Exogenous carbon source supplementation counteracts root and hypocotyl growth limitations under increased cotyledon shading, with glucose and sucrose differentially modulating growth curves
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34429034
PubMed Central
PMC8526039
DOI
10.1080/15592324.2021.1969818
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, carbon source, dark grown root, drootsystem, etiolated, hypocotyl growth, illumination, root growth, shaded cotyledons,
- MeSH
- adaptace oční fyziologie MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- glukosa metabolismus MeSH
- hypokotyl růst a vývoj metabolismus MeSH
- kořeny rostlin růst a vývoj metabolismus MeSH
- kotyledon růst a vývoj metabolismus MeSH
- sacharosa metabolismus MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukosa MeSH
- sacharosa MeSH
- uhlík MeSH
Plant growth is continuously modulated by endogenous and exogenous stimuli. By no means the only, but well described, signaling molecules produced in plants and distributed through the plant body to orchestrate efficient growth are photosynthates. Light is a potent exogenous stimulus that determines, first, the rate of photosynthesis, but also the rate of plant growth. Root meristem activity is reduced with direct illumination but enhanced with increased sugar levels. With reduced cotyledon illumination, the seedling increases hypocotyl elongation until adequate light exposure is again provided. If endogenous carbon sources are limited, this leads to a temporary inhibition of root growth. Experimental growth conditions include exogenous supplementation of sucrose or glucose in addition to culturing seedlings under light exposure in Petri dishes. We compared total root length and hypocotyl elongation of Arabidopsis thaliana wild type Col-0 in response to illumination status and carbon source in the growth medium. Overall, sucrose supplementation promoted hypocotyl and root length to a greater extent than glucose supplementation. Glucose promoted root length compared to non-supplemented seedlings especially when cotyledon illumination was greatly reduced.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czech Republic
Vienna Metabolomics Center University of Vienna Vienna Austria
Zobrazit více v PubMed
Pierik R, Testerink C.. The art of being flexible: how to escape from shade, salt, and drought1. Plant Physiol. 2014;166(1):1–5. doi:10.1104/pp.114.239160. PubMed DOI PMC
Silva-Navas J, Moreno-Risueno MA, Manzano C, Pallero-Baena M, Navarro-Neila S, Téllez-Robledo B, Garcia-Mina JM, Baigorri R, Gallego FJ, Del Pozo JC.. D-root: a system for cultivating plants with the roots in darkness or under different light conditions. Plant J. 2015;84(1):244–255. doi:10.1111/tpj.12998. PubMed DOI
Morris EC, Griffiths M, Golebiowska A, Mairhofer S, Burr-Hersey J, Goh T, von Wangenheim D, Atkinson B, Sturrock CJ, Lynch JP, et al. Shaping 3D root system architecture. Current Biology. 2017;27(17):R919–R930. doi:10.1016/j.cub.2017.06.043. PubMed DOI
Van Gelderen K, Kang C, Pierik R. Light signaling, root development, and plasticity. Plant Physiol. 2018;176(2):1049–1060. doi:10.1104/pp.17.01079. PubMed DOI PMC
Retzer K, Akhmanova M, Konstantinova N, Malínská K, Leitner J, Petrášek J, Luschnig C. Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 Auxin transporter. Nat Commun. 2019;10(1). doi:10.1038/s41467-019-13543-1. PubMed DOI PMC
Mo M, Yokawa K, Wan Y, Baluska F. How and why do root apices sense light under the soil surface? Front Plant Sci. 2015. doi:10.3389/fpls.2015.00775. PubMed DOI PMC
Ötvös K, Marconi M, Vega A, O’Brien J, Johnson A, Abualia R, Antonielli L, Montesinos JC, Zhang Y, Tan S, et al. Modulation of plant root growth by nitrogen source‐defined regulation of polar auxin transport. EMBO J. 2021;40(3). doi:10.15252/embj.2020106862. PubMed DOI PMC
Wan Y, Yokawa K, Baluška F. Arabidopsis Roots and Light: complex Interactions. Mol Plant. 2019;12(11):1428–1430. doi:10.1016/j.molp.2019.10.001. PubMed DOI
Retzer K, Weckwerth W. The tor–auxin connection upstream of root hair growth. Plants. 2021;10(1):150. doi:10.3390/plants10010150. PubMed DOI PMC
Hoermiller II, Naegele T, Augustin H, Stutz S, Weckwerth W, Heyer AG. Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis Thaliana. Plant Cell Environ. 2017;40(5):602–610. doi:10.1111/pce.12836. PubMed DOI
