMed DOI PMC

Laxmi A., Pan J., Morsy M., Chen R. Light Plays an Essential Role in Intracellular Distribution of Auxin Efflux Carrier PIN2 in Arabidopsis Thaliana. PLoS ONE. 2008;3:e1510. doi: 10.1371/journal.pone.0001510. PubMed DOI PMC

Sassi M., Lu Y., Zhang Y., Wang J., Dhonukshe P., Blilou I., Dai M., Li J., Gong X., Jaillais Y., et al. COP1 Mediates the Coordination of Root and Shoot Growth by Light through Modulation of PIN1- and PIN2-Dependent Auxin Transport in Arabidopsis. Development. 2012;139:3402–3412. doi: 10.1242/dev.078212. PubMed DOI

Yokawa K., Koshiba T., Baluška F. Light-Dependent Control of Redox Balance and Auxin Biosynthesis in Plants. Plant Signal. Behav. 2014;9:e29522. doi: 10.4161/psb.29522. PubMed DOI PMC

Xu W., Ding G., Yokawa K., Baluška F., Li Q.F., Liu Y., Shi W., Liang J., Zhang J. An Improved Agar-Plate Method for Studying Root Growth and Response of Arabidopsis Thaliana. Sci. Rep. 2013;3:1273. doi: 10.1038/srep01273. PubMed DOI PMC

Atkinson J.A., Pound M.P., Bennett M.J., Wells D.M. Uncovering the Hidden Half of Plants Using New Advances in Root Phenotyping. Curr. Opin. Biotechnol. 2019;55:1–8. doi: 10.1016/j.copbio.2018.06.002. PubMed DOI PMC

Dyachok J., Zhu L., Liao F., He J., Huq E., Blancaflor E.B. SCAR Mediates Light-Induced Root Elongation in Arabidopsis through Photoreceptors and Proteasomes. Plant Cell. 2011;23:3610–3626. doi: 10.1105/tpc.111.088823. PubMed DOI PMC

Aronne G., Muthert L.W.F., Izzo L.G., Romano L.E., Iovane M., Capozzi F., Manzano A., Ciska M., Herranz R., Medina F.J., et al. A Novel Device to Study Altered Gravity and Light Interactions in Seedling Tropisms. Life Sci. Space Res. 2022;32:8–16. doi: 10.1016/j.lssr.2021.09.005. PubMed DOI

Van Gelderen K., Kang C., Li P., Pierik R. Regulation of Lateral Root Development by Shoot-Sensed Far-Red Light via HY5 Is Nitrate-Dependent and Involves the NRT2.1 Nitrate Transporter. Front. Plant Sci. 2021;12:660870. doi: 10.3389/fpls.2021.660870. PubMed DOI PMC

Barrada A., Montané M.H., Robaglia C., Menand B. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective. Int. J. Mol. Sci. 2015;16:19671–19697. doi: 10.3390/ijms160819671. PubMed DOI PMC

Zhao Y., Wang X.Q. The Hot Issue: TOR Signalling Network in Plants. Funct. Plant Biol. 2020;48:1–7. doi: 10.1071/FP20071. PubMed DOI

Wu Y., Shi L., Li L., Fu L., Liu Y., Xiong Y., Sheen J. Integration of Nutrient, Energy, Light, and Hormone Signalling via TOR in Plants. J. Exp. Bot. 2019;70:2227–2238. doi: 10.1093/jxb/erz028. PubMed DOI PMC

Mase K., Tsukagoshi H. Reactive Oxygen Species Link Gene Regulatory Networks during Arabidopsis Root Development. Front. Plant Sci. 2021;12:660274. doi: 10.3389/fpls.2021.660274. PubMed DOI PMC

Diaz-Vivancos P., De Simone A., Kiddle G., Foyer C.H. Glutathione—Linking Cell Proliferation to Oxidative Stress. Free. Radic. Biol. Med. 2015;89:1154–1164. doi: 10.1016/j.freeradbiomed.2015.09.023. PubMed DOI

Wan Y., Jasik J., Wang L., Hao H., Volkmann D., Menzel D., Mancuso S., Baluška F., Lin J. The Signal Transducer NPH3 Integrates the Phototropin1 Photosensor with PIN2-Based Polar Auxin Transport in Arabidopsis Root Phototropism. Plant Cell. 2012;24:551–565. doi: 10.1105/tpc.111.094284. PubMed DOI PMC

Velasquez S.M., Barbez E., Kleine-Vehn J., Estevez J.M. Auxin and Cellular Elongation. Plant Physiol. 2016;170:1206–1215. doi: 10.1104/pp.15.01863. PubMed DOI PMC

Mangano S., Denita-Juarez S.P., Choi H.-S., Marzol E., Hwang Y., Ranocha P., Velasquez S.M., Borassi C., Barberini M.L., Aptekmann A.A., et al. Molecular Link between Auxin and ROS-Mediated Polar Growth. Proc. Natl. Acad. Sci. USA. 2017;114:5289–5294. doi: 10.1073/pnas.1701536114. PubMed DOI PMC

Eljebbawi A., Guerrero Y.D.C.R., Dunand C., Estevez J.M. Highlighting Reactive Oxygen Species as Multitaskers in Root Development. iScience. 2021;24:101978. doi: 10.1016/j.isci.2020.101978. PubMed DOI PMC

Yokawa K., Kagenishi T., Baluška F. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices. Front. Plant Sci. 2016;6:1162. doi: 10.3389/fpls.2015.01162. PubMed DOI PMC

Tsukagoshi H., Busch W., Benfey P.N. Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root. Cell. 2010;143:606–616. doi: 10.1016/j.cell.2010.10.020. PubMed DOI

Thomine S., Lanquar V. Iron Transport and Signaling in Plants. In: Geisler M., Venema K., editors. Transporters and Pumps in Plant Signaling. Springer; Berlin/Heidelberg, Germany: 2011. pp. 99–131. DOI

Shin R., Schachtman D.P. Hydrogen Peroxide Mediates Plant Root Cell Response to Nutrient Deprivation. Proc. Natl. Acad. Sci. USA. 2004;101:8827–8832. doi: 10.1073/pnas.0401707101. PubMed DOI PMC

Conesa C.M., Saez A., Navarro-Neila S., de Lorenzo L., Hunt A.G., Sepúlveda E.B., Baigorri R., Garcia-Mina J.M., Zamarreño A.M., Sacristán S., et al. Alternative Polyadenylation and Salicylic Acid Modulate Root Responses to Low Nitrogen Availability. Plants. 2020;9:251. doi: 10.3390/plants9020251. PubMed DOI PMC

Briggs W.R., Christie J.M. Phototropins 1 and 2: Versatile Plant Blue-Light Receptors. Trends Plant Sci. 2002;7:204–210. doi: 10.1016/S1360-1385(02)02245-8. PubMed DOI

Tsukagoshi H. Control of Root Growth and Development by Reactive Oxygen Species. Curr. Opin. Plant Biol. 2016;29:57–63. doi: 10.1016/j.pbi.2015.10.012. PubMed DOI

Yamada M., Han X., Benfey P.N. RGF1 Controls Root Meristem Size through ROS Signalling. Nature. 2020;577:85–88. doi: 10.1038/s41586-019-1819-6. PubMed DOI PMC

Ovečka M., Lang I., Baluška F., Ismail A., Illeš P., Lichtscheidl I.K. Endocytosis and Vesicle Trafficking during Tip Growth of Root Hairs. Protoplasma. 2005;226:39–54. doi: 10.1007/s00709-005-0103-9. PubMed DOI

Wasteneys G.O., Ambrose J.C. Spatial Organization of Plant Cortical Microtubules: Close Encounters of the 2D Kind. Trends Cell Biol. 2009;19:62–71. doi: 10.1016/j.tcb.2008.11.004. PubMed DOI

Retzer K., Butt H., Korbei B., Luschnig C. The Far Side of Auxin Signaling: Fundamental Cellular Activities and Their Contribution to a Defined Growth Response in Plants. Protoplasma. 2014;251:731–746. doi: 10.1007/s00709-013-0572-1. PubMed DOI PMC

Adamowski M., Friml J. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC

Gallei M., Luschnig C., Friml J. Auxin Signalling in Growth: Schrödinger’s Cat out of the Bag. Curr. Opin. Plant Biol. 2020;53:43–49. doi: 10.1016/j.pbi.2019.10.003. PubMed DOI

Semeradova H., Montesinos J.C., Benkova E. All Roads Lead to Auxin: Post-Translational Regulation of Auxin Transport by Multiple Hormonal Pathways. Plant Commun. 2020;1:100048. doi: 10.1016/j.xplc.2020.100048. PubMed DOI PMC

Luschnig C., Vert G. The Dynamics of Plant Plasma Membrane Proteins: PINs and Beyond. Development. 2014;141:2924–2938. doi: 10.1242/dev.103424. PubMed DOI

Zourelidou M., Absmanner B., Weller B., Barbosa I.C.R., Willige B.C., Fastner A., Streit V., Port S.A., Colcombet J., van Bentem S., et al. Auxin Efflux by PIN-FORMED Proteins Is Activated by Two Different Protein Kinases, D6 PROTEIN KINASE and PINOID. eLife. 2014;3:e02860. doi: 10.7554/eLife.02860. PubMed DOI PMC

Löfke C., Luschnig C., Kleine-Vehn J. Posttranslational Modification and Trafficking of PIN Auxin Efflux Carriers. Mech. Dev. 2013;130:82–94. doi: 10.1016/j.mod.2012.02.003. PubMed DOI

Leitner J., Petrášek J., Tomanov K., Retzer K., Pařezová M., Korbei B., Bachmair A., Zažímalová E., Luschnig C. Lysine63-Linked Ubiquitylation of PIN2 Auxin Carrier Protein Governs Hormonally Controlled Adaptation of Arabidopsis Root Growth. Proc. Natl. Acad. Sci. USA. 2012;109:8322–8327. doi: 10.1073/pnas.1200824109. PubMed DOI PMC

Leyser O. Auxin Signaling. Plant Physiol. 2018;176:465–479. doi: 10.1104/pp.17.00765. PubMed DOI PMC

Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI

Petrášek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertová D., Wiśniewska J., Tadele Z., Kubeš M., Čovanová M., et al. PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux. Science. 2006;312:914–918. doi: 10.1126/science.1123542. PubMed DOI

De Smet I. Lateral Root Initiation: One Step at a Time. New Phytol. 2012;193:867–873. doi: 10.1111/j.1469-8137.2011.03996.x. PubMed DOI

Orman-Ligeza B., Parizot B., Gantet P.P., Beeckman T., Bennett M.J., Draye X. Post-Embryonic Root Organogenesis in Cereals: Branching out from Model Plants. Trends Plant Sci. 2013;18:459–467. doi: 10.1016/j.tplants.2013.04.010. PubMed DOI

Bielach A., Hrtyan M., Tognetti V.B. Plants under Stress: Involvement of Auxin and Cytokinin. Int. J. Mol. Sci. 2017;18:1427. doi: 10.3390/ijms18071427. PubMed DOI PMC

Mroue S., Simeunovic A., Robert H.S. Auxin Production as an Integrator of Environmental Cues for Developmental Growth Regulation. J. Exp. Bot. 2018;69:201–212. doi: 10.1093/jxb/erx259. PubMed DOI

Monshausen G.B., Bibikova T.N., Messerli M.A., Shi C., Gilroy S. Oscillations in Extracellular PH and Reactive Oxygen Species Modulate Tip Growth of Arabidopsis Root Hairs. Proc. Natl. Acad. Sci. USA. 2007;104:20996–21001. doi: 10.1073/pnas.0708586104. PubMed DOI PMC

Peer W.A., Jenness M.K., Murphy A.S. Measure for Measure: Determining, Inferring and Guessing Auxin Gradients at the Root Tip. Physiol. Plant. 2014;151:97–111. doi: 10.1111/ppl.12182. PubMed DOI

Peer W.A., Cheng Y., Murphy A.S. Evidence of Oxidative Attenuation of Auxin Signalling. J. Exp. Bot. 2013;64:2629–2639. doi: 10.1093/jxb/ert152. PubMed DOI

Klíma P., Laňková M., Zažímalová E. Inhibitors of Plant Hormone Transport. Protoplasma. 2016;253:1391–1404. doi: 10.1007/s00709-015-0897-z. PubMed DOI

Steenackers W., Klíma P., Quareshy M., Cesarino I., Kumpf R.P., Corneillie S., Araújo P., Viaene T., Goeminne G., Nowack M.K., et al. Cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation. Plant Physiol. 2017;173:552–565. doi: 10.1104/pp.16.00943. PubMed DOI PMC

Roychoudhry S., Kepinski S. Auxin in Root Development. Cold Spring Harb. Perspect. Biol. 2021;13:a039933. doi: 10.1101/cshperspect.a039933. PubMed DOI PMC

Schepetilnikov M., Ryabova L.A. Auxin Signaling in Regulation of Plant Translation Reinitiation. Front. Plant Sci. 2017;8:1014. doi: 10.3389/fpls.2017.01014. PubMed DOI PMC

Dello Ioio R., Nakamura K., Moubayidin L., Perilli S., Taniguchi M., Morita M.T., Aoyama T., Costantino P., Sabatini S. A Genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem. Science. 2008;322:1380–1384. doi: 10.1126/science.1164147. PubMed DOI

Chapman E.J., Estelle M. Mechanism of Auxin-Regulated Gene Expression in Plants. Annu. Rev. Genet. 2009;43:265–285. doi: 10.1146/annurev-genet-102108-134148. PubMed DOI

Ruzicka K., Simásková M., Duclercq J., Petrásek J., Zazímalová E., Simon S., Friml J., Van Montagu M.C.E., Benková E. Cytokinin Regulates Root Meristem Activity via Modulation of the Polar Auxin Transport. Proc. Natl. Acad. Sci. USA. 2009;106:4284–4289. doi: 10.1073/pnas.0900060106. PubMed DOI PMC

Lv B., Tian H., Zhang F., Liu J., Lu S., Bai M., Li C., Ding Z. Brassinosteroids Regulate Root Growth by Controlling Reactive Oxygen Species Homeostasis and Dual Effect on Ethylene Synthesis in Arabidopsis. PLoS Genet. 2018;14:e1007144. doi: 10.1371/journal.pgen.1007144. PubMed DOI PMC

Sakaguchi J., Matsushita T., Watanabe Y. DWARF4 Accumulation in Root Tips Is Enhanced via Blue Light Perception by Cryptochromes. Plant Cell Environ. 2019;42:1615–1629. doi: 10.1111/pce.13510. PubMed DOI

Pierik R., Fankhauser C., Strader L.C., Sinha N. Architecture and Plasticity: Optimizing Plant Performance in Dynamic Environments. Plant Physiol. 2021;187:1029–1032. doi: 10.1093/plphys/kiab402. PubMed DOI PMC

Yokawa K., Baluška F. The TOR Complex: An Emergency Switch for Root Behavior. Plant Cell Physiol. 2016;57:14–18. doi: 10.1093/pcp/pcv191. PubMed DOI

Zandalinas S.I., Sengupta S., Fritschi F.B., Azad R.K., Nechushtai R., Mittler R. The Impact of Multifactorial Stress Combination on Plant Growth and Survival. New Phytol. 2021;230:1034–1048. doi: 10.1111/nph.17232. PubMed DOI PMC

Fasano R., Gonzalez N., Tosco A., Dal Piaz F., Docimo T., Serrano R., Grillo S., Leone A., Inzé D. Role of Arabidopsis UV RESISTANCE LOCUS 8 in Plant Growth Reduction under Osmotic Stress and Low Levels of UV-B. Mol. Plant. 2014;7:773–791. doi: 10.1093/mp/ssu002. PubMed DOI

Ghatak A., Chaturvedi P., Weckwerth W. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses towards Marker-Assisted Selection Breeding. Front. Plant Sci. 2017;8:757. doi: 10.3389/fpls.2017.00757. PubMed DOI PMC

Ghatak A., Chaturvedi P., Nagler M., Roustan V., Lyon D., Bachmann G., Postl W., Schröfl A., Desai N., Varshney R.K., et al. Comprehensive Tissue-Specific Proteome Analysis of Drought Stress Responses in Pennisetum Glaucum (L.) R. Br. (Pearl Millet) J. Proteom. 2016;143:122–135. doi: 10.1016/j.jprot.2016.02.032. PubMed DOI

Ghatak A., Chaturvedi P., Bachmann G., Valledor L., Ramšak Ž., Bazargani M.M., Bajaj P., Jegadeesan S., Li W., Sun X., et al. Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought Resilience in Pearl Millet Compared to Wheat. Front. Plant Sci. 2020;11:600278. doi: 10.3389/fpls.2020.600278. PubMed DOI PMC

Piñeros M.A., Larson B.G., Shaff J.E., Schneider D.J., Falcão A.X., Yuan L., Clark R.T., Craft E.J., Davis T.W., Pradier P.-L., et al. Evolving Technologies for Growing, Imaging and Analyzing 3D Root System Architecture of Crop Plants. J. Integr. Plant Biol. 2016;58:230–241. doi: 10.1111/jipb.12456. PubMed DOI

Freschet G.T., Pagès L., Iversen C.M., Comas L.H., Rewald B., Roumet C., Klimešová J., Zadworny M., Poorter H., Postma J.A., et al. A Starting Guide to Root Ecology: Strengthening Ecological Concepts and Standardising Root Classification, Sampling, Processing and Trait Measurements. New Phytol. 2021;232:973–1122. doi: 10.1111/nph.17572. PubMed DOI PMC

Ghatak A., Schindler F., Bachmann G., Engelmeier D., Bajaj P., Brenner M., Fragner L., Varshney R.K., Subbarao G.V., Chaturvedi P., et al. Root Exudation of Contrasting Drought-Stressed Pearl Millet Genotypes Conveys Varying Biological Nitrification Inhibition (BNI) Activity. Biol. Fertil. Soils. 2021;57:1–16. doi: 10.1007/s00374-021-01578-w. PubMed DOI PMC

Yee M.O., Kim P., Li Y., Singh A.K., Northen T.R., Chakraborty R. Specialized Plant Growth Chamber Designs to Study Complex Rhizosphere Interactions. Front. Microbiol. 2021;12:625752. doi: 10.3389/fmicb.2021.625752. PubMed DOI PMC

Ma L., Shi Y., Siemianowski O., Yuan B., Egner T.K., Mirnezami S.V., Lind K.R., Ganapathysubramanian B., Venditti V., Cademartiri L. Hydrogel-Based Transparent Soils for Root Phenotyping in Vivo. Proc. Natl. Acad. Sci. USA. 2019;116:11063–11068. doi: 10.1073/pnas.1820334116. PubMed DOI PMC

Downie H., Holden N., Otten W., Spiers A.J., Valentine T.A., Dupuy L.X. Transparent Soil for Imaging the Rhizosphere. PLoS ONE. 2012;7:e44276. doi: 10.1371/journal.pone.0044276. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...