Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministry of Education, Youth and Sports of Czech Republic MŠMT ČR
PubMed
34884591
PubMed Central
PMC8657594
DOI
10.3390/ijms222312784
PII: ijms222312784
Knihovny.cz E-resources
- Keywords
- D-rootsystem, abiotic stress, auxin, cytokinin, dark-grown roots, direct root illumination, flavonols, light escape mechanism, reactive oxygen species, root growth,
- MeSH
- Adaptation, Physiological * MeSH
- Plant Roots metabolism radiation effects MeSH
- Gene Expression Regulation, Plant radiation effects MeSH
- Plant Proteins genetics metabolism MeSH
- Plants metabolism radiation effects MeSH
- Seedlings metabolism radiation effects MeSH
- Light * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Plant Proteins MeSH
The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status.
See more in PubMed
Pierik R., Testerink C. The Art of Being Flexible: How to Escape from Shade, Salt, and Drought1. Plant Physiol. 2014;166:5–22. doi: 10.1104/pp.114.239160. PubMed DOI PMC
Bailey-Serres J., Pierik R., Ruban A., Wingler A. The Dynamic Plant: Capture, Transformation, and Management of Energy. Plant Physiol. 2018;176:961–966. doi: 10.1104/pp.18.00041. PubMed DOI PMC
Van Gelderen K., Kang C., Pierik R. Light Signaling, Root Development, and Plasticity. Plant Physiol. 2018;176:1049–1060. doi: 10.1104/pp.17.01079. PubMed DOI PMC
Retzer K., Weckwerth W. The Tor–Auxin Connection Upstream of Root Hair Growth. Plants. 2021;10:150. doi: 10.3390/plants10010150. PubMed DOI PMC
Calleja-Cabrera J., Boter M., Oñate-Sánchez L., Pernas M. Root Growth Adaptation to Climate Change in Crops. Front. Plant Sci. 2020;11:544. doi: 10.3389/fpls.2020.00544. PubMed DOI PMC
Miotto Y., Da Costa C.T., Offringa R., Kleine-Vehn J., Maraschin F.D. Effects of Light Intensity on Root Development in a D-Root Growth System. Front. Plant Sci. 2021;92:122–125. PubMed PMC
Vandenbrink J.P., Kiss J.Z. Plant Responses to Gravity. Semin. Cell Dev. Biol. 2019;92:122–125. doi: 10.1016/j.semcdb.2019.03.011. PubMed DOI
Szepesi Á. Halotropism: Phytohormonal Aspects and Potential Applications. Front. Plant Sci. 2020;11:571025. doi: 10.3389/fpls.2020.571025. PubMed DOI PMC
Yokawa K., Fasano R., Kagenishi T., Baluška F. Light as Stress Factor to Plant Roots—Case of Root Halotropism. Front. Plant Sci. 2014;5:718. doi: 10.3389/fpls.2014.00718. PubMed DOI PMC
Li H., Testerink C., Zhang Y. How Roots and Shoots Communicate through Stressful Times. Trends Plant Sci. 2021;26:940–952. doi: 10.1016/j.tplants.2021.03.005. PubMed DOI
Geisler M., Wang B., Zhu J. Auxin Transport during Root Gravitropism: Transporters and Techniques. Plant Biol. 2014;16:50–57. doi: 10.1111/plb.12030. PubMed DOI
Fürtauer L., Weiszmann J., Weckwerth W., Nägele T. Dynamics of Plant Metabolism during Cold Acclimation. Int. J. Mol. Sci. 2019;20:5411. doi: 10.3390/ijms20215411. PubMed DOI PMC
Walter A., Nagel K.A. Root Growth Reacts Rapidly and More Pronounced than Shoot Growth towards Increasing Light Intensity in Tobacco Seedlings. Plant Signal. Behav. 2006;1:225–226. doi: 10.4161/psb.1.5.3447. PubMed DOI PMC
Nagel K.A., Schurr U., Walter A. Dynamics of Root Growth Stimulation in Nicotiana Tabacum in Increasing Light Intensity. Plant Cell Environ. 2006;29:1936–1945. doi: 10.1111/j.1365-3040.2006.01569.x. PubMed DOI
