Enhanced auxin signaling promotes root-hair growth at moderately low temperature in Arabidopsis thaliana
Language English Country China Media print-electronic
Document type Journal Article
PubMed
40336200
PubMed Central
PMC12177487
DOI
10.1016/j.xplc.2025.101350
PII: S2590-3462(25)00112-9
Knihovny.cz E-resources
- Keywords
- Arabidopsis, auxin, moderately low temperature, root hairs,
- MeSH
- Arabidopsis * growth & development metabolism genetics physiology MeSH
- Plant Roots * growth & development metabolism genetics MeSH
- Indoleacetic Acids * metabolism MeSH
- Cold Temperature MeSH
- Arabidopsis Proteins metabolism genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Signal Transduction * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Indoleacetic Acids * MeSH
- Arabidopsis Proteins MeSH
Root hairs (RHs) are mixed tip- and non-tip-growing protrusions derived from root epidermal cells that play essential roles in nutrient and water uptake, root anchorage, and interactions with soil microorganisms. Nutrient availability and temperature are critical and interconnected factors for sustained plant growth, but the molecular mechanisms that underlie their perception and downstream signaling pathways remain unclear. Here, we show that moderately low temperature (10°C) induces a strong RH elongation response mediated by several molecular components of the auxin pathway. Specifically, auxin biosynthesis mediated by TAA1/YUCCAs, auxin transport via PIN2, PIN4, and AUX1, and auxin signaling regulated by TIR1/AFB2 in conjunction with specific ARFs (ARF6/ARF8 and ARF7, but not ARF19) contribute to the RH response under moderately low temperature. These findings establish the auxin biosynthesis and signaling pathway as a central regulatory process driving RH growth under moderate low-temperature conditions in roots. Our work underscores the importance of moderately low temperature as a stimulus that interacts with complex nutritional signaling originating from the growth medium and the plant nutritional status; this process has the potential to be fine-tuned for future biotechnological applications to enhance nutrient uptake.
See more in PubMed
Balcerowicz D., Schoenaers S., Vissenberg K. Cell Fate Determination and the Switch from Diffuse Growth to Planar Polarity in Arabidopsis Root Epidermal Cells. Front. Plant Sci. 2015;6:1163. doi: 10.3389/fpls.2015.01163. PubMed DOI PMC
Barbez E., Kubeš M., Rolčík J., Béziat C., Pěnčík A., Wang B., Rosquete M.R., Zhu J., Dobrev P.I., Lee Y., et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature. 2012;485:119–122. doi: 10.1038/nature11001. PubMed DOI
Bargmann B.O.R., Vanneste S., Krouk G., Nawy T., Efroni I., Shani E., Choe G., Friml J., Bergmann D.C., Estelle M., et al. A map of cell type-specific auxin responses. Mol. Syst. Biol. 2013;9:688. doi: 10.1038/msb.2013.40. PubMed DOI PMC
Bates D., R Core Team . CRAN; 2025. Nlme: Linear and Nonlinear Mixed Effects Models (Version 3.1-167) [R Package]https://CRAN.R-project.org/package=nlme
Bhosale R., Giri J., Pandey B.K., Giehl R.F.H., Hartmann A., Traini R., Truskina J., Leftley N., Hanlon M., Swarup K., et al. A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nat. Commun. 2018;9:1409. doi: 10.1038/s41467-018-03851-3. PubMed DOI PMC
Blakeslee J.J., Spatola Rossi T., Kriechbaumer V. Auxin biosynthesis: spatial regulation and adaptation to stress. J. Exp. Bot. 2019;70:5041–5049. doi: 10.1093/jxb/erz283. PubMed DOI
Brunoud G., Wells D.M., Oliva M., Larrieu A., Mirabet V., Burrow A.H., Beeckman T., Kepinski S., Traas J., Bennett M.J., et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature. 2012;482:103–106. doi: 10.1038/nature10791. PubMed DOI
Brooks M., Kristensen K., Benthem K.v., Magnusson A., Berg C., Nielsen A., Skaug H., Mächler M., Bolker B. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400. doi: 10.32614/RJ-2017-066. DOI
