Throttling Growth Speed: Evaluation of aux1-7 Root Growth Profile by Combining D-Root system and Root Penetration Assay
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministry of Education, Youth and Sports of Czech Republic
PubMed
35270119
PubMed Central
PMC8912881
DOI
10.3390/plants11050650
PII: plants11050650
Knihovny.cz E-zdroje
- Klíčová slova
- AUX1, AUXIN-RESISTANT 1, D-root system, directional root growth, gravitropic response, mechanoadaptation, mechanostimulus, root elongation rate, root penetration assay, root skewing,
- Publikační typ
- časopisecké články MeSH
Directional root growth control is crucial for plant fitness. The degree of root growth deviation depends on several factors, whereby exogenous growth conditions have a profound impact. The perception of mechanical impedance by wild-type roots results in the modulation of root growth traits, and it is known that gravitropic stimulus influences distinct root movement patterns in concert with mechanoadaptation. Mutants with reduced shootward auxin transport are described as being numb towards mechanostimulus and gravistimulus, whereby different growth conditions on agar-supplemented medium have a profound effect on how much directional root growth and root movement patterns differ between wild types and mutants. To reduce the impact of unilateral mechanostimulus on roots grown along agar-supplemented medium, we compared the root movement of Col-0 and auxin resistant 1-7 in a root penetration assay to test how both lines adjust the growth patterns of evenly mechanostimulated roots. We combined the assay with the D-root system to reduce light-induced growth deviation. Moreover, the impact of sucrose supplementation in the growth medium was investigated because exogenous sugar enhances root growth deviation in the vertical direction. Overall, we observed a more regular growth pattern for Col-0 but evaluated a higher level of skewing of aux1-7 compared to the wild type than known from published data. Finally, the tracking of the growth rate of the gravistimulated roots revealed that Col-0 has a throttling elongation rate during the bending process, but aux1-7 does not.
Zobrazit více v PubMed
Swarup R., Bennett M.J. Annual Plant Reviews: Root Development. Blackwell Publishing; Oxford, UK: 2009. Root Gravitropism. DOI
Retzer K., Korbei B., Luschnig C. Auxin and Its Role in Plant Development. Springer; Berlin/Heidelberg, Germany: 2014. Auxin and Tropisms. DOI
Vandenbrink J.P., Kiss J.Z. Plant responses to gravity. Semin. Cell Dev. Biol. 2019;92:122–125. doi: 10.1016/j.semcdb.2019.03.011. PubMed DOI
Lacek J., García-González J., Weckwerth W., Retzer K. Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination. Int. J. Mol. Sci. 2021;22:12784. doi: 10.3390/ijms222312784. PubMed DOI PMC
Kolb E., Legué V., Bogeat-Triboulot M.-B. Physical root–soil interactions. Phys. Biol. 2017;14:065004. doi: 10.1088/1478-3975/aa90dd. PubMed DOI
Taylor I., Lehner K., McCaskey E., Nirmal N., Ozkan-Aydin Y., Murray-Cooper M., Jain R., Hawkes E.W., Ronald P.C., Goldman D.I., et al. Mechanism and function of root circumnutation. Proc. Natl. Acad. Sci. USA. 2021;118:e2018940118. doi: 10.1073/pnas.2018940118. PubMed DOI PMC
Okamoto T., Takatani S., Motose H., Iida H., Takahashi T. The root growth reduction in response to mechanical stress involves ethylene-mediated microtubule reorganization and transmembrane receptor-mediated signal transduction in Arabidopsis. Plant Cell Rep. 2021;40:575–582. doi: 10.1007/s00299-020-02653-6. PubMed DOI
Jacobsen A.G.R., Jervis G., Xu J., Topping J.F., Lindsey K. Root growth responses to mechanical impedance are regulated by a network of ROS, ethylene and auxin signalling in Arabidopsis. New Phytol. 2021;231:225–242. doi: 10.1111/nph.17180. PubMed DOI PMC
Tojo H., Nakamura A., Ferjani A., Kazama Y., Abe T., Iida H. A Method Enabling Comprehensive Isolation of Arabidopsis Mutants Exhibiting Unusual Root Mechanical Behavior. Front. Plant Sci. 2021;12:646404. doi: 10.3389/fpls.2021.646404. PubMed DOI PMC
Potocka I., Szymanowska-Pułka J. Morphological responses of plant roots to mechanical stress. Ann. Bot. 2018;122:711–723. doi: 10.1093/aob/mcy010. PubMed DOI PMC
Del Dottore E., Mondini A., Sadeghi A., Mattoli V., Mazzolai B. An efficient soil penetration strategy for explorative robots inspired by plant root circumnutation movements. Bioinspir. Biomim. 2017;13:015003. doi: 10.1088/1748-3190/aa9998. PubMed DOI
Mishra A.K., Tramacere F., Guarino R., Pugno N.M., Mazzolai B. A study on plant root apex morphology as a model for soft robots moving in soil. PLoS ONE. 2018;13:e0197411. doi: 10.1371/journal.pone.0197411. PubMed DOI PMC
Tedone F., del Dottore E., Palladino M., Mazzolai B., Marcati P. Optimal control of plant root tip dynamics in soil. Bioinspir. Biomim. 2020;15:056006. doi: 10.1088/1748-3190/ab9a15. PubMed DOI
Najrana T., Sanchez-Esteban J. Mechanotransduction as an Adaptation to Gravity. Front. Pediatr. 2016;4:140. doi: 10.3389/fped.2016.00140. PubMed DOI PMC
Darwin C., Darwin F. The Power of Movement in Plants. John Murray; London, UK: 1880. DOI
Singh G., Retzer K., Vosolsobě S., Napier R. Advances in Understanding the Mechanism of Action of the Auxin Permease AUX1. Int. J. Mol. Sci. 2018;19:3391. doi: 10.3390/ijms19113391. PubMed DOI PMC
Halat L., Gyte K., Wasteneys G. The Microtubule-Associated Protein CLASP Is Translationally Regulated in Light-Dependent Root Apical Meristem Growth. Plant Physiol. 2020;184:2154–2167. doi: 10.1104/pp.20.00474. PubMed DOI PMC
Ötvös K., Marconi M., Vega A., O’Brien J., Johnson A., Abualia R., Antonielli L., Montesinos J.C., Zhang Y., Tan S., et al. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO J. 2021;40:e106862. doi: 10.15252/embj.2020106862. PubMed DOI PMC
Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI
Petraášek J., Friml J. Auxin transport routes in plant development. Development. 2009;136:2675–2688. doi: 10.1242/dev.030353. PubMed DOI
Retzer K., Lacek J., Skokan R., del Genio C.I., Vosolsobě S., Laňková M., Malínská K., Konstantinova N., Zažímalová E., Napier R.M., et al. Evolutionary Conserved Cysteines Function as cis-Acting Regulators of Arabidopsis PIN-FORMED 2 Distribution. Int. J. Mol. Sci. 2017;18:2274. doi: 10.3390/ijms18112274. PubMed DOI PMC
Lacek J., Retzer K., Luschnig C., Zazimalova E. Polar Auxin Transport. Wiley Online Library, eLS; Hoboken, NJ, USA: 2017. [(accessed on 10 January 2022)]. pp. 1–11. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0020116.pub2. DOI
Retzer K., Akhmanova M., Konstantinova N., Malínská K., Leitner J., Petrasek J., Luschnig C. Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nat. Commun. 2019;10:5516. doi: 10.1038/s41467-019-13543-1. PubMed DOI PMC
Fendrych M., Akhmanova M., Merrin J., Glanc M., Hagihara S., Takahashi K., Uchida N., Torii K.U., Friml J. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants. 2018;4:453–459. doi: 10.1038/s41477-018-0190-1. PubMed DOI PMC
Swarup R., Kramer E., Perry P., Knox K., Leyser O., Haseloff J., Beemster G., Bhalerao R., Bennett M. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 2005;7:1057–1065. doi: 10.1038/ncb1316. PubMed DOI
Okada K., Ueda J., Komaki M.K., Bell C.J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991;3:677–684. doi: 10.2307/3869249. PubMed DOI PMC
Mishra B.S., Sharma M., Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. Physiol. Plant. 2021;174:e13546. doi: 10.1111/ppl.13546. PubMed DOI
Swarup R., Bhosale R. Developmental Roles of AUX1/LAX Auxin Influx Carriers in Plants. Front. Plant Sci. 2019;10:1306. doi: 10.3389/fpls.2019.01306. PubMed DOI PMC
Okada K., Shimura Y. Reversible Root Tip Rotation in Arabidopsis Seedlings Induced by Obstacle-Touching Stimulus. Science. 1990;250:274–276. doi: 10.1126/science.250.4978.274. PubMed DOI
Hammes U.Z., Murphy A.S., Schwechheimer C. Auxin Transporters—A Biochemical View. Cold Spring Harb. Perspect. Biol. 2021;14:a039875. doi: 10.1101/cshperspect.a039875. PubMed DOI PMC
Geisler M.M. A Retro-Perspective on Auxin Transport. Front. Plant Sci. 2021;12:756968. doi: 10.3389/fpls.2021.756968. PubMed DOI PMC
Swarup R., Kargul J., Marchant A., Zadik D., Rahman A., Mills R., Yemm A., May S., Williams L., Millner P., et al. Structure-Function Analysis of the Presumptive Arabidopsis Auxin Permease AUX1. Plant Cell. 2004;16:3069–3083. doi: 10.1105/tpc.104.024737. PubMed DOI PMC
Westermann J., Streubel S., Franck C.M., Lentz R., Dolan L., Boisson-Dernier A. An Evolutionarily Conserved Receptor-like Kinases Signaling Module Controls Cell Wall Integrity during Tip Growth. Curr. Biol. 2019;29:3899–3908.e3. doi: 10.1016/j.cub.2019.09.069. PubMed DOI
Marchant A., Kargul J., May S., Muller P., Delbarre A., Perrot-Rechenmann C., Bennett M. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J. 1999;18:2066–2073. doi: 10.1093/emboj/18.8.2066. PubMed DOI PMC
Roy R., Bassham D.C. Root growth movements: Waving and skewing. Plant Sci. 2014;221–222:42–47. doi: 10.1016/j.plantsci.2014.01.007. PubMed DOI
Yan J., Wang B., Zhou Y., Hao S. Resistance from agar medium impacts the helical growth of Arabidopsis primary roots. J. Mech. Behav. Biomed. Mater. 2018;85:43–50. doi: 10.1016/j.jmbbm.2018.05.018. PubMed DOI
Wilson A.J., Robards A.W., Goss M. Effects of Mechanical Impedance on Root Growth in Barley, Hordeum vulgare L.: II. Effects on Cell Development in Seminal Roots. J. Exp. Bot. 1977;28:1216–1227. doi: 10.1093/jxb/28.5.1216. DOI
Silva-Navas J., Moreno-Risueno M.A., Manzano C., Pallero-Baena M., Navarro-Neila S., Téllez-Robledo B., Garcia-Mina J.M., Baigorri R., Gallego F.J., del Pozo J.C. D-Root: A system for cultivating plants with the roots in darkness or under different light conditions. Plant J. 2015;84:244–255. doi: 10.1111/tpj.12998. PubMed DOI
García-González J., Lacek J., Retzer K. Dissecting Hierarchies between Light, Sugar and Auxin Action Underpinning Root and Root Hair Growth. Plants. 2021;10:111. doi: 10.3390/plants10010111. PubMed DOI PMC
Wan Y., Yokawa K., Baluška F. Arabidopsis Roots and Light: Complex Interactions. Mol. Plant. 2019;12:1428–1430. doi: 10.1016/j.molp.2019.10.001. PubMed DOI
Miotto Y., da Costa C.T., Offringa R., Kleine-Vehn J., dos Santos Maraschin F. Effects of Light Intensity on Root Development in a D-Root Growth System. Front. Plant Sci. 2021;12:778382. doi: 10.3389/fpls.2021.778382. PubMed DOI PMC
Yan J., Wang B., Zhou Y. A root penetration model of Arabidopsis thaliana in phytagel medium with different strength. J. Plant Res. 2017;130:941–950. doi: 10.1007/s10265-017-0926-4. PubMed DOI
Wu Y., Shi L., Li L., Fu L., Liu Y., Xiong Y., Sheen J. Integration of nutrient, energy, light, and hormone signalling via TOR in plants. J. Exp. Bot. 2019;70:2227–2238. doi: 10.1093/jxb/erz028. PubMed DOI PMC
Stevenson C.C., Harrington G.N. The impact of supplemental carbon sources on Arabidopsis thaliana growth, chlorophyll content and anthocyanin accumulation. Plant Growth Regul. 2009;59:255–271. doi: 10.1007/s10725-009-9412-x. DOI
Kircher S., Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2012;109:11217–11221. doi: 10.1073/pnas.1203746109. PubMed DOI PMC
García-González J., Lacek J., Weckwerth W., Retzer K. Exogenous carbon source supplementation counteracts root and hypocotyl growth limitations under increased cotyledon shading, with glucose and sucrose differentially modulating growth curves. Plant Signal. Behav. 2021;16:1969818. doi: 10.1080/15592324.2021.1969818. PubMed DOI PMC
Raya-González J., López-Bucio J.S., Prado-Rodríguez J.C., Ruiz-Herrera L.F., Guevara-García Á.A., López-Bucio J. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. Plant Mol. Biol. 2017;95:141–156. doi: 10.1007/s11103-017-0647-z. PubMed DOI
De Pessemier J., Chardon F., Juraniec M., Delaplace P., Hermans C. Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana. Mech. Dev. 2013;130:45–53. doi: 10.1016/j.mod.2012.05.010. PubMed DOI
Hu Y., Omary M., Hu Y., Doron O., Hoermayer L., Chen Q., Megides O., Chekli O., Ding Z., Friml J., et al. Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nat. Commun. 2021;12:1657. doi: 10.1038/s41467-021-21802-3. PubMed DOI PMC
Yang X., Wang B., Farris B., Clark G., Roux S.J. Modulation of Root Skewing in Arabidopsis by Apyrases and Extracellular ATP. Plant Cell Physiol. 2015;56:2197–2206. doi: 10.1093/pcp/pcv134. PubMed DOI
Mishra B.S., Singh M., Aggrawal P., Laxmi A. Glucose and Auxin Signaling Interaction in Controlling Arabidopsis thaliana Seedlings Root Growth and Development. PLoS ONE. 2009;4:e4502. doi: 10.1371/journal.pone.0004502. PubMed DOI PMC
Singh M., Gupta A., Laxmi A. Striking the Right Chord: Signaling Enigma during Root Gravitropism. Front. Plant Sci. 2017;8:1304. doi: 10.3389/fpls.2017.01304. PubMed DOI PMC
Grabov A., Ashley M., Rigas S., Hatzopoulos P., Dolan L., Vicente-Agullo F. Morphometric analysis of root shape. New Phytol. 2005;165:641–652. doi: 10.1111/j.1469-8137.2004.01258.x. PubMed DOI
Pilet P.E., Elliott M.C., Moloney M.M. Endogenous and exogenous auxin in the control of root growth. Planta. 1979;146:405–408. doi: 10.1007/BF00380852. PubMed DOI
Lopez D., Tocquard K., Venisse J.-S., Legué V., Roeckel-Drevet P. Gravity sensing, a largely misunderstood trigger of plant orientated growth. Front. Plant Sci. 2014;5:610. doi: 10.3389/fpls.2014.00610. PubMed DOI PMC
Rutherford R., Masson P.H. Arabidopsis thaliana sku Mutant Seedlings Show Exaggerated Surface-Dependent Alteration in Root Growth Vector. Plant Physiol. 1996;111:987–998. doi: 10.1104/pp.111.4.987. PubMed DOI PMC
Thompson M.V., Holbrook N.M. Root-Gel Interactions and the Root Waving Behavior of Arabidopsis. Plant Physiol. 2004;135:1822–1837. doi: 10.1104/pp.104.040881. PubMed DOI PMC
Migliaccio F., Tassone P., Fortunati A. Circumnutation as an autonomous root movement in plants. Am. J. Bot. 2013;100:4–13. doi: 10.3732/ajb.1200314. PubMed DOI
Moulia B., Fournier M. The power and control of gravitropic movements in plants: A biomechanical and systems biology view. J. Exp. Bot. 2009;60:461–486. doi: 10.1093/jxb/ern341. PubMed DOI
Friml J. Fourteen Stations of Auxin. Cold Spring Harb. Perspect. Biol. 2021;14:a039859. doi: 10.1101/cshperspect.a039859. PubMed DOI PMC
Konstantinova N., Korbei B., Luschnig C. Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response. Int. J. Mol. Sci. 2021;22:2749. doi: 10.3390/ijms22052749. PubMed DOI PMC
Band L.R., Wells D.M., Larrieu A., Sun J., Middleton A.M., French A.P., Brunoud G., Sato E.M., Wilson M.H., Péret B., et al. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc. Natl. Acad. Sci. USA. 2012;109:4668–4673. doi: 10.1073/pnas.1201498109. PubMed DOI PMC
Retzer K., Singh G., Napier R.M. It starts with TIRs. Nat. Plants. 2018;4:410–411. doi: 10.1038/s41477-018-0196-8. PubMed DOI