Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter

. 2019 Dec 04 ; 10 (1) : 5516. [epub] 20191204

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31797871

Grantová podpora
M 2379 Austrian Science Fund FWF - Austria
P 25931 Austrian Science Fund FWF - Austria
P 31493 Austrian Science Fund FWF - Austria

Odkazy

PubMed 31797871
PubMed Central PMC6892858
DOI 10.1038/s41467-019-13543-1
PII: 10.1038/s41467-019-13543-1
Knihovny.cz E-zdroje

Arabidopsis PIN2 protein directs transport of the phytohormone auxin from the root tip into the root elongation zone. Variation in hormone transport, which depends on a delicate interplay between PIN2 sorting to and from polar plasma membrane domains, determines root growth. By employing a constitutively degraded version of PIN2, we identify brassinolides as antagonists of PIN2 endocytosis. This response does not require de novo protein synthesis, but involves early events in canonical brassinolide signaling. Brassinolide-controlled adjustments in PIN2 sorting and intracellular distribution governs formation of a lateral PIN2 gradient in gravistimulated roots, coinciding with adjustments in auxin signaling and directional root growth. Strikingly, simulations indicate that PIN2 gradient formation is no prerequisite for root bending but rather dampens asymmetric auxin flow and signaling. Crosstalk between brassinolide signaling and endocytic PIN2 sorting, thus, appears essential for determining the rate of gravity-induced root curvature via attenuation of differential cell elongation.

Zobrazit více v PubMed

Luschnig C, Vert G. The dynamics of plant plasma membrane proteins: PINs and beyond. Development. 2014;141:2924–2938. doi: 10.1242/dev.103424. PubMed DOI

Naramoto S. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport. Curr. Opin. Plant Biol. 2017;40:8–14. doi: 10.1016/j.pbi.2017.06.012. PubMed DOI

Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC

Feraru E, et al. BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis. Plant Cell. 2012;24:3074–3086. doi: 10.1105/tpc.112.098152. PubMed DOI PMC

Geldner N, et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell. 2003;112:219–230. doi: 10.1016/S0092-8674(03)00003-5. PubMed DOI

Kitakura S, et al. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell. 2011;23:1920–1931. doi: 10.1105/tpc.111.083030. PubMed DOI PMC

Leitner J, et al. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc. Natl Acad. Sci. USA. 2012;109:8322–8327. doi: 10.1073/pnas.1200824109. PubMed DOI PMC

Korbei B, et al. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. Curr. Biol. 2013;23:2500–2505. doi: 10.1016/j.cub.2013.10.036. PubMed DOI

Kleine-Vehn J, et al. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl Acad. Sci. USA. 2008;105:17812–17817. doi: 10.1073/pnas.0808073105. PubMed DOI PMC

Ambrose C, et al. CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev. Cell. 2013;24:649–659. doi: 10.1016/j.devcel.2013.02.007. PubMed DOI

Paciorek T, et al. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature. 2005;435:1251–1256. doi: 10.1038/nature03633. PubMed DOI

Abas L, et al. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 2006;8:249–256. doi: 10.1038/ncb1369. PubMed DOI

Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell. 2011;23:2184–2195. doi: 10.1105/tpc.111.086355. PubMed DOI PMC

Löfke C, et al. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc. Natl Acad. Sci. USA. 2013;110:3627–3632. doi: 10.1073/pnas.1300107110. PubMed DOI PMC

Sun J, et al. Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell. 2009;21:1495–1511. doi: 10.1105/tpc.108.064303. PubMed DOI PMC

Shinohara N, Taylor C, Leyser O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol. 2013;11:e1001474. doi: 10.1371/journal.pbio.1001474. PubMed DOI PMC

Marhavy P, et al. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev. Cell. 2011;21:796–804. doi: 10.1016/j.devcel.2011.08.014. PubMed DOI

Zhang J, et al. Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity. Dev. Cell. 2011;20:855–866. doi: 10.1016/j.devcel.2011.05.013. PubMed DOI

Retzer Katarzyna, Lacek Jozef, Skokan Roman, del Genio Charo, Vosolsobě Stanislav, Laňková Martina, Malínská Kateřina, Konstantinova Nataliia, Zažímalová Eva, Napier Richard, Petrášek Jan, Luschnig Christian. Evolutionary Conserved Cysteines Function as cis-Acting Regulators of Arabidopsis PIN-FORMED 2 Distribution. International Journal of Molecular Sciences. 2017;18(11):2274. doi: 10.3390/ijms18112274. PubMed DOI PMC