Fürtauer L, Weiszmann J, Weckwerth W, Nägele T. Dynamics of plant metabolism during cold acclimation. Int J Mol Sci. 2019;20(21):21. doi:10.3390/ijms20215411. PubMed DOI PMC
MacGregor DR, Deak KI, Ingram PA, Malamy JE. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues. Plant Cell. 2008;20(10):2643–2660. doi:10.1105/tpc.107.055475. PubMed DOI PMC
Mishra BS, Singh M, Aggrawal P, Laxmi A, El-Shemy HA. Glucose and auxin signaling interaction in controlling Arabidopsis Thaliana seedlings root growth and development. PLoS One. 2009;4(2):e4502. doi:10.1371/journal.pone.0004502. PubMed DOI PMC
Sairanen I, Novák O, Pěnčík A, Ikeda Y, Jones B, Sandberg G, Ljung K. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell. 2013;24(12):4907–4916. doi:10.1105/tpc.112.104794. PubMed DOI PMC
Nunes C, O’Hara LE, Primavesi LF, Delatte TL, Schluepmann H, Somsen GW, Silva AB, Fevereiro PS, Wingler A, Paul MJ. The trehalose 6-phosphate/SnRK1. signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol. 2013;162(3):1720–1732. doi:10.1104/pp.113.220657. PubMed DOI PMC
Silva-Navas J, Conesa CM, Saez A, Navarro-Neila S, Garcia-Mina JM, Zamarreño AM, Baigorri R, Swarup R, del Pozo JC. Role of cis-zeatin in root responses to phosphate starvation. New Phytol. 2019;224(1):242–257. doi:10.1111/nph.16020. PubMed DOI
Laxmi A, Pan J, Morsy M, Chen R, Berger F. Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis Thaliana. PLoS One. 2008;3(1):e1510. doi:10.1371/journal.pone.0001510. PubMed DOI PMC
Xu W, Ding G, Yokawa K, Baluška F, Li QF, Liu Y, Shi W, Liang J, Zhang J. An Improved agar-plate method for studying root growth and response of Arabidopsis Thaliana. Sci Rep. 2013. doi:10.1038/srep01273. PubMed DOI PMC
Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Gong X, Jaillais Y, et al. COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Dev. 2012;139(18):3402–3412. doi:10.1242/dev.078212. PubMed DOI
Halat LS, Gyte K, Wasteneys GO. Microtubule-associated protein CLASP is translationally regulated in light-dependent root apical meristem growth. Plant Physiol. 2020;184(4):2154–2167. doi:10.1104/pp.20.00474. PubMed DOI PMC
Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci U S A. 2012;109(28):11217–11221. doi:10.1073/pnas.1203746109. PubMed DOI PMC
García-González J, Lacek J, Retzer K. Dissecting hierarchies between light, sugar and auxin action underpinning root and root hair growth. Plants. 2021;10(1):111. doi:10.3390/plants10010111. PubMed DOI PMC
Van Gelderen K, Kang C, Paalman R, Keuskamp D, Hayes S, Far-Red Light PR. Detection in the shoot regulates lateral root development through the HY5 transcription factor. Plant Cell. 2018;30(1):101–116. doi:10.1105/tpc.17.00771. PubMed DOI PMC
Collett CE, Harberd NP, Leyser O. Hormonal Interactions in the Control of Arabidopsis hypocotyl elongation. Plant Physiol. 2000;124(2):553–562. doi:10.1104/pp.124.2.553. PubMed DOI PMC
Simon NML, Sawkins E, Dodd AN. Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation. Plant Signal Behav. 2018;13(6):e1457913. doi:10.1080/15592324.2018.1457913. PubMed DOI PMC
Simon NML, Kusakina J, Fernández-López Á, Chembath A, Belbin FE, Dodd AN. The energy-signaling hub SnRK1 is important for sucrose-induced hypocotyl elongation. Plant Physiol. 2018;176(2):1299–1310. doi:10.1104/pp.17.01395. PubMed DOI PMC
Yokawa K, Fasano R, Kagenishi T, Baluška F. Light as stress factor to plant roots – case of root halotropism. Front Plant Sci. 2014. doi:10.3389/fpls.2014.00718. PubMed DOI PMC
Silva-Navas J, Moreno-Risueno MA, Manzano C, Téllez-Robledo B, Navarro-Neila S, Carrasco V, Pollmann S, Gallego FJ, Del Pozo JC. Flavonols mediate root phototropism and growth through regulation of proliferation-to-differentiation Transition. Plant Cell. 2016;28(6):1372–1387. doi:10.1105/tpc.15.00857. PubMed DOI PMC
Stevenson CC, Harrington GN. The impact of supplemental carbon sources on arabidopsis thaliana growth, chlorophyll content and anthocyanin accumulation. Plant Growth Regul. 2009;59(3):255. doi:10.1007/s10725-009-9412-x. DOI
Baskin TI, Remillong EL, Wilson JE. The impact of mannose and other carbon sources on the elongation and diameter of the primary root of Arabidopsis thaliana. Funct Plant Biol. 2001;28(6):481–488. doi:10.1071/PP01047. DOI
Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination