Dissecting Hierarchies between Light, Sugar and Auxin Action Underpinning Root and Root Hair Growth

. 2021 Jan 07 ; 10 (1) : . [epub] 20210107

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33430437

Grantová podpora
19-13375Y Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministerstvo Školství, Mládeže a Tělovýchovy

Plant roots are very plastic and can adjust their tissue organization and cell appearance during abiotic stress responses. Previous studies showed that direct root illumination and sugar supplementation mask root growth phenotypes and traits. Sugar and light signaling where further connected to changes in auxin biosynthesis and distribution along the root. Auxin signaling underpins almost all processes involved in the establishment of root traits, including total root length, gravitropic growth, root hair initiation and elongation. Root hair plasticity allows maximized nutrient uptake and therefore plant productivity, and root hair priming and elongation require proper auxin availability. In the presence of sucrose in the growth medium, root hair emergence is partially rescued, but the full potential of root hair elongation is lost. With our work we describe a combinatory study showing to which extent light and sucrose are antagonistically influencing root length, but additively affecting root hair emergence and elongation. Furthermore, we investigated the impact of the loss of PIN-FORMED2, an auxin efflux carrier mediating shootward auxin transporter, on the establishment of root traits in combination with all growth conditions.

Zobrazit více v PubMed

Silva-Navas J., Moreno-Risueno M.A., Manzano C., Pallero-Baena M., Navarro-Neila S., Téllez-Robledo B., Garcia-Mina J.M., Baigorri R., Gallego F.J., Del Pozo J.C. D-Root: A System for Cultivating Plants with the Roots in Darkness or under Different Light Conditions. Plant J. 2015;84:244–255. doi: 10.1111/tpj.12998. PubMed DOI

Barrada A., Montané M.H., Robaglia C., Menand B. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective. Int. J. Mol. Sci. 2015;196:19671–19697. doi: 10.3390/ijms160819671. PubMed DOI PMC

Van Gelderen K., Kang C., Pierik R. Light Signaling, Root Development, and Plasticity. Plant Physiol. 2018;176:1049–1060. doi: 10.1104/pp.17.01079. PubMed DOI PMC

Korver R.A., Koevoets I.T., Testerink C. Out of Shape during Stress: A Key Role for Auxin. Trends Plant Sci. 2018;23:783–793. doi: 10.1016/j.tplants.2018.05.011. PubMed DOI PMC

Kleine-Vehn J., Leitner J., Zwiewka M., Sauer M., Abas L., Luschnig C., Friml J. Differential Degradation of PIN2 Auxin Efflux Carrier by Retromer-Dependent Vacuolar Targeting. Proc. Natl. Acad. Sci. USA. 2008;105:17812–17817. doi: 10.1073/pnas.0808073105. PubMed DOI PMC

Gallei M., Luschnig C., Friml J. Auxin Signalling in Growth: Schrödinger’s Cat out of the Bag. Curr. Opin. Plant Biol. 2020;53:43–49. doi: 10.1016/j.pbi.2019.10.003. PubMed DOI

Qi J., Greb T. Cell Polarity in Plants: The Yin and Yang of Cellular Functions. Curr. Opin. Plant Biol. 2017;35:105–110. doi: 10.1016/j.pbi.2016.11.015. PubMed DOI PMC

Bailey-Serres J., Pierik R., Ruban A., Wingler A. The Dynamic Plant: Capture, Transformation, and Management of Energy. Plant Physiol. 2018 doi: 10.1104/pp.18.00041. PubMed DOI PMC

Sairanen I., Novák O., Pěnčík A., Ikeda Y., Jones B., Sandberg G., Ljung K. Soluble Carbohydrates Regulate Auxin Biosynthesis via PIF Proteins in Arabidopsis. Plant Cell. 2013;24:4907–4916. doi: 10.1105/tpc.112.104794. PubMed DOI PMC

Retzer K., Korbei B., Luschnig C. Auxin and Its Role in Plant Development. Springer; Vienna, Austria: 2014. Auxin and Tropisms. DOI

Retzer K., Akhmanova M., Konstantinova N., Malínská K., Leitner J., Petrášek J., Luschnig C. Brassinosteroid Signaling Delimits Root Gravitropism via Sorting of the Arabidopsis PIN2 Auxin Transporter. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-019-13543-1. PubMed DOI PMC