Grierson C., Nielsen E., Ketelaarc T., Schiefelbein J. Root Hairs. Arab. B. 2014;12:e0172. doi: 10.1199/tab.0172. PubMed DOI PMC
Ötvös K., Marconi M., Vega A., O’Brien J., Johnson A., Abualia R., Antonielli L., Montesinos J.C., Zhang Y., Tan S., et al. Modulation of Plant Root Growth by Nitrogen Source-defined Regulation of Polar Auxin Transport. EMBO J. 2021;40:e106862. doi: 10.15252/embj.2020106862. PubMed DOI PMC
Zhang Y., Friml J. Auxin Guides Roots to Avoid Obstacles during Gravitropic Growth. New Phytol. 2020;225:1049–1052. doi: 10.1111/nph.16203. PubMed DOI PMC
Konstantinova N., Korbei B., Luschnig C. Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response. Int. J. Mol. Sci. 2021;22:2749. doi: 10.3390/ijms22052749. PubMed DOI PMC
Jozef L., Katarzyna R., Christian L., Eva Z. Polar Auxin Transport. eLS. 2017:1–11. doi: 10.1002/9780470015902.a0020116.pub2. DOI
Retzer K., Korbei B., Luschnig C. Auxin and Its Role in Plant Development. Springer; Vienna, Austria: 2014. Auxin and Tropisms. DOI
Zdarska M., Dobisová T., Gelová Z., Pernisová M., Dabravolski S., Hejátko J. Illuminating Light, Cytokinin, and Ethylene Signalling Crosstalk in Plant Development. J. Exp. Bot. 2015;66:4913–4931. doi: 10.1093/jxb/erv261. PubMed DOI
Yamoune A., Cuyacot A.R., Zdarska M., Hejatko J. Hormonal Orchestration of Root Apical Meristem Formation and Maintenance in Arabidopsis. J. Exp. Bot. 2021;72:6768–6788. doi: 10.1093/jxb/erab360. PubMed DOI
Wan Y., Yokawa K., Baluška F. Arabidopsis Roots and Light: Complex Interactions. Mol. Plant. 2019;12:1428–1430. doi: 10.1016/j.molp.2019.10.001. PubMed DOI
Mishra B.S., Singh M., Aggrawal P., Laxmi A. Glucose and Auxin Signaling Interaction in Controlling Arabidopsis Thaliana Seedlings Root Growth and Development. PLoS ONE. 2009;4:e4502. doi: 10.1371/journal.pone.0004502. PubMed DOI PMC
Jiang K., Moe-Lange J., Hennet L., Feldman L.J. Salt Stress Affects the Redox Status of Arabidopsis Root Meristems. Front. Plant Sci. 2016;7:81. doi: 10.3389/fpls.2016.00081. PubMed DOI PMC
Silva-Navas J., Moreno-Risueno M.A., Manzano C., Pallero-Baena M., Navarro-Neila S., Téllez-Robledo B., Garcia-Mina J.M., Baigorri R., Gallego F.J., Del Pozo J.C. D-Root: A System for Cultivating Plants with the Roots in Darkness or under Different Light Conditions. Plant J. 2015;84:244–255. doi: 10.1111/tpj.12998. PubMed DOI
Silva-Navas J., Moreno-Risueno M.A., Manzano C., Téllez-Robledo B., Navarro-Neila S., Carrasco V., Pollmann S., Gallego F.J., Del Pozo J.C. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition. Plant Cell. 2016;28:1372–1387. doi: 10.1105/tpc.15.00857. PubMed DOI PMC
Silva-Navas J., Conesa C.M., Saez A., Navarro-Neila S., Garcia-Mina J.M., Zamarreño A.M., Baigorri R., Swarup R., del Pozo J.C. Role of Cis-Zeatin in Root Responses to Phosphate Starvation. New Phytol. 2019;224:242–257. doi: 10.1111/nph.16020. PubMed DOI
García-González J., Lacek J., Retzer K. Dissecting Hierarchies between Light, Sugar and Auxin Action Underpinning Root and Root Hair Growth. Plants. 2021;10:111. doi: 10.3390/plants10010111. PubMed DOI PMC
García-González J., Lacek J., Weckwerth W., Retzer K. Exogenous Carbon Source Supplementation Counteracts Root and Hypocotyl Growth Limitations under Increased Cotyledon Shading, with Glucose and Sucrose Differentially Modulating Growth Curves. Plant Signal. Behav. 2021;16:1969818. doi: 10.1080/15592324.2021.1969818. PubMed DOI PMC
Darwin C., Darwin F. The Power of Movement in Plants. John Murray; London, UK: 1880. DOI
Mo M., Yokawa K., Wan Y., Baluska F. How and Why Do Root Apices Sense Light under the Soil Surface? Front. Plant Sci. 2015;6:775. doi: 10.3389/fpls.2015.00775. PubMed DOI PMC
Retzer K., Akhmanova M., Konstantinova N., Malínská K., Leitner J., Petrášek J., Luschnig C. Brassinosteroid Signaling Delimits Root Gravitropism via Sorting of the Arabidopsis PIN2 Auxin Transporter. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-019-13543-1. PubMed DOI PMC
Mishra B.S., Sharma M., Laxmi A. Role of Sugar and Auxin Crosstalk in Plant Growth and Development. Physiol. Plant. 2021 doi: 10.1111/ppl.13546. PubMed DOI
Retzer K., Lacek J., Skokan R., Del Genio C.I., Vosolsobě S., Laňková M., Malínská K., Konstantinova N., Zažímalová E., Napier R.M., et al. Evolutionary Conserved Cysteines Function as Cis-Acting Regulators of Arabidopsis PIN-FORMED 2 Distribution. Int. J. Mol. Sci. 2017;18:2274. doi: 10.3390/ijms18112274. PubMed DOI PMC
Van Gelderen K., Kang C., Paalman R., Keuskamp D., Hayes S., Pierik R. Far-Red Light Detection in the Shoot Regulates Lateral Root Development through the HY5 Transcription Factor. Plant Cell. 2018;30:101–116. doi: 10.1105/tpc.17.00771. PubMed DOI PMC
Halat L.S., Gyte K., Wasteneys G.O. Microtubule-Associated Protein CLASP Is Translationally Regulated in Light-Dependent Root Apical Meristem Growth. Plant Physiol. 2020;184:2154–2167. doi: 10.1104/pp.20.00474. PubMed DOI PMC
Laxmi A., Pan J., Morsy M., Chen R. Light Plays an Essential Role in Intracellular Distribution of Auxin Efflux Carrier PIN2 in Arabidopsis Thaliana. PLoS ONE. 2008;3:e1510. doi: 10.1371/journal.pone.0001510. PubMed DOI PMC
Sassi M., Lu Y., Zhang Y., Wang J., Dhonukshe P., Blilou I., Dai M., Li J., Gong X., Jaillais Y., et al. COP1 Mediates the Coordination of Root and Shoot Growth by Light through Modulation of PIN1- and PIN2-Dependent Auxin Transport in Arabidopsis. Development. 2012;139:3402–3412. doi: 10.1242/dev.078212. PubMed DOI
Yokawa K., Koshiba T., Baluška F. Light-Dependent Control of Redox Balance and Auxin Biosynthesis in Plants. Plant Signal. Behav. 2014;9:e29522. doi: 10.4161/psb.29522. PubMed DOI PMC
Xu W., Ding G., Yokawa K., Baluška F., Li Q.F., Liu Y., Shi W., Liang J., Zhang J. An Improved Agar-Plate Method for Studying Root Growth and Response of Arabidopsis Thaliana. Sci. Rep. 2013;3:1273. doi: 10.1038/srep01273. PubMed DOI PMC
Atkinson J.A., Pound M.P., Bennett M.J., Wells D.M. Uncovering the Hidden Half of Plants Using New Advances in Root Phenotyping. Curr. Opin. Biotechnol. 2019;55:1–8. doi: 10.1016/j.copbio.2018.06.002. PubMed DOI PMC
Dyachok J., Zhu L., Liao F., He J., Huq E., Blancaflor E.B. SCAR Mediates Light-Induced Root Elongation in Arabidopsis through Photoreceptors and Proteasomes. Plant Cell. 2011;23:3610–3626. doi: 10.1105/tpc.111.088823. PubMed DOI PMC
Aronne G., Muthert L.W.F., Izzo L.G., Romano L.E., Iovane M., Capozzi F., Manzano A., Ciska M., Herranz R., Medina F.J., et al. A Novel Device to Study Altered Gravity and Light Interactions in Seedling Tropisms. Life Sci. Space Res. 2022;32:8–16. doi: 10.1016/j.lssr.2021.09.005. PubMed DOI
Van Gelderen K., Kang C., Li P., Pierik R. Regulation of Lateral Root Development by Shoot-Sensed Far-Red Light via HY5 Is Nitrate-Dependent and Involves the NRT2.1 Nitrate Transporter. Front. Plant Sci. 2021;12:660870. doi: 10.3389/fpls.2021.660870. PubMed DOI PMC
Barrada A., Montané M.H., Robaglia C., Menand B. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective. Int. J. Mol. Sci. 2015;16:19671–19697. doi: 10.3390/ijms160819671. PubMed DOI PMC
Zhao Y., Wang X.Q. The Hot Issue: TOR Signalling Network in Plants. Funct. Plant Biol. 2020;48:1–7. doi: 10.1071/FP20071. PubMed DOI
Wu Y., Shi L., Li L., Fu L., Liu Y., Xiong Y., Sheen J. Integration of Nutrient, Energy, Light, and Hormone Signalling via TOR in Plants. J. Exp. Bot. 2019;70:2227–2238. doi: 10.1093/jxb/erz028. PubMed DOI PMC
Mase K., Tsukagoshi H. Reactive Oxygen Species Link Gene Regulatory Networks during Arabidopsis Root Development. Front. Plant Sci. 2021;12:660274. doi: 10.3389/fpls.2021.660274. PubMed DOI PMC
Diaz-Vivancos P., De Simone A., Kiddle G., Foyer C.H. Glutathione—Linking Cell Proliferation to Oxidative Stress. Free. Radic. Biol. Med. 2015;89:1154–1164. doi: 10.1016/j.freeradbiomed.2015.09.023. PubMed DOI
Wan Y., Jasik J., Wang L., Hao H., Volkmann D., Menzel D., Mancuso S., Baluška F., Lin J. The Signal Transducer NPH3 Integrates the Phototropin1 Photosensor with PIN2-Based Polar Auxin Transport in Arabidopsis Root Phototropism. Plant Cell. 2012;24:551–565. doi: 10.1105/tpc.111.094284. PubMed DOI PMC
Velasquez S.M., Barbez E., Kleine-Vehn J., Estevez J.M. Auxin and Cellular Elongation. Plant Physiol. 2016;170:1206–1215. doi: 10.1104/pp.15.01863. PubMed DOI PMC
Mangano S., Denita-Juarez S.P., Choi H.-S., Marzol E., Hwang Y., Ranocha P., Velasquez S.M., Borassi C., Barberini M.L., Aptekmann A.A., et al. Molecular Link between Auxin and ROS-Mediated Polar Growth. Proc. Natl. Acad. Sci. USA. 2017;114:5289–5294. doi: 10.1073/pnas.1701536114. PubMed DOI PMC
Eljebbawi A., Guerrero Y.D.C.R., Dunand C., Estevez J.M. Highlighting Reactive Oxygen Species as Multitaskers in Root Development. iScience. 2021;24:101978. doi: 10.1016/j.isci.2020.101978. PubMed DOI PMC
Yokawa K., Kagenishi T., Baluška F. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices. Front. Plant Sci. 2016;6:1162. doi: 10.3389/fpls.2015.01162. PubMed DOI PMC
Tsukagoshi H., Busch W., Benfey P.N. Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root. Cell. 2010;143:606–616. doi: 10.1016/j.cell.2010.10.020. PubMed DOI
Thomine S., Lanquar V. Iron Transport and Signaling in Plants. In: Geisler M., Venema K., editors. Transporters and Pumps in Plant Signaling. Springer; Berlin/Heidelberg, Germany: 2011. pp. 99–131. DOI
Shin R., Schachtman D.P. Hydrogen Peroxide Mediates Plant Root Cell Response to Nutrient Deprivation. Proc. Natl. Acad. Sci. USA. 2004;101:8827–8832. doi: 10.1073/pnas.0401707101. PubMed DOI PMC
Conesa C.M., Saez A., Navarro-Neila S., de Lorenzo L., Hunt A.G., Sepúlveda E.B., Baigorri R., Garcia-Mina J.M., Zamarreño A.M., Sacristán S., et al. Alternative Polyadenylation and Salicylic Acid Modulate Root Responses to Low Nitrogen Availability. Plants. 2020;9:251. doi: 10.3390/plants9020251. PubMed DOI PMC