Calderón Villalobos L.I.A., Lee S., De Oliveira C., Ivetac A., Brandt W., Armitage L., Sheard L.B., Tan X., Parry G., Mao H., et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 2012;8:477–485. doi: 10.1038/nchembio.926. PubMed DOI PMC
Casal J.J., Estevez J.M. Auxin-Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harbor Perspect. Biol. 2021;13 doi: 10.1101/cshperspect.a040030. PubMed DOI PMC
Chen H., Xiong L. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development. J. Biol. Chem. 2010;285:24238–24247. doi: 10.1074/jbc.M110.123661. PubMed DOI PMC
Chen Q., Dai X., De-Paoli H., Cheng Y., Takebayashi Y., Kasahara H., Kamiya Y., Zhao Y. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol. 2014;55:1072–1079. doi: 10.1093/pcp/pcu039. PubMed DOI PMC
Cho M., Lee S.H., Cho H.-T. P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell. 2007;19:3930–3943. doi: 10.1105/tpc.107.054288. PubMed DOI PMC
Datta S., Prescott H., Dolan L. Intensity of a pulse of RSL4 transcription factor synthesis determines Arabidopsis root hair cell size. Nat. Plants. 2015;1 doi: 10.1038/nplants.2015.138. PubMed DOI
Dharmasiri N., Dharmasiri S., Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435:441–445. doi: 10.1038/nature03543. PubMed DOI
Dindas J., Scherzer S., Roelfsema M.R.G., von Meyer K., Müller H.M., Al-Rasheid K.A.S., Palme K., Dietrich P., Becker D., Bennett M.J., et al. AUX1-mediated root hair auxin influx governs SCF-type Ca signaling. Nat. Commun. 2018;9:1174. doi: 10.1038/s41467-018-03582-5. PubMed DOI PMC
Dodt M., Roehr J.T., Ahmed R., Dieterich C. FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms. Biology. 2012;1:895–905. doi: 10.3390/biology1030895. PubMed DOI PMC
Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. DevelopmentEngland. 1993;119:71–84. doi: 10.1242/dev.119.1.71. PubMed DOI
Fox J., Weisberg S. 3rd ed. Sage; 2019. An R Companion to Applied Regression.https://www.john-fox.ca/Companion/
Gaillochet C., Burko Y., Platre M.P., Zhang L., Simura J., Willige B.C., Kumar S.V., Ljung K., Chory J., Busch W. HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in. DevelopmentEngland. 2020;147 doi: 10.1242/dev.192625. PubMed DOI PMC
Ganguly A., Lee S.H., Cho M., Lee O.R., Yoo H., Cho H.-T. Differential auxin-transporting activities of PIN-FORMED proteins in Arabidopsis root hair cells. Plant Physiol. 2010;153:1046–1061. doi: 10.1104/pp.110.156505. PubMed DOI PMC
García-González J., Lacek J., Retzer K. Dissecting Hierarchies between Light, Sugar and Auxin Action Underpinning Root and Root Hair Growth. Plants. 2021;10 doi: 10.3390/plants10010111. PubMed DOI PMC
Giri J., Bhosale R., Huang G., Pandey B.K., Parker H., Zappala S., Yang J., Dievart A., Bureau C., Ljung K., et al. Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nat. Commun. 2018;9:1408. doi: 10.1038/s41467-018-03850-4. PubMed DOI PMC
Hartig F. CRAN; 2024. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/mixed) Regression Models (Version 0.4.7) [R Package]https://CRAN.R-project.org/package=DHARMa
Hayashi K.-I., Arai K., Aoi Y., Tanaka Y., Hira H., Guo R., Hu Y., Ge C., Zhao Y., Kasahara H., et al. The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 2021;12:6752. doi: 10.1038/s41467-021-27020-1. PubMed DOI PMC
Heisler M.G., Ohno C., Das P., Sieber P., Reddy G.V., Long J.A., Meyerowitz E.M. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 2005;15:1899–1911. doi: 10.1016/j.cub.2005.09.052. PubMed DOI
Hentrich M., Böttcher C., Düchting P., Cheng Y., Zhao Y., Berkowitz O., Masle J., Medina J., Pollmann S. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 2013;74:626–637. doi: 10.1111/tpj.12152. PubMed DOI PMC
Herburger K., Schoenaers S., Vissenberg K., Mravec J. Shank-localized cell wall growth contributes to Arabidopsis root hair elongation. Nat. Plants. 2022;8:1222–1232. doi: 10.1038/s41477-022-01259-y. PubMed DOI
Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Huang K.-L., Ma G.-J., Zhang M.-L., Xiong H., Wu H., Zhao C.-Z., Liu C.-S., Jia H.-X., Chen L., Kjorven J.O., et al. The ARF7 and ARF19 Transcription Factors Positively Regulate in Arabidopsis Roots. Plant Physiol. 2018;178:413–427. doi: 10.1104/pp.17.01713. PubMed DOI PMC
Ikeda Y., Men S., Fischer U., Stepanova A.N., Alonso J.M., Ljung K., Grebe M. Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat. Cell Biol. 2009;11:731–738. doi: 10.1038/ncb1879. PubMed DOI
Jia Z., Giehl R.F.H., Hartmann A., Estevez J.M., Bennett M.J., von Wirén N. A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Curr. Biol. 2023;33:3926–3941.e5. doi: 10.1016/j.cub.2023.08.040. PubMed DOI
Jia Z., Giehl R.F.H., von Wirén N. Nutrient-hormone relations: Driving root plasticity in plants. Mol. Plant. 2022;15:86–103. doi: 10.1016/j.molp.2021.12.004. PubMed DOI
Jones A.R., Kramer E.M., Knox K., Swarup R., Bennett M.J., Lazarus C.M., Leyser H.M.O., Grierson C.S. Auxin transport through non-hair cells sustains root-hair development. Nat. Cell Biol. 2009;11:78–84. doi: 10.1038/ncb1815. PubMed DOI PMC
Kai K., Horita J., Wakasa K., Miyagawa H. Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry. 2007;68:1651–1663. doi: 10.1016/j.phytochem.2007.04.030. PubMed DOI
Karas B., Amyot L., Johansen C., Sato S., Tabata S., Kawaguchi M., Szczyglowski K. Conservation of lotus and Arabidopsis basic helix-loop-helix proteins reveals new players in root hair development. Plant Physiol. 2009;151:1175–1185. doi: 10.1104/pp.109.143867. PubMed DOI PMC
Kasahara H. Current aspects of auxin biosynthesis in plants. Biosci. Biotechnol. Biochem. 2016;80:34–42. doi: 10.1080/09168451.2015.1086259. PubMed DOI
Kepinski S., Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005;435:446–451. doi: 10.1038/nature03542. PubMed DOI
Kowalczyk M., Sandberg G. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 2001;127:1845–1853. doi: 10.1104/pp.127.4.1845. PubMed DOI PMC
Lenth R. CRAN; 2024. Emmeans: Estimated Marginal Means, Aka Least-Squares Means (Version 1.10.5) [R Package]https://CRAN.R-project.org/package=emmeans
Liao Y., Smyth G.K., Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47 doi: 10.1093/nar/gkz114. PubMed DOI PMC
Ljung K. Auxin metabolism and homeostasis during plant development. DevelopmentEngland. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI
Löfke C., Dünser K., Scheuring D., Kleine-Vehn J. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. Elife. 2015;4 doi: 10.7554/eLife.05868. PubMed DOI PMC
Lopez L.E., Chuah Y.S., Encina F., Carignani Sardoy M., Berdion Gabarain V., Mutwil M., Estevez J.M. New molecular components that regulate the transcriptional hub in root hairs: coupling environmental signals with endogenous hormones to coordinate growth. J. Exp. Bot. 2024;75:4171–4179. doi: 10.1093/jxb/erad419. PubMed DOI
Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011;62:1757–1773. doi: 10.1093/jxb/erq412. PubMed DOI
Luschnig C., Gaxiola R.A., Grisafi P., Fink G.R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998;12:2175–2187. doi: 10.1101/gad.12.14.2175. PubMed DOI PMC
Mangano S., Denita-Juarez S.P., Choi H.-S., Marzol E., Hwang Y., Ranocha P., Velasquez S.M., Borassi C., Barberini M.L., Aptekmann A.A., et al. Molecular link between auxin and ROS-mediated polar growth. Proc. Natl. Acad. Sci. USA. 2017;114:5289–5294. doi: 10.1073/pnas.1701536114. PubMed DOI PMC
Mano Y., Nemoto K. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 2012;63:2853–2872. doi: 10.1093/jxb/ers091. PubMed DOI
Marzol E., Borassi C., Denita Juárez S.P., Mangano S., Estevez J.M. RSL4 Takes Control: Multiple Signals, One Transcription Factor. Trends Plant Sci. 2017;22:553–555. doi: 10.1016/j.tplants.2017.04.007. PubMed DOI
Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., Hanada A., Yaeno T., Shirasu K., Yao H., et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18512–18517. doi: 10.1073/pnas.1108434108. PubMed DOI PMC
Mellor N.L., Voß U., Janes G., Bennett M.J., Wells D.M., Band L.R. Auxin fluxes through plasmodesmata modify root-tip auxin distribution. DevelopmentEngland. 2020;147 doi: 10.1242/dev.181669. PubMed DOI PMC
Menand B., Yi K., Jouannic S., Hoffmann L., Ryan E., Linstead P., Schaefer D.G., Dolan L. An ancient mechanism controls the development of cells with a rooting function in land plants. Science (New York, N.Y.) 2007;316:1477–1480. doi: 10.1126/science.1142618. PubMed DOI
Nishimura T., Hayashi K.-I., Suzuki H., Gyohda A., Takaoka C., Sakaguchi Y., Matsumoto S., Kasahara H., Sakai T., Kato J.-I., et al. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J. 2014;77:352–366. doi: 10.1111/tpj.12399. PubMed DOI
Östin A., Kowalyczk M., Bhalerao R.P., Sandberg G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 1998;118:285–296. doi: 10.1104/pp.118.1.285. PubMed DOI PMC
Pacheco J.M., Mansilla N., Moison M., Lucero L., Gabarain V.B., Ariel F., Estevez J.M. The lncRNA and the transcription factor WRKY42 target common cell wall EXTENSIN encoding genes to trigger root hair cell elongation. Plant Signal. Behav. 2021;16 doi: 10.1080/15592324.2021.1920191. PubMed DOI PMC
Pacheco J.M., Ranocha P., Kasulin L., Fusari C.M., Servi L., Aptekmann A.A., Gabarain V.B., Peralta J.M., Borassi C., Marzol E., et al. Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nat. Commun. 2022;13:1310. doi: 10.1038/s41467-022-28833-4. PubMed DOI PMC
Pacheco J.M., Song L., Kuběnová L., Ovečka M., Berdion Gabarain V., Peralta J.M., Lehuedé T.U., Ibeas M.A., Ricardi M.M., Zhu S., et al. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. New Phytol. 2023;238:169–185. doi: 10.1111/nph.18723. PubMed DOI
Parry G., Delbarre A., Marchant A., Swarup R., Napier R., Perrot-Rechenmann C., Bennett M.J. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J. 2001;25:399–406. doi: 10.1046/j.1365-313x.2001.00970.x. PubMed DOI
Pěnčík A., Casanova-Sáez R., Pilarová V., Žukauskaite A., Pinto R., Micol J.L., Ljung K., Novák O. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 2018;69:2569–2579. doi: 10.1093/jxb/ery084. PubMed DOI PMC
Pěnčík A., Simonovik B., Petersson S.V., Henyková E., Simon S., Greenham K., Zhang Y., Kowalczyk M., Estelle M., Zazímalová E., et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell. 2013;25:3858–3870. doi: 10.1105/tpc.113.114421. PubMed DOI PMC
Pires N.D., Yi K., Breuninger H., Catarino B., Menand B., Dolan L. Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc. Natl. Acad. Sci. USA. 2013;110:9571–9576. doi: 10.1073/pnas.1305457110. PubMed DOI PMC
Porco S., Pěnčík A., Rashed A., Voß U., Casanova-Sáez R., Bishopp A., Golebiowska A., Bhosale R., Swarup R., Swarup K., et al. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113:11016–11021. doi: 10.1073/pnas.1604375113. PubMed DOI PMC
Posit Team . Posit Software, PBC; 2025. RStudio: Integrated Development Environment for R.https://www.posit.co/
Rademacher E.H., Möller B., Lokerse A.S., Llavata-Peris C.I., van den Berg W., Weijers D. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J. 2011;68:597–606. doi: 10.1111/j.1365-313X.2011.04710.x. PubMed DOI
Rigas S., Ditengou F.A., Ljung K., Daras G., Tietz O., Palme K., Hatzopoulos P. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytol. 2013;197:1130–1141. doi: 10.1111/nph.12092. PubMed DOI
Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. BioinformaticsEngland. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Sauer M., Robert S., Kleine-Vehn J. Auxin: simply complicated. J. Exp. Bot. 2013;64:2565–2577. doi: 10.1093/jxb/ert139. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schoenaers S., Balcerowicz D., Breen G., Hill K., Zdanio M., Mouille G., Holman T.J., Oh J., Wilson M.H., Nikonorova N., et al. The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Curr. Biol. 2018;28:722–732.e6. doi: 10.1016/j.cub.2018.01.050. PubMed DOI
Shibata M., Favero D.S., Takebayashi R., Takebayashi A., Kawamura A., Rymen B., Hosokawa Y., Sugimoto K. Trihelix transcription factors GTL1 and DF1 prevent aberrant root hair formation in an excess nutrient condition. New Phytol. 2022;235:1426–1441. doi: 10.1111/nph.18255. PubMed DOI PMC
Shibata M., Sugimoto K. A gene regulatory network for root hair development. J. Plant Res. 2019;132:301–309. doi: 10.1007/s10265-019-01100-2. PubMed DOI PMC
Swarup R., Péret B. AUX/LAX family of auxin influx carriers-an overview. Front. Plant Sci. 2012;3:225. doi: 10.3389/fpls.2012.00225. PubMed DOI PMC
Shibata M., Breuer C., Kawamura A., Clark N.M., Rymen B., Braidwood L., Morohashi K., Busch W., Benfey P.N., Sozzani R., et al. GTL1 and DF1 regulate root hair growth through transcriptional repression of in. DevelopmentEngland. 2018;145 doi: 10.1242/dev.159707. PubMed DOI PMC
Swarup R., Perry P., Hagenbeek D., Van Der Straeten D., Beemster G.T.S., Sandberg G., Bhalerao R., Ljung K., Bennett M.J. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 2007;19:2186–2196. doi: 10.1105/tpc.107.052100. PubMed DOI PMC
Takeda S., Gapper C., Kaya H., Bell E., Kuchitsu K., Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science (New York, N.Y.) 2008;319:1241–1244. doi: 10.1126/science.1152505. PubMed DOI
Tam Y.Y., Epstein E., Normanly J. Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol. 2000;123:589–596. doi: 10.1104/pp.123.2.589. PubMed DOI PMC
Tivendale N.D., Ross J.J., Cohen J.D. The shifting paradigms of auxin biosynthesis. Trends Plant Sci. 2014;19:44–51. doi: 10.1016/j.tplants.2013.09.012. PubMed DOI
Urzúa Lehuedé T., Berdion Gabarain V., Ibeas M.A., Salinas-Grenet H., Achá-Escobar R., Moyano T.C., Ferrero L., Núñez-Lillo G., Pérez-Díaz J., Perotti M.F., et al. Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment. New Phytol. 2025;245:2645–2664. doi: 10.1111/nph.20406. PubMed DOI
Velasquez S.M., Barbez E., Kleine-Vehn J., Estevez J.M. Auxin and Cellular Elongation. Plant Physiol. 2016;170:1206–1215. doi: 10.1104/pp.15.01863. PubMed DOI PMC
Wang B., Chu J., Yu T., Xu Q., Sun X., Yuan J., Xiong G., Wang G., Wang Y., Li J. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2015;112:4821–4826. doi: 10.1073/pnas.1503998112. PubMed DOI PMC
Wisniewska J., Xu J., Seifertová D., Brewer P.B., Ruzicka K., Blilou I., Rouquié D., Benková E., Scheres B., Friml J. Polar PIN localization directs auxin flow in plants. Science (New York, N.Y.) 2006;312:883. doi: 10.1126/science.1121356. PubMed DOI
Won C., Shen X., Mashiguchi K., Zheng Z., Dai X., Cheng Y., Kasahara H., Kamiya Y., Chory J., Zhao Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18518–18523. doi: 10.1073/pnas.1108436108. PubMed DOI PMC
Woodward A.W., Bartel B. Auxin: regulation, action, and interaction. Ann. Bot. 2005;95:707–735. doi: 10.1093/aob/mci083. PubMed DOI PMC
Yang H., Murphy A.S. Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J. 2009;59:179–191. doi: 10.1111/j.1365-313X.2009.03856.x. PubMed DOI
Yang Y., Hammes U.Z., Taylor C.G., Schachtman D.P., Nielsen E. High-affinity auxin transport by the AUX1 influx carrier protein. Curr. Biol. 2006;16:1123–1127. doi: 10.1016/j.cub.2006.04.029. PubMed DOI
Yi K., Menand B., Bell E., Dolan L. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat. Genet. 2010;42:264–267. doi: 10.1038/ng.529. PubMed DOI
Yu G., Wang L.-G., Han Y., He Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant. 2012;5:334–338. doi: 10.1093/mp/ssr104. PubMed DOI PMC
Zhao Y., Christensen S.K., Fankhauser C., Cashman J.R., Cohen J.D., Weigel D., Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science (New York, N.Y.) 2001;291:306–309. doi: 10.1126/science.291.5502.306. PubMed DOI
Zhu S., Estévez J.M., Liao H., Zhu Y., Yang T., Li C., Wang Y., Li L., Liu X., Pacheco J.M., et al. The RALF1-FERONIA Complex Phosphorylates eIF4E1 to Promote Protein Synthesis and Polar Root Hair Growth. Mol. Plant. 2020;13:698–716. doi: 10.1016/j.molp.2019.12.014. PubMed DOI