Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36716782
DOI
10.1111/nph.18723
Knihovny.cz E-resources
- Keywords
- Arabidopsis, FERONIA, ROP2, TOR kinase, cell surface, low temperature, nitrogen, root hairs,
- MeSH
- Arabidopsis * metabolism MeSH
- Nitrates pharmacology metabolism MeSH
- Nitrogen metabolism MeSH
- Phosphotransferases metabolism MeSH
- Plant Roots metabolism MeSH
- Arabidopsis Proteins * metabolism MeSH
- Anion Transport Proteins metabolism MeSH
- Plant Proteins metabolism MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Nitrates MeSH
- Nitrogen MeSH
- Phosphotransferases MeSH
- NRT1.1 protein, Arabidopsis MeSH Browser
- Arabidopsis Proteins * MeSH
- Anion Transport Proteins MeSH
- Plant Proteins MeSH
Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.
ANID Millennium Institute for Integrative Biology 7500000 Santiago Chile
ANID Millennium Nucleus for the Development of Super Adaptable Plants 8331150 Santiago Chile
Millennium Institute Center for Genome Regulation 6904411 Santiago Chile
See more in PubMed
Ahn CS, Han JA, Lee HS, Lee S, Pai HS. 2011. The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23: 185-209.
Alvarez JM, Riveras E, Vidal EA, Gras DE, Contreras-López O, Tamayo KP, Aceituno F, Gómez I, Ruffel S, Lejay L et al. 2014. Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots. The Plant Journal 80: 1-13.
Anderson GH, Veit B, Hanson MR. 2005. The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biology 3: 1-12.
Bakshi A, Moin M, Madhav MS, Kirti PB. 2019. Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Plant Biology 21: 190-205.
Bloch D, Monshausen G, Gilroy S, Yalovsky S. 2011. Co-regulation of root hair tip growth by ROP GTPases and nitrogen source modulated pH fluctuations. Plant Signaling and Behavior 6: 426-429.
Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zazímalová E et al. 2015. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants 1: 15015.
Buah JN, Kawamitsu Y, Sato S, Murayama S. 1999. Effects of different types and concentrations of gelling agents on the physical and chemical properties of media and the growth of banana (Musa spp.) in vitro. Plant Production Science 2: 138-145.
Canales J, Contreras-López O, Álvarez JM, Gutiérrez RA. 2017. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana. The Plant Journal 92: 305-316.
Cao P, Kim SJ, Xing A, Schenck CA, Liu L, Jiang N, Wang J, Last RL, Brandizzi F. 2019. Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. eLife 8: 1-24.
Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L. 2005. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438: 1013-1016.
Chakravorty D, Yu Y, Assmann SM. 2018. A kinase-dead version of FERONIA receptor-like kinase has dose-dependent impacts on rosette morphology and RALF1-mediated stomatal movements. FEBS Letters 592: 3429-3437.
Datta S, Prescott H, Dolan L. 2015. Intensity of a pulse of RSL4 transcription factor synthesis determines Arabidopsis root hair cell size. Nature Plants 1: 1-6.
Deak KI, Malamy J. 2005. Osmotic regulation of root system architecture. The Plant Journal 43: 17-28.
Denninger P, Reichelt A, Schmidt VAF, Mehlhorn DG, Asseck LY, Stanley CE, Keinath NF, Evers JF, Grefen C, Grossmann G. 2019. Distinct RopGEFs successively drive polarization and outgrowth of root hairs. Current Biology 29: 1854-1865.
Deprost D, Truong HN, Robaglia C, Meyer C. 2005. An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochemical and Biophysical Research Communications 326: 844-850.
Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Bedu M, Robaglia C, Meyer C. 2007. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Reports 8: 864-870.
Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C. 2016a. TOR signaling and nutrient sensing. Annual Review of Plant Biology 67: 261-285.
Dobrenel T, Mancera-Martínez E, Forzani C, Azzopardi M, Davanture M, Moreau M, Schepetilnikov M, Chicher J, Langella O, Zivy M et al. 2016b. The arabidopsis TOR kinase specifically regulates the expression of nuclear genes coding for plastidic ribosomal proteins and the phosphorylation of the cytosolic ribosomal protein S6. Frontiers in Plant Science 7: 1-16.
Dong Y, Silbermann M, Speiser A, Forieri I, Linster E, Poschet G, Allboje Samami A, Wanatabe M, Sticht C, Teleman AA et al. 2017. Sulfur availability regulates plant growth via glucose-TOR signaling. Nature Communications 8: 1-10.
Duan Q, Kita D, Li C, Cheung AY, Wu HM. 2010. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proceedings of the National Academy of Sciences, USA 107: 17821-17826.
Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U. 2007. The feronia receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317: 656-660.
Forde BG, Walch-Liu P. 2009. Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant, Cell & Environment 32: 682-693.
Forsum O, Svennerstam H, Ganeteg U, Näsholm T. 2008. Capacities and constraints of amino acid utilization in Arabidopsis. New Phytologist 179: 1058-1069.
Fu L, Wang P, Xiong Y. 2020. Target of rapamycin signaling in plant stress responses. Plant Physiology 182: 1613-1623.
Gendre D, Baral A, Dang X, Esnay N, Boutte Y, Stanislas T, Vain T, Claverol S, Gustavsson A, Lin D et al. 2019. Rho-of-plant activated root hair formation requires arabidopsis YIP4a/b gene function. Development 146: dev168559.
Ghashghaie J, Brenckmann F, Saugier B. 1991. Effects of agar concentration on water status and growth of rose plants cultured in vitro. Physiologia Plantarum 82: 73-78.
Gojon A, Krouk G, Perrine-Walker F, Laugier E. 2011. Nitrate transceptor(s) in plants. Journal of Experimental Botany 62: 2299-2308.
González A, Hall MN. 2017. Nutrient sensing and TOR signaling in yeast and mammals. EMBO Journal 36: 397-408.
Grebber K, Karabinos JV. 1952. A study of the diphenylamine test for aliphatic nitrocompounds. Journal of Research of the National Bureau of Standards 49: 163-166.
Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343: 408-411.
Henriques R, Magyar Z, Monardes A, Khan S, Zalejski C, Orellana J, Szabados L, De La Torre C, Koncz C, Bögre L. 2010. Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1-E2F pathway activity. EMBO Journal 29: 2979-2993.
Ho CH, Lin SH, Hu HC, Tsay YF. 2009. CHL1 functions as a nitrate sensor in plants. Cell 138: 1184-1194.
Huang GQ, Li E, Ge FR, Li S, Wang Q, Zhang CQ, Zhang Y. 2013. Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytologist 200: 1089-1101.
Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A. 2005. Dissolved organic nitrogen uptake by plants - an important N uptake pathway? Soil Biology and Biochemistry 37: 413-423.
Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS. 2002. The arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14: 763-776.
Kang E, Zheng M, Zhang Y, Yuan M, Yalovsky S, Zhu L, Fu Y. 2017. The microtubule-associated protein MAP18 affects ROP2 GTPase activity during root hair growth. Plant Physiology 174: 202-222.
Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K et al. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell 18: 927-937.
Kuběnová L, Tichá M, Šamaj J, Ovečka M. 2022. ROOT HAIR DEFECTIVE 2 vesicular delivery to the apical plasma membrane domain during Arabidopsis root hair development. Plant Physiology 188: 1563-1585.
Kwon T, Alan Sparks J, Liao F, Blancaflor EB. 2018. Erulus is a plasma membrane-localized receptor-like kinase that specifies root hair growth by maintaining tip-focused cytoplasmic calcium oscillations. Plant Cell 30: 1173-1177.
Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B et al. 2014. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends in Plant Science 19: 5-9.
Li X, Cai W, Liu Y, Li H, Fu L, Liu Z, Xu L, Liu H, Xu T, Xiong Y. 2017. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proceedings of the National Academy of Sciences, USA 114: 2765-2770.
Liu B, Wu J, Yang S, Schiefelbein J, Gan Y. 2020. Nitrate regulation of lateral root and root hair development in plants. Journal of Experimental Botany 71: 4405-4414.
Liu K-H, Tsay Y-F. 2003. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO Journal 22: 1005-1013.
Liu Y, Duan X, Zhao X, Ding W, Wang Y, Xiong Y. 2021. Diverse nitrogen signals activate convergent ROP2-TOR signaling in Arabidopsis. Developmental Cell 56: 1283-1295.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402-408.
Mahfouz MM, Kim S, Delauney AJ, Verma DPS. 2006. Arabidopsis TARGET of RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18: 477-490.
McCready K, Spencer V, Kim M. 2020. The importance of TOR kinase in plant development. Frontiers in Plant Science 11: 1-7.
Menand B, Desnos T, Nussaume L, Bergert F, Bouchez D, Meyer C, Robaglia C. 2002. Expression and disruption of the Arabidopsis target of rapamycin (TOR) gene. Proceedings of the National Academy of Sciences, USA 99: 6422-6427.
Moison M, Pacheco JM, Lucero L, Fonouni-Farde C, Rodríguez-Melo J, Mansilla N, Christ A, Bazin J, Benhamed M, Ibañez F et al. 2021. The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. Molecular Plant 14: 937-948.
Montané MH, Menand B. 2013. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. Journal of Experimental Botany 64: 4361-4374.
Moreau M, Azzopardi M, Clé ment G, Dobrenel T, Marchive C, Renne C, Martin-Magniette ML, Taconnat L, Renou JP, Robaglia C et al. 2012. Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24: 463-481.
Nonami H, Boyer JS. 1989. Turgor and growth at low water potentials. Plant Physiology 89: 798-804.
O'Leary BM, Khim Oh GG, Lee CP, Harvey MA. 2020. Metabolite regulatory interactions control plant respiratory metabolism via target of rapamycin (TOR) kinase activation. Plant Cell 32: 666-682.
Pacheco JM, Canal MV, Pereyra CM, Welchen E, Martínez-Noël GMA, Estevez JM. 2021a. The tip of the iceberg: emerging roles of TORC1, and its regulatory functions in plant cells. Journal of Experimental Botany 72: 4085-4101.
Pacheco JM, Mansilla N, Moison M, Lucero L, Gabarain VB, Ariel F, Estevez JM. 2021b. The lncRNA APOLO and the transcription factor WRKY42 target common cell wall EXTENSIN encoding genes to trigger root hair cell elongation. Plant Signaling and Behavior 16: 1920191.
Pacheco JM, Ranocha P, Kasulin L, Fusari CM, Servi L, Aptekmann AA, Gabarain VB, Peralta JM, Borassi C, Marzol E et al. 2022. Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nature Communications 13: 1310.
Pascale A, Proietti S, Pantelides IS, Stringlis IA. 2019. Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Frontiers in Plant Science 10: 1741.
Patrick RM, Lee JCH, Teetsel JRJ, Yang SH, Choy GS, Browning KS. 2018. Discovery and characterization of conserved binding of eIF4E 1 (CBE1), a eukaryotic translation initiation factor 4E-binding plant protein. Journal of Biological Chemistry 293: 17240-17247.
Rexin D, Meyer C, Robaglia C, Veit B. 2015. TOR signalling in plants. Biochemical Journal 470: 1-14.
Robinson D, Rorison IH. 1987. Root hairs and plant growth at low nitrogen availabilities. New Phytologist 107: 681-693.
Salem MA, Li Y, Bajdzienko K, Fisahn J, Watanabe M, Hoefgen R, Schöttler MA, Giavalisco P. 2018. RAPTOR controls developmental growth transitions by altering the hormonal and metabolic balance. Plant Physiology 177: 565-593.
Salem MA, Li Y, Wiszniewski A, Giavalisco P. 2017. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. The Plant Journal 92: 525-545.
Šamaj J, Müller J, Beck M, Böhm N, Menzel D. 2006. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends in Plant Science 11: 594-600.
Saxton RA, Sabatini DM. 2017. mTOR signaling in growth, metabolism, and disease. Cell 168: 960-976.
Schaufelberger M, Galbier F, Herger A, de Brito FR, Roffler S, Clement G, Diet A, Hörtensteiner S, Wicker T, Ringli C. 2019. Mutations in the Arabidopsis ROL17/isopropylmalate synthase 1 locus alter amino acid content, modify the TOR network, and suppress the root hair cell development mutant lrx1. Journal of Experimental Botany 70: 2313-2323.
Schepetilnikov M, Makarian J, Srour O, Geldreich A, Yang Z, Chicher J, Hammann P, Ryabova LA. 2017. GTP ase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin. EMBO Journal 36: 886-903.
Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G, Holman TJ, Oh J, Wilson MH, Nikonorova N et al. 2018. The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth. Current Biology 28: 722-732.
Singha S, Townsend EC, Oberly GH. 1985. Mineral nutrient status of crabapple and pear shoots cultured in vitro on varying commercial agars. Journal of American Society for Horticultural Science 110: 407-411.
Song L, Xu G, Li T, Zhou H, Lin Q, Chen J, Wang L, Wu D, Li X, Wang L et al. 2022. The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients. Molecular Plant 15: 1120-1136.
Song Y, Wilson AJ, Zhang XC, Thoms D, Sohrabi R, Song S, Geissmann Q, Liu Y, Walgren L, He SY et al. 2021. FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. Nature Plants 7: 644-654.
Stanley CE, Shrivastava J, Brugman R, Heinzelmann E, van Swaay D, Grossmann G. 2018. Dual-flow-root chip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels. New Phytologist 217: 1357-1369.
Sun X, Chen H, Wang P, Chen F, Yuan L, Mi G. 2020. Low nitrogen induces root elongation via auxin-induced acid growth and auxin-regulated target of rapamycin (TOR) pathway in maize. Journal of Plant Physiology 254: 153281.
Tatebe H, Shiozaki K. 2017. Evolutionary conservation of the components in the TOR signaling pathways. Biomolecules 7: 1-17.
Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, Cannoot B, De Winne N, Persiau G, Van De Slijke E, Van de Cotte B et al. 2019. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nature Plants 5: 316-327.
Vatter T, Neuhäuser B, Stetter M, Ludewig U. 2015. Regulation of length and density of Arabidopsis root hairs by ammonium and nitrate. Journal of Plant Research 128: 839-848.
Vidal EA, Alvarez JM, Araus V, Riveras E, Brooks MD, Krouk G, Ruffel S, Lejay L, Crawford NM, Coruzzi GM et al. 2020. Nitrate in 2020: thirty years from transport to signaling networks. Plant Cell 32: 2094-2119.
Vijayakumar P, Datta S, Dolan L. 2016. ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth. New Phytologist 212: 944-953.
Wang P, Zhao Y, Li Z, Hsu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C et al. 2018. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Molecular Cell 69: 100-112.
Wang W, Hu B, Li A, Chu C. 2020. NRT1.1s in plants: functions beyond nitrate transport. Journal of Experimental Botany 71: 4373-4379.
Wu Y, Shi L, Li L, Fu L, Liu Y, Xiong Y, Sheen J. 2019. Integration of nutrient, energy, light, and hormone signalling via TOR in plants. Journal of Experimental Botany 70: 2227-2238.
Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124: 471-484.
Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. 2013. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496: 181-186.
Xiong Y, Sheen J. 2012. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. Journal of Biological Chemistry 287: 2836-2842.
Xiong Y, Sheen J. 2014. The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiology 164: 499-512.
Xiong Y, Sheen J. 2015. Novel links in the plant TOR kinase signaling network. Current Opinion in Plant Biology 28: 83-91.
Xu G, Chen W, Song L, Chen Q, Zhang H, Liao H, Zhao G, Lin F, Zhou H, Yu F. 2019. FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio. Journal of Experimental Botany 70: 6375-6388.
Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. 2013. MTOR kinase structure, mechanism and regulation. Nature 497: 217-223.
Yang T, Wang L, Li C, Liu Y, Zhu S, Qi Y, Liu X, Lin Q, Luan S, Yu F. 2015. Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications 465: 77-82.
Yeats TH, Sorek H, Wemmer DE, Somerville CR. 2016. Cellulose deficiency is enhanced on hyper accumulation of sucrose by a H+-coupled sucrose symporter. Plant Physiology 171: 110-124.
Yi K, Menand B, Bell E, Dolan L. 2010. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nature Genetics 42: 264-267.
Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, Li X, Lu C, Li H, Hou C et al. 2012. FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proceedings of the National Academy of Sciences, USA 109: 14693-14698.
Zhu S, Estévez JM, Liao H, Zhu Y, Yang T, Li C, Wang Y, Li L, Liu X, Pacheco JM et al. 2020a. The RALF1-FERONIA complex phosphorylates eIF4E1 to promote protein synthesis and polar root hair growth. Molecular Plant 13: 698-716.
Zhu S, Martínez Pacheco J, Estevez JM, Yu F. 2020b. Autocrine regulation of root hair size by the RALF-FERONIA-RSL4 signaling pathway. New Phytologist 227: 45-49.