Pierik R., Testerink C. The Art of Being Flexible: How to Escape from Shade, Salt, and Drought1. Plant Physiol. 2014;166:5–22. doi: 10.1104/pp.114.239160. PubMed DOI PMC

De Smet I. Lateral Root Initiation: One Step at a Time. New Phytol. 2012;193:867–873. doi: 10.1111/j.1469-8137.2011.03996.x. PubMed DOI

Orman-Ligeza B., Parizot B., Gantet P.P., Beeckman T., Bennett M.J., Draye X. Post-Embryonic Root Organogenesis in Cereals: Branching out from Model Plants. Trends Plant Sci. 2013;18:459–467. doi: 10.1016/j.tplants.2013.04.010. PubMed DOI

Leyser O. Auxin Signaling. Plant Physiol. 2018 doi: 10.1104/pp.17.00765. PubMed DOI PMC

Lavenus J., Goh T., Roberts I., Guyomarc’h S., Lucas M., De Smet I., Fukaki H., Beeckman T., Bennett M., Laplaze L. Lateral Root Development in Arabidopsis: Fifty Shades of Auxin. Trends Plant Sci. 2013;18:450–458. doi: 10.1016/j.tplants.2013.04.006. PubMed DOI

Baldwin K.L., Strohm A.K., Masson P.H. Gravity Sensing and Signal Transduction in Vascular Plant Primary Roots. Am. J. Bot. 2013;100:126–142. doi: 10.3732/ajb.1200318. PubMed DOI

Band L.R., Wells D.M., Larrieu A., Sun J., Middleton A.M., French A.P., Brunoud G., Sato E.M., Wilson M.H., Peŕet B., et al. Root Gravitropism Is Regulated by a Transient Lateral Auxin Gradient Controlled by a Tipping-Point Mechanism. Proc. Natl. Acad. Sci. USA. 2012;109:4668–4673. doi: 10.1073/pnas.1201498109. PubMed DOI PMC

Scheuring D., Löfke C., Krüger F., Kittelmann M., Eisa A., Hughes L., Smith R.S., Hawes C., Schumacher K., Kleine-Vehn J. Actin-Dependent Vacuolar Occupancy of the Cell Determines Auxin-Induced Growth Repression. Proc. Natl. Acad. Sci. USA. 2016;113:452–457. doi: 10.1073/pnas.1517445113. PubMed DOI PMC

Liu M., Chen Y., Chen Y., Shin J.-H., Mila I., Audran C., Zouine M., Pirrello J., Bouzayen M. The Tomato Ethylene Response Factor Sl-ERF.B3 Integrates Ethylene and Auxin Signaling via Direct Regulation of Sl-Aux/IAA27. New Phytol. 2018;219:631–640. doi: 10.1111/nph.15165. PubMed DOI

Silva-Navas J., Moreno-Risueno M.A., Manzano C., Téllez-Robledo B., Navarro-Neila S., Carrasco V., Pollmann S., Gallego F.J., Del Pozo J.C. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition. Plant Cell. 2016;28:1372–1387. doi: 10.1105/tpc.15.00857. PubMed DOI PMC

Silva-Navas J., Conesa C.M., Saez A., Navarro-Neila S., Garcia-Mina J.M., Zamarreño A.M., Baigorri R., Swarup R., del Pozo J.C. Role of Cis-Zeatin in Root Responses to Phosphate Starvation. New Phytol. 2019;224:242–257. doi: 10.1111/nph.16020. PubMed DOI

Retzer K., Lacek J., Skokan R., Del Genio C.I., Vosolsobě S., Laňková M., Malínská K., Konstantinova N., Zažímalová E., Napier R.M., et al. Evolutionary Conserved Cysteines Function as Cis-Acting Regulators of Arabidopsis PIN-FORMED 2 Distribution. Int. J. Mol. Sci. 2017;18:2274. doi: 10.3390/ijms18112274. PubMed DOI PMC

Tomanov K., Luschnig C., Bachmair A. Ubiquitin Lys 63 Chains-Second-Most Abundant, but Poorly Understood in Plants. Front. Plant Sci. 2014;5:15. doi: 10.3389/fpls.2014.00015. PubMed DOI PMC