Belkhadir Y, Jaillais Y. The molecular circuitry of brassinosteroid signaling. N. Phytol. 2015;206:522–540. doi: 10.1111/nph.13269. PubMed DOI

Jaillais Y, Vert G. Brassinosteroid signaling and BRI1 dynamics went underground. Curr. Opin. Plant Biol. 2016;33:92–100. doi: 10.1016/j.pbi.2016.06.014. PubMed DOI PMC

Hacham Y, et al. Brassinosteroid perception in the epidermis controls root meristem size. Development. 2011;138:839–848. doi: 10.1242/dev.061804. PubMed DOI PMC

Gonzalez-Garcia MP, et al. Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development. 2011;138:849–859. doi: 10.1242/dev.057331. PubMed DOI

Wolf S, Mravec J, Greiner S, Mouille G, Hofte H. Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr. Biol. 2012;22:1732–1737. doi: 10.1016/j.cub.2012.07.036. PubMed DOI

Nemhauser JL, Mockler TC, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol. 2004;2:E258. doi: 10.1371/journal.pbio.0020258. PubMed DOI PMC

Oh E., et al. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife3, 10.7554/eLife.03031 (2014). PubMed PMC

Tian H, Lv B, Ding T, Bai M, Ding Z. Auxin-BR interaction regulates plant growth and development. Front Plant Sci. 2017;8:2256. doi: 10.3389/fpls.2017.02256. PubMed DOI PMC

Hacham Y, Sela A, Friedlander L, Savaldi-Goldstein S. BRI1 activity in the root meristem involves post-transcriptional regulation of PIN auxin efflux carriers. Plant Signal Behav. 2012;7:68–70. doi: 10.4161/psb.7.1.18657. PubMed DOI PMC

Lanza M, et al. Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev. Cell. 2012;22:1275–1285. doi: 10.1016/j.devcel.2012.04.008. PubMed DOI

Ruan Yuan, Halat Laryssa S., Khan Deirdre, Jancowski Sylwia, Ambrose Chris, Belmonte Mark F., Wasteneys Geoffrey O. The Microtubule-Associated Protein CLASP Sustains Cell Proliferation through a Brassinosteroid Signaling Negative Feedback Loop. Current Biology. 2018;28(17):2718-2729.e5. doi: 10.1016/j.cub.2018.06.048. PubMed DOI

Piper R. C., Dikic I., Lukacs G. L. Ubiquitin-Dependent Sorting in Endocytosis. Cold Spring Harbor Perspectives in Biology. 2014;6(1):a016808–a016808. doi: 10.1101/cshperspect.a016808. PubMed DOI PMC

Butt H, Graner S, Luschnig C. Expression analysis of Arabidopsis XH/XS-domain proteins indicates overlapping and distinct functions for members of this gene family. J. Exp. Bot. 2014;65:1217–1227. doi: 10.1093/jxb/ert480. PubMed DOI PMC

Fujioka S, et al. The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell. 1997;9:1951–1962. PubMed PMC

Asami T, et al. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol. 2000;123:93–100. doi: 10.1104/pp.123.1.93. PubMed DOI PMC

Unterholzner SJ, et al. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell. 2015;27:2261–2272. doi: 10.1105/tpc.15.00433. PubMed DOI PMC

Li JM, Nam KH. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science. 2002;295:1299–1301. PubMed

Youn JH, Kim TW. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol. Plant. 2015;8:552–565. doi: 10.1016/j.molp.2014.12.006. PubMed DOI

De Rybel B, et al. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem. Biol. 2009;16:594–604. doi: 10.1016/j.chembiol.2009.04.008. PubMed DOI PMC

Arcaro A, Wymann MP. Wortmannin Is a potent phosphatidylinositol 3-Kinase Inhibitor—the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J. 1993;296:297–301. doi: 10.1042/bj2960297. PubMed DOI PMC

Liao CY, et al. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods. 2015;12:207–210. doi: 10.1038/nmeth.3279. PubMed DOI PMC

Luschnig C, Gaxiola RA, Grisafi P, Fink GR. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998;12:2175–2187. doi: 10.1101/gad.12.14.2175. PubMed DOI PMC

Kim TW, et al. Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA. Plant Cell Environ. 2007;30:679–689. doi: 10.1111/j.1365-3040.2007.01659.x. PubMed DOI

Kim SK, et al. Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol. 2000;123:997–1004. doi: 10.1104/pp.123.3.997. PubMed DOI PMC

Li L, Xu J, Xu ZH, Xue HW. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell. 2005;17:2738–2753. doi: 10.1105/tpc.105.034397. PubMed DOI PMC

Dharmasiri N, et al. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell. 2005;9:109–119. doi: 10.1016/j.devcel.2005.05.014. PubMed DOI

Baster P, et al. SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J. 2013;32:260–274. doi: 10.1038/emboj.2012.310. PubMed DOI PMC

Yin Y, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell. 2002;109:181–191. doi: 10.1016/S0092-8674(02)00721-3. PubMed DOI

Band LR, et al. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc. Natl Acad. Sci. USA. 2012;109:4668–4673. doi: 10.1073/pnas.1201498109. PubMed DOI PMC

Fendrych M, et al. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants. 2018;4:453–459. doi: 10.1038/s41477-018-0190-1. PubMed DOI PMC

Swarup R, et al. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 2005;7:1057–1065. doi: 10.1038/ncb1316. PubMed DOI

Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature. 2002;415:806–809. doi: 10.1038/415806a. PubMed DOI

Haughn GW, Somerville C. Sulfonylurea-resistant mutants of Arabidopsis-Thaliana. Mol. Gen. Genet. 1986;204:430–434. doi: 10.1007/BF00331020. DOI

Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Noguchi T, et al. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 1999;121:743–752. doi: 10.1104/pp.121.3.743. PubMed DOI PMC

Silva-Navas J, et al. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions. Plant J. 2015;84:244–255. doi: 10.1111/tpj.12998. PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Abas L, Luschnig C. Maximum yields of microsomal-type membranes from small amounts of plant material without requiring ultracentrifugation. Anal. Biochem. 2010;401:217–227. doi: 10.1016/j.ab.2010.02.030. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile

. 2023 Jul 14 ; 12 () : . [epub] 20230714

Transcriptomic analysis of Chinese yam (Dioscorea polystachya Turcz.) variants indicates brassinosteroid involvement in tuber development

. 2023 ; 10 () : 1112793. [epub] 20230505

Recent insights into metabolic and signalling events of directional root growth regulation and its implications for sustainable crop production systems

. 2023 ; 14 () : 1154088. [epub] 20230316

WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions

. 2022 Sep 01 ; 13 (1) : 5147. [epub] 20220901

ACORBA: Automated workflow to measure Arabidopsis thaliana root tip angle dynamics

. 2022 ; 3 () : e9. [epub] 20220524

An Arabidopsis mutant deficient in phosphatidylinositol-4-phosphate kinases ß1 and ß2 displays altered auxin-related responses in roots

. 2022 Apr 28 ; 12 (1) : 6947. [epub] 20220428

Throttling Growth Speed: Evaluation of aux1-7 Root Growth Profile by Combining D-Root system and Root Penetration Assay

. 2022 Feb 27 ; 11 (5) : . [epub] 20220227

Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination

. 2021 Nov 26 ; 22 (23) : . [epub] 20211126

Exogenous carbon source supplementation counteracts root and hypocotyl growth limitations under increased cotyledon shading, with glucose and sucrose differentially modulating growth curves

. 2021 Nov 02 ; 16 (11) : 1969818. [epub] 20210824

BODIPY Conjugate of Epibrassinolide as a Novel Biologically Active Probe for In Vivo Imaging

. 2021 Mar 30 ; 22 (7) : . [epub] 20210330

The TOR-Auxin Connection Upstream of Root Hair Growth

. 2021 Jan 13 ; 10 (1) : . [epub] 20210113

Dissecting Hierarchies between Light, Sugar and Auxin Action Underpinning Root and Root Hair Growth

. 2021 Jan 07 ; 10 (1) : . [epub] 20210107

Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization

. 2020 Jul 14 ; 11 (1) : 3508. [epub] 20200714

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...