Briggs W.R., Christie J.M. Phototropins 1 and 2: Versatile Plant Blue-Light Receptors. Trends Plant Sci. 2002;7:204–210. doi: 10.1016/S1360-1385(02)02245-8. PubMed DOI
Tsukagoshi H. Control of Root Growth and Development by Reactive Oxygen Species. Curr. Opin. Plant Biol. 2016;29:57–63. doi: 10.1016/j.pbi.2015.10.012. PubMed DOI
Yamada M., Han X., Benfey P.N. RGF1 Controls Root Meristem Size through ROS Signalling. Nature. 2020;577:85–88. doi: 10.1038/s41586-019-1819-6. PubMed DOI PMC
Ovečka M., Lang I., Baluška F., Ismail A., Illeš P., Lichtscheidl I.K. Endocytosis and Vesicle Trafficking during Tip Growth of Root Hairs. Protoplasma. 2005;226:39–54. doi: 10.1007/s00709-005-0103-9. PubMed DOI
Wasteneys G.O., Ambrose J.C. Spatial Organization of Plant Cortical Microtubules: Close Encounters of the 2D Kind. Trends Cell Biol. 2009;19:62–71. doi: 10.1016/j.tcb.2008.11.004. PubMed DOI
Retzer K., Butt H., Korbei B., Luschnig C. The Far Side of Auxin Signaling: Fundamental Cellular Activities and Their Contribution to a Defined Growth Response in Plants. Protoplasma. 2014;251:731–746. doi: 10.1007/s00709-013-0572-1. PubMed DOI PMC
Adamowski M., Friml J. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC
Gallei M., Luschnig C., Friml J. Auxin Signalling in Growth: Schrödinger’s Cat out of the Bag. Curr. Opin. Plant Biol. 2020;53:43–49. doi: 10.1016/j.pbi.2019.10.003. PubMed DOI
Semeradova H., Montesinos J.C., Benkova E. All Roads Lead to Auxin: Post-Translational Regulation of Auxin Transport by Multiple Hormonal Pathways. Plant Commun. 2020;1:100048. doi: 10.1016/j.xplc.2020.100048. PubMed DOI PMC
Luschnig C., Vert G. The Dynamics of Plant Plasma Membrane Proteins: PINs and Beyond. Development. 2014;141:2924–2938. doi: 10.1242/dev.103424. PubMed DOI
Zourelidou M., Absmanner B., Weller B., Barbosa I.C.R., Willige B.C., Fastner A., Streit V., Port S.A., Colcombet J., van Bentem S., et al. Auxin Efflux by PIN-FORMED Proteins Is Activated by Two Different Protein Kinases, D6 PROTEIN KINASE and PINOID. eLife. 2014;3:e02860. doi: 10.7554/eLife.02860. PubMed DOI PMC
Löfke C., Luschnig C., Kleine-Vehn J. Posttranslational Modification and Trafficking of PIN Auxin Efflux Carriers. Mech. Dev. 2013;130:82–94. doi: 10.1016/j.mod.2012.02.003. PubMed DOI
Leitner J., Petrášek J., Tomanov K., Retzer K., Pařezová M., Korbei B., Bachmair A., Zažímalová E., Luschnig C. Lysine63-Linked Ubiquitylation of PIN2 Auxin Carrier Protein Governs Hormonally Controlled Adaptation of Arabidopsis Root Growth. Proc. Natl. Acad. Sci. USA. 2012;109:8322–8327. doi: 10.1073/pnas.1200824109. PubMed DOI PMC
Leyser O. Auxin Signaling. Plant Physiol. 2018;176:465–479. doi: 10.1104/pp.17.00765. PubMed DOI PMC
Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI
Petrášek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertová D., Wiśniewska J., Tadele Z., Kubeš M., Čovanová M., et al. PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux. Science. 2006;312:914–918. doi: 10.1126/science.1123542. PubMed DOI
De Smet I. Lateral Root Initiation: One Step at a Time. New Phytol. 2012;193:867–873. doi: 10.1111/j.1469-8137.2011.03996.x. PubMed DOI
Orman-Ligeza B., Parizot B., Gantet P.P., Beeckman T., Bennett M.J., Draye X. Post-Embryonic Root Organogenesis in Cereals: Branching out from Model Plants. Trends Plant Sci. 2013;18:459–467. doi: 10.1016/j.tplants.2013.04.010. PubMed DOI
Bielach A., Hrtyan M., Tognetti V.B. Plants under Stress: Involvement of Auxin and Cytokinin. Int. J. Mol. Sci. 2017;18:1427. doi: 10.3390/ijms18071427. PubMed DOI PMC
Mroue S., Simeunovic A., Robert H.S. Auxin Production as an Integrator of Environmental Cues for Developmental Growth Regulation. J. Exp. Bot. 2018;69:201–212. doi: 10.1093/jxb/erx259. PubMed DOI
Monshausen G.B., Bibikova T.N., Messerli M.A., Shi C., Gilroy S. Oscillations in Extracellular PH and Reactive Oxygen Species Modulate Tip Growth of Arabidopsis Root Hairs. Proc. Natl. Acad. Sci. USA. 2007;104:20996–21001. doi: 10.1073/pnas.0708586104. PubMed DOI PMC
Peer W.A., Jenness M.K., Murphy A.S. Measure for Measure: Determining, Inferring and Guessing Auxin Gradients at the Root Tip. Physiol. Plant. 2014;151:97–111. doi: 10.1111/ppl.12182. PubMed DOI
Peer W.A., Cheng Y., Murphy A.S. Evidence of Oxidative Attenuation of Auxin Signalling. J. Exp. Bot. 2013;64:2629–2639. doi: 10.1093/jxb/ert152. PubMed DOI
Klíma P., Laňková M., Zažímalová E. Inhibitors of Plant Hormone Transport. Protoplasma. 2016;253:1391–1404. doi: 10.1007/s00709-015-0897-z. PubMed DOI
Steenackers W., Klíma P., Quareshy M., Cesarino I., Kumpf R.P., Corneillie S., Araújo P., Viaene T., Goeminne G., Nowack M.K., et al. Cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation. Plant Physiol. 2017;173:552–565. doi: 10.1104/pp.16.00943. PubMed DOI PMC
Roychoudhry S., Kepinski S. Auxin in Root Development. Cold Spring Harb. Perspect. Biol. 2021;13:a039933. doi: 10.1101/cshperspect.a039933. PubMed DOI PMC
Schepetilnikov M., Ryabova L.A. Auxin Signaling in Regulation of Plant Translation Reinitiation. Front. Plant Sci. 2017;8:1014. doi: 10.3389/fpls.2017.01014. PubMed DOI PMC
Dello Ioio R., Nakamura K., Moubayidin L., Perilli S., Taniguchi M., Morita M.T., Aoyama T., Costantino P., Sabatini S. A Genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem. Science. 2008;322:1380–1384. doi: 10.1126/science.1164147. PubMed DOI
Chapman E.J., Estelle M. Mechanism of Auxin-Regulated Gene Expression in Plants. Annu. Rev. Genet. 2009;43:265–285. doi: 10.1146/annurev-genet-102108-134148. PubMed DOI
Ruzicka K., Simásková M., Duclercq J., Petrásek J., Zazímalová E., Simon S., Friml J., Van Montagu M.C.E., Benková E. Cytokinin Regulates Root Meristem Activity via Modulation of the Polar Auxin Transport. Proc. Natl. Acad. Sci. USA. 2009;106:4284–4289. doi: 10.1073/pnas.0900060106. PubMed DOI PMC
Lv B., Tian H., Zhang F., Liu J., Lu S., Bai M., Li C., Ding Z. Brassinosteroids Regulate Root Growth by Controlling Reactive Oxygen Species Homeostasis and Dual Effect on Ethylene Synthesis in Arabidopsis. PLoS Genet. 2018;14:e1007144. doi: 10.1371/journal.pgen.1007144. PubMed DOI PMC
Sakaguchi J., Matsushita T., Watanabe Y. DWARF4 Accumulation in Root Tips Is Enhanced via Blue Light Perception by Cryptochromes. Plant Cell Environ. 2019;42:1615–1629. doi: 10.1111/pce.13510. PubMed DOI
Pierik R., Fankhauser C., Strader L.C., Sinha N. Architecture and Plasticity: Optimizing Plant Performance in Dynamic Environments. Plant Physiol. 2021;187:1029–1032. doi: 10.1093/plphys/kiab402. PubMed DOI PMC
Yokawa K., Baluška F. The TOR Complex: An Emergency Switch for Root Behavior. Plant Cell Physiol. 2016;57:14–18. doi: 10.1093/pcp/pcv191. PubMed DOI
Zandalinas S.I., Sengupta S., Fritschi F.B., Azad R.K., Nechushtai R., Mittler R. The Impact of Multifactorial Stress Combination on Plant Growth and Survival. New Phytol. 2021;230:1034–1048. doi: 10.1111/nph.17232. PubMed DOI PMC
Fasano R., Gonzalez N., Tosco A., Dal Piaz F., Docimo T., Serrano R., Grillo S., Leone A., Inzé D. Role of Arabidopsis UV RESISTANCE LOCUS 8 in Plant Growth Reduction under Osmotic Stress and Low Levels of UV-B. Mol. Plant. 2014;7:773–791. doi: 10.1093/mp/ssu002. PubMed DOI
Ghatak A., Chaturvedi P., Weckwerth W. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses towards Marker-Assisted Selection Breeding. Front. Plant Sci. 2017;8:757. doi: 10.3389/fpls.2017.00757. PubMed DOI PMC
Ghatak A., Chaturvedi P., Nagler M., Roustan V., Lyon D., Bachmann G., Postl W., Schröfl A., Desai N., Varshney R.K., et al. Comprehensive Tissue-Specific Proteome Analysis of Drought Stress Responses in Pennisetum Glaucum (L.) R. Br. (Pearl Millet) J. Proteom. 2016;143:122–135. doi: 10.1016/j.jprot.2016.02.032. PubMed DOI
Ghatak A., Chaturvedi P., Bachmann G., Valledor L., Ramšak Ž., Bazargani M.M., Bajaj P., Jegadeesan S., Li W., Sun X., et al. Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought Resilience in Pearl Millet Compared to Wheat. Front. Plant Sci. 2020;11:600278. doi: 10.3389/fpls.2020.600278. PubMed DOI PMC
Piñeros M.A., Larson B.G., Shaff J.E., Schneider D.J., Falcão A.X., Yuan L., Clark R.T., Craft E.J., Davis T.W., Pradier P.-L., et al. Evolving Technologies for Growing, Imaging and Analyzing 3D Root System Architecture of Crop Plants. J. Integr. Plant Biol. 2016;58:230–241. doi: 10.1111/jipb.12456. PubMed DOI
Freschet G.T., Pagès L., Iversen C.M., Comas L.H., Rewald B., Roumet C., Klimešová J., Zadworny M., Poorter H., Postma J.A., et al. A Starting Guide to Root Ecology: Strengthening Ecological Concepts and Standardising Root Classification, Sampling, Processing and Trait Measurements. New Phytol. 2021;232:973–1122. doi: 10.1111/nph.17572. PubMed DOI PMC
Ghatak A., Schindler F., Bachmann G., Engelmeier D., Bajaj P., Brenner M., Fragner L., Varshney R.K., Subbarao G.V., Chaturvedi P., et al. Root Exudation of Contrasting Drought-Stressed Pearl Millet Genotypes Conveys Varying Biological Nitrification Inhibition (BNI) Activity. Biol. Fertil. Soils. 2021;57:1–16. doi: 10.1007/s00374-021-01578-w. PubMed DOI PMC
Yee M.O., Kim P., Li Y., Singh A.K., Northen T.R., Chakraborty R. Specialized Plant Growth Chamber Designs to Study Complex Rhizosphere Interactions. Front. Microbiol. 2021;12:625752. doi: 10.3389/fmicb.2021.625752. PubMed DOI PMC
Ma L., Shi Y., Siemianowski O., Yuan B., Egner T.K., Mirnezami S.V., Lind K.R., Ganapathysubramanian B., Venditti V., Cademartiri L. Hydrogel-Based Transparent Soils for Root Phenotyping in Vivo. Proc. Natl. Acad. Sci. USA. 2019;116:11063–11068. doi: 10.1073/pnas.1820334116. PubMed DOI PMC
Downie H., Holden N., Otten W., Spiers A.J., Valentine T.A., Dupuy L.X. Transparent Soil for Imaging the Rhizosphere. PLoS ONE. 2012;7:e44276. doi: 10.1371/journal.pone.0044276. PubMed DOI PMC