Halat L.S., Gyte K., Wasteneys G.O. Microtubule-Associated Protein CLASP Is Translationally Regulated in Light-Dependent Root Apical Meristem Growth. Plant Physiol. 2020 doi: 10.1104/pp.20.00474. PubMed DOI PMC

Ötvös K., Marconi M., Vega A., O’ Brien J., Johnson A., Abualia R., Antonielli L., Montesinos J.C., Zhang Y., Tan S., et al. Modulation of Root Growth by Nutrient-Defined Fine-Tuning of Polar Auxin Transport. bioRxiv. 2020 doi: 10.1101/2020.06.19.160994. PubMed DOI PMC

Tan S., Zhang X., Kong W., Yang X.L., Molnár G., Vondráková Z., Filepová R., Petrášek J., Friml J., Xue H.W. The Lipid Code-Dependent Phosphoswitch PDK1–D6PK Activates PIN-Mediated Auxin Efflux in Arabidopsis. Nat. Plants. 2020:1–14. doi: 10.1038/s41477-020-0648-9. PubMed DOI

Korbei B., Moulinier-Anzola J., De-Araujo L., Lucyshyn D., Retzer K., Khan M.A., Luschnig C. Arabidopsis TOL Proteins Act as Gatekeepers for Vacuolar Sorting of PIN2 Plasma Membrane Protein. Curr. Biol. 2013;23:2500–2505. doi: 10.1016/j.cub.2013.10.036. PubMed DOI

Laxmi A., Pan J., Morsy M., Chen R. Light Plays an Essential Role in Intracellular Distribution of Auxin Efflux Carrier PIN2 in Arabidopsis Thaliana. PLoS ONE. 2008;3:e1510. doi: 10.1371/journal.pone.0001510. PubMed DOI PMC

Sassi M., Lu Y., Zhang Y., Wang J., Dhonukshe P., Blilou I., Dai M., Li J., Gong X., Jaillais Y., et al. COP1 Mediates the Coordination of Root and Shoot Growth by Light through Modulation of PIN1- and PIN2-Dependent Auxin Transport in Arabidopsis. Development. 2012;139:3402–3412. doi: 10.1242/dev.078212. PubMed DOI

Dolan L., Duckett C.M., Grierson C., Linstead P., Schneider K., Lawson E., Dean C., Poethig S., Roberts K. Clonal Relationships and Cell Patterning in the Root Epidermis of Arabidopsis. Development. 1994;120:2465–2474.

Grierson C., Nielsen E., Ketelaarc T., Schiefelbein J. Root Hairs. Arab. Book/Am. Soc. Plant Biol. 2014;12:e0172. doi: 10.1199/tab.0172. PubMed DOI PMC

Salazar-Henao J.E., Schmidt W. An Inventory of Nutrient-Responsive Genes in Arabidopsis Root Hairs. Front. Plant Sci. 2016;7:237. doi: 10.3389/fpls.2016.00237. PubMed DOI PMC

Lee R.D.-W., Cho H.-T. Auxin, the Organizer of the Hormonal/Environmental Signals for Root Hair Growth. Front. Plant Sci. 2013;4:448. doi: 10.3389/fpls.2013.00448. PubMed DOI PMC

Park E., Nebenführ A. The Plant Cytoskeleton. Springer; New York, NY, USA: 2011. Cytoskeleton and Root Hair Growth. DOI

Grebe M., Friml J., Swarup R., Sandberg G., Terlou M., Palme K., Bennett M.J., Scheres B. Cell Polarity Signaling in Arabidopsis Involves a BFA-Sensitive Auxin Influx Pathway. Curr. Biol. 2002;12:329–334. doi: 10.1016/S0960-9822(02)00654-1. PubMed DOI

Grebe M. Ups of and Downs of Tissue and Planar Polarity in Plants. BioEssays. 2004;26:719–729. doi: 10.1002/bies.20065. PubMed DOI

Yokawa K., Fasano R., Kagenishi T., Baluška F. Light as Stress Factor to Plant Roots—Case of Root Halotropism. Front. Plant Sci. 2014;5:718. doi: 10.3389/fpls.2014.00718. PubMed DOI PMC

Mo M., Yokawa K., Wan Y., Baluska F. How and Why Do Root Apices Sense Light under the Soil Surface? Front. Plant Sci. 2015;6:775. doi: 10.3389/fpls.2015.00775. PubMed DOI PMC

Wan Y., Yokawa K., Baluška F. Arabidopsis Roots and Light: Complex Interactions. Mol. Plant. 2019;12:1428–1430. doi: 10.1016/j.molp.2019.10.001. PubMed DOI

Mishra B.S., Singh M., Aggrawal P., Laxmi A. Glucose and Auxin Signaling Interaction in Controlling Arabidopsis Thaliana Seedlings Root Growth and Development. PLoS ONE. 2009;4:e4502. doi: 10.1371/journal.pone.0004502. PubMed DOI PMC

Kircher S., Schopfer P. Photosynthetic Sucrose Acts as Cotyledon-Derived Long-Distance Signal to Control Root Growth during Early Seedling Development in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2012;109:11217–11221. doi: 10.1073/pnas.1203746109. PubMed DOI PMC

Leitner J., Petrášek J., Tomanov K., Retzer K., Pařezová M., Korbei B., Bachmair A., Zažímalová E., Luschnig C. Lysine63-Linked Ubiquitylation of PIN2 Auxin Carrier Protein Governs Hormonally Controlled Adaptation of Arabidopsis Root Growth. Proc. Natl. Acad. Sci. USA. 2012;109:8322–8327. doi: 10.1073/pnas.1200824109. PubMed DOI PMC

Singh A.P., Fridman Y., Friedlander-Shani L., Tarkowska D., Strnad M., Savaldi-Goldstein S. Activity of the Brassinosteroid Transcription Factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 Blocks Developmental Reprogramming in Response to Low Phosphate Availability. Plant Physiol. 2014;166:678–688. doi: 10.1104/pp.114.245019. PubMed DOI PMC

Billou I., Xu J., Wildwater M., Willemsen V., Paponov I., Frimi J., Heldstra R., Aida M., Palme K., Scheres B. The PIN Auxin Efflux Facilitator Network Controls Growth and Patterning in Arabidopsis Roots. Nature. 2005;433:39–44. doi: 10.1038/nature03184. PubMed DOI

Vieten A., Vanneste S., Wisniewska J., Benková E., Benjamins R., Beeckman T., Luschnig C., Friml J. Functional Redundancy of PIN Proteins Is Accompanied by Auxin-Dependent Cross-Regulation of PIN Expression. Development. 2005;132:4521–4531. doi: 10.1242/dev.02027. PubMed DOI

Nukarinen E., Ngele T., Pedrotti L., Wurzinger B., Mair A., Landgraf R., Börnke F., Hanson J., Teige M., Baena-Gonzalez E., et al. Quantitative Phosphoproteomics Reveals the Role of the AMPK Plant Ortholog SnRK1 as a Metabolic Master Regulator under Energy Deprivation. Sci. Rep. 2016;6:31697. doi: 10.1038/srep31697. PubMed DOI PMC

Menand B., Yi K., Jouannic S., Hoffmann L., Ryan E., Linstead P., Schaefer D.G., Dolan L. An Ancient Mechanism Controls the Development of Cells with a Rooting Function in Land Plants. Science. 2007;316:1477–1480. doi: 10.1126/science.1142618. PubMed DOI

Datta S., Prescott H., Dolan L. Intensity of a Pulse of RSL4 Transcription Factor Synthesis Determines Arabidopsis Root Hair Cell Size. Nat. Plants. 2015;1:1–6. doi: 10.1038/nplants.2015.138. PubMed DOI

Grabov A., Ashley M.K., Rigas S., Hatzopoulos P., Dolan L., Vicente-Agullo F. Morphometric Analysis of Root Shape. New Phytol. 2005;165:641–652. doi: 10.1111/j.1469-8137.2004.01258.x. PubMed DOI

Müller M., Schmidt W. Environmentally Induced Plasticity of Root Hair Development in Arabidopsis. Plant Physiol. 2004;134:409–419. doi: 10.1104/pp.103.029066. PubMed DOI PMC

Luschnig C., Gaxiola R.A., Grisafi P., Fink G.R. EIR1, a Root-Specific Protein Involved in Auxin Transport, Is Required for Gravitropism in Arabidopsis Thaliana. Genes Dev. 1998;12:2175–2187. doi: 10.1101/gad.12.14.2175. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace