Exploring the Neandertal legacy of pancreatic ductal adenocarcinoma risk in Eurasians

. 2023 Aug 13 ; 56 (1) : 46. [epub] 20230813

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37574541

Grantová podpora
26881 Cancer Research UK - United Kingdom
C7690/A26881 Cancer Research UK - United Kingdom

Odkazy

PubMed 37574541
PubMed Central PMC10424372
DOI 10.1186/s40659-023-00457-y
PII: 10.1186/s40659-023-00457-y
Knihovny.cz E-zdroje

BACKGROUND: The genomes of present-day non-Africans are composed of 1-3% of Neandertal-derived DNA as a consequence of admixture events between Neandertals and anatomically modern humans about 50-60 thousand years ago. Neandertal-introgressed single nucleotide polymorphisms (aSNPs) have been associated with modern human disease-related traits, which are risk factors for pancreatic ductal adenocarcinoma (PDAC), such as obesity, type 2 diabetes, and inflammation. In this study, we aimed at investigating the role of aSNPs in PDAC in three Eurasian populations. RESULTS: The high-coverage Vindija Neandertal genome was used to select aSNPs in non-African populations from 1000 Genomes project phase 3 data. Then, the association between aSNPs and PDAC risk was tested independently in Europeans and East Asians, using existing GWAS data on more than 200 000 individuals. We did not find any significant associations between aSNPs and PDAC in samples of European descent, whereas, in East Asians, we observed that the Chr10p12.1-rs117585753-T allele (MAF = 10%) increased the risk to develop PDAC (OR = 1.35, 95%CI 1.19-1.54, P = 3.59 × 10-6), with a P-value close to a threshold that takes into account multiple testing. CONCLUSIONS: Our results show only a minimal contribution of Neandertal SNPs to PDAC risk.

1st Department of Propaedeutic Surgery Hippocration General Hospital National and Kapodistrian University of Athens Athens Greece

ARC NET Research Centre and Department of Diagnostics and Public Health Section of Pathology University of Verona Verona Italy

Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic

Blood Transfusion Service Azienda Ospedaliero Universitaria Meyer Children's Hospital Florence Italy

Carol Davila University of Medicine and Pharmacy Bucharest Romania

Center for Translational Medicine Semmelweis University Budapest Hungary

Centre for Nutrition Prevention and Health Services National Institute for Public Health and the Environment Bilthoven The Netherlands

Department DIMED Laboratory Medicine University of Padova Padua Italy

Department DISCOG Chirurgia Generale 1 University of Padova Padua Italy

Department DISCOG Chirurgia Generale 3 University of Padova Padua Italy

Department of Biology Unit of Genetics University of Pisa Via Derna 1 56126 Pisa Italy

Department of Biology Unit of Zoology and Anthropology University of Pisa Pisa Italy

Department of Biomedical Sciences Humanitas University Milan Italy

Department of Digestive Tract Diseases Medical University of Lodz Lodz Poland

Department of Gastroenterology and Institute for Digestive Research Lithuanian University of Health Sciences Kaunas Lithuania

Department of Gastroenterology Endoscopic Unit IRCCS Humanitas Research Hospital Milan Italy

Department of General Visceral and Thoracic Surgery University Medical Center Hamburg Eppendorf Hamburg Germany

Department of General Visceral and Transplantation Surgery University of Heidelberg Heidelberg Germany

Department of Hematology Transplantation and Internal Medicine University of Warsaw Warsaw Poland

Department of Medical Oncology Amsterdam UMC Cancer Center Amsterdam University of Amsterdam Amsterdam The Netherlands

Department of Molecular and Clinical Cancer Medicine University of Liverpool Liverpool UK

Department of Molecular Biology of Cancer Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czech Republic

Department of Oncology Faculty of Medicine and Dentistry Palacky University Olomouc Czech Republic

Department of Oncology Fondazione IRCCS Casa Sollievo Della Sofferenza Hospital San Giovanni Rotondo Foggia Italy

Department of Pathology Lithuanian University of Health Sciences Kaunas Lithuania

Department of Radiology and Oncology Institute of Cancer of São Paulo São Paulo Sao Paulo Brazil

Department of Surgery 1 University Hospital Olomouc Olomouc Czech Republic

Department of Surgery 3rd Faculty of Medicine University Hospital Kralovske Vinohrady Charles University Prague Czech Republic

Department of Surgery Amsterdam UMC Cancer Center Amsterdam University of Amsterdam Amsterdam the Netherlands

Department of Surgery Erasmus MC University Medical Center Rotterdam the Netherlands

Department of Surgery Fondazione IRCCS Casa Sollievo Della Sofferenza Hospital San Giovanni Rotondo Foggia Italy

Department of Surgery Lithuanian University of Health Sciences Kaunas Lithuania

Department of Translational Research and New Technologies in Medicine and Surgery General Surgery Unit University of Pisa Pisa Italy

Digestive and Liver Disease Unit S Andrea Hospital Rome Italy

Division of Clinical Epidemiology and Aging Research German Cancer Research Center Heidelberg Germany

Division of Gastroenterology and Research Laboratory Fondazione IRCCS Casa Sollievo Della Sofferenza Hospital San Giovanni Rotondo Foggia Italy

Division of General and Transplantation Surgery University of Pisa Pisa Italy

Division of Pancreatic Diseases Heart and Vascular Center Semmelweis University Budapest Hungary

Division of Preventive Oncology German Cancer Research Center Heidelberg Germany

Estonian Biocentre Institute of Genomics University of Tartu Tartu Estonia

Faculty of Medicine University of São Paulo São Paulo Brazil

Gastroenterology and Gastrointestinal Endoscopy Unit Vita Salute San Raffaele University IRCCS San Raffaele Scientific Institute Milan Italy

Genomic Epidemiology Group German Cancer Research Center Heidelberg Germany

German Cancer Consortium Heidelberg Germany

Institute for Translational Medicine Medical School University of Pécs Pécs Hungary

Institute of Biology and Medical Genetics 1st Faculty of Medicine Charles University Prague Czech Republic

János Szentágothai Research Center University of Pécs Pécs Hungary

Laboratory for Applied Science and Technology in Health Carlos Chagas Institute Curitiba Brazil

Laboratory of Biology Medical School National and Kapodistrian University of Athens Athens Greece

Medical Faculty Heidelberg Heidelberg University Heidelberg Germany

Network Aging Research Heidelberg University Heidelberg Germany

Oncological Department Oncology of Massa Carrara ASL Toscana Nord Ovest Massa Carrara Italy

Pancreas Translational and Clinical Research Center Pancreato Biliary Endoscopy and Endoscopic Ultrasound San Raffaele Scientific Institute IRCCS Milan Italy

Pancreatic Unit IRCCS Humanitas Research Hospital Milan Italy

Pancreato Biliary Endoscopy and Endoscopic Ultrasound Pancreas Translational and Clinical Research Center San Raffaele Scientific Institute IRCCS Milan Italy

Potenza County Medical Association Potenza Italy

Zobrazit více v PubMed

Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the neandertal genome. Science. 2010;328(5979):710–722. doi: 10.1126/science.1188021. PubMed DOI PMC

Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM, Bondarev AA, et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature. 2014;514(7523):445–449. doi: 10.1038/nature13810. PubMed DOI PMC

Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The complete genome sequence of a Neanderthal from the Altai mountains. Nature. 2014;505(7481):43–49. doi: 10.1038/nature12886. PubMed DOI PMC

Wall JD, Yang MA, Jay F, Kim SK, Durand EY, Stevison LS, et al. Higher levels of neanderthal ancestry in East Asians than in Europeans. Genetics. 2013;194(1):199–209. doi: 10.1534/genetics.112.148213. PubMed DOI PMC

Prüfer K, de Filippo C, Grote S, Mafessoni F, Korlević P, Hajdinjak M, et al. A high-coverage Neandertal genome from Vindija cave in Croatia. Science. 2017;358(6363):655–658. doi: 10.1126/science.aao1887. PubMed DOI PMC

Chen L, Wolf AB, Fu W, Li L, Akey JM. Identifying and interpreting apparent neanderthal ancestry in African individuals. Cell. 2020;180(4):677–687.e16. doi: 10.1016/j.cell.2020.01.012. PubMed DOI

Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature. 2014;507(7492):354–357. doi: 10.1038/nature12961. PubMed DOI PMC

Deschamps M, Laval G, Fagny M, Itan Y, Abel L, Casanova JL, et al. Genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes. Am J Hum Genet. 2016;98(1):5–21. doi: 10.1016/j.ajhg.2015.11.014. PubMed DOI PMC

Sams AJ, Dumaine A, Nédélec Y, Yotova V, Alfieri C, Tanner JE, et al. Adaptively introgressed Neandertal haplotype at the OAS locus functionally impacts innate immune responses in humans. Genome Biol. 2016;17(1):246. doi: 10.1186/s13059-016-1098-6. PubMed DOI PMC

Simonti CN, Vernot B, Bastarache L, Bottinger E, Carrell DS, Chisholm RL, et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science. 2016;351(6274):737–741. doi: 10.1126/science.aad2149. PubMed DOI PMC

McCoy RC, Wakefield J, Akey JM. Impacts of Neanderthal-introgressed sequences on the landscape of human gene expression. Cell. 2017;168(5):916–927.e12. doi: 10.1016/j.cell.2017.01.038. PubMed DOI PMC

Dannemann M. The population-specific impact of Neandertal introgression on human disease. Genome Biol Evol. 2021 doi: 10.1093/gbe/evaa250. PubMed DOI PMC

McArthur E, Rinker DC, Capra JA. Quantifying the contribution of Neanderthal introgression to the heritability of complex traits. Nat Commun. 2021;12(1):4481. doi: 10.1038/s41467-021-24582-y. PubMed DOI PMC

Reilly PF, Tjahjadi A, Miller SL, Akey JM, Tucci S. The contribution of Neanderthal introgression to modern human traits. Curr Biol. 2022;32(18):R970–R983. doi: 10.1016/j.cub.2022.08.027. PubMed DOI PMC

McArthur E, Rinker DC, Capra JA. Quantifying the contribution of Neanderthal introgression to the heritability of complex traits. Nat Commun. 2021;12(1):4481. doi: 10.1038/s41467-021-24582-y. PubMed DOI PMC

Wei X, Robles CR, Pazokitoroudi A, Ganna A, Gusev A, Durvasula A, et al. The lingering effects of Neanderthal introgression on human complex traits. eLife. 2023;12:e80757. doi: 10.7554/eLife.80757. PubMed DOI PMC

Dannemann M, Kelso J. The contribution of Neanderthals to phenotypic variation in modern humans. Am J Hum Genet. 2017;101(4):578–589. doi: 10.1016/j.ajhg.2017.09.010. PubMed DOI PMC

Incio J, Liu H, Suboj P, Chin SM, Chen IX, Pinter M, et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov. 2016;6(8):852–869. doi: 10.1158/2159-8290.CD-15-1177. PubMed DOI PMC

Andersen DK, Korc M, Petersen GM, Eibl G, Li D, Rickels MR, et al. Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes. 2017;66(5):1103–1110. doi: 10.2337/db16-1477. PubMed DOI PMC

Eibl G, Cruz-Monserrate Z, Korc M, Petrov MS, Goodarzi MO, Fisher WE, et al. Diabetes mellitus and obesity as risk factors for pancreatic cancer. J Acad Nutr Diet. 2018;118(4):555–567. doi: 10.1016/j.jand.2017.07.005. PubMed DOI PMC

Padoan A, Plebani M, Basso D. Inflammation and pancreatic cancer: focus on metabolism, cytokines, and immunity. Int J Mol Sci. 2019;20(3):676. doi: 10.3390/ijms20030676. PubMed DOI PMC

Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol. 2015;44(1):186–198. doi: 10.1093/ije/dyu240. PubMed DOI

Barone E, Corrado A, Gemignani F, Landi S. Environmental risk factors for pancreatic cancer: an update. Arch Toxicol. 2016;90(11):2617–2642. doi: 10.1007/s00204-016-1821-9. PubMed DOI

Lu Y, Gentiluomo M, Lorenzo-Bermejo J, Morelli L, Obazee O, Campa D, et al. Mendelian randomisation study of the effects of known and putative risk factors on pancreatic cancer. J Med Genet. 2020;57(12):820–828. doi: 10.1136/jmedgenet-2019-106200. PubMed DOI

Low SK, Kuchiba A, Zembutsu H, Saito A, Takahashi A, Kubo M, et al. Genome-wide association study of pancreatic cancer in Japanese population. PLoS ONE. 2010;5(7):e11824. doi: 10.1371/journal.pone.0011824. PubMed DOI PMC

Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, Jacobs KB, et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet. 2010;42(3):224–8. doi: 10.1038/ng.522. PubMed DOI PMC

Campa D, Rizzato C, Stolzenberg-Solomon R, Pacetti P, Vodicka P, Cleary SP, et al. The TERT gene harbors multiple variants associated with pancreatic cancer susceptibility. Int J Cancer J Int Cancer. 2015;137(9):2175–2183. doi: 10.1002/ijc.29590. PubMed DOI PMC

Campa D, Pastore M, Gentiluomo M, Talar-Wojnarowska R, Kupcinskas J, Malecka-Panas E, et al. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget. 2016;7(35):57011–57020. doi: 10.18632/oncotarget.10935. PubMed DOI PMC

Campa D, Gentiluomo M, Obazee O, Ballerini A, Vodickova L, Hegyi P, et al. Genome-wide association study identifies an early onset pancreatic cancer risk locus. Int J Cancer. 2020;147(8):2065–2074. doi: 10.1002/ijc.33004. PubMed DOI

Rizzato C, Campa D, Pezzilli R, Soucek P, Greenhalf W, Capurso G, et al. ABO blood groups and pancreatic cancer risk and survival: Results from the PANcreatic disease ReseArch (PANDoRA) consortium. Oncol Rep. 2013;29(4):1637–1644. doi: 10.3892/or.2013.2285. PubMed DOI

Wolpin BM, Rizzato C, Kraft P, Kooperberg C, Petersen GM, Wang Z, et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet. 2014;46(9):994–1000. doi: 10.1038/ng.3052. PubMed DOI PMC

Childs EJ, Mocci E, Campa D, Bracci PM, Gallinger S, Goggins M, et al. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat Genet. 2015;47(8):911–6. doi: 10.1038/ng.3341. PubMed DOI PMC

Amundadottir LT. Pancreatic cancer genetics. Int J Biol Sci. 2016;12(3):314–325. doi: 10.7150/ijbs.15001. PubMed DOI PMC

Gentiluomo M, Peduzzi G, Lu Y, Campa D, Canzian F. Genetic polymorphisms in inflammatory genes and pancreatic cancer risk: a two-phase study on more than 14 000 individuals. Mutagenesis. 2019 doi: 10.1093/mutage/gez040. PubMed DOI

Lin Y, Nakatochi M, Hosono Y, Ito H, Kamatani Y, Inoko A, et al. Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nat Commun. 2020 doi: 10.1038/s41467-020-16711-w. PubMed DOI PMC

Corradi C, Gentiluomo M, Gajdán L, Cavestro GM, Kreivenaite E, Franco GD, et al. Genome-wide scan of long noncoding RNA single nucleotide polymorphisms and pancreatic cancer susceptibility. Int J Cancer. 2021 doi: 10.1002/ijc.33475. PubMed DOI

Galeotti AA, Gentiluomo M, Rizzato C, Obazee O, Neoptolemos JP, Pasquali C, et al. Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction. J Med Genet. 2021;58(6):369–377. doi: 10.1136/jmedgenet-2020-106961. PubMed DOI

Pistoni L, Gentiluomo M, Lu Y, López de Maturana E, Hlavac V, Vanella G, et al. Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis. 2021;42(8):1037–45. doi: 10.1093/carcin/bgab057. PubMed DOI

Corradi C, Lencioni G, Gentiluomo M, Felici A, Latiano A, Kiudelis G, et al. Polymorphic variants involved in methylation regulation: a strategy to discover risk loci for pancreatic ductal adenocarcinoma. J Med Genet. 2023 doi: 10.1136/jmg-2022-108910. PubMed DOI

Chen F, Childs EJ, Mocci E, Bracci P, Gallinger S, Li D, et al. Analysis of heritability and genetic architecture of pancreatic cancer: a PanC4 study. Cancer Epidemiol Prev Biomark. 2019;28(7):1238–1245. doi: 10.1158/1055-9965.EPI-18-1235. PubMed DOI PMC

Matsuda Y. Age-related morphological changes in the pancreas and their association with pancreatic carcinogenesis. Pathol Int. 2019;69(8):450–462. doi: 10.1111/pin.12837. PubMed DOI

Nodari Y, Gentiluomo M, Mohelnikova-Duchonova B, Kreivenaite E, Milanetto AC, Skieceviciene J, et al. Genetic and non-genetic risk factors for early-onset pancreatic cancer. Dig Liver Dis. 2023 doi: 10.1016/j.dld.2023.02.023. PubMed DOI

The 1000 Genomes Project Consortium A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi: 10.1038/nature15393. PubMed DOI PMC

Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, et al. A genome-wide mutational constraint map quantified from variation in 76,156 human genomes. bioRxiv. 2022 doi: 10.1101/2022.03.20.485034v2. PubMed DOI

Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al. Insights into human genetic variation and population history from 929 diverse genomes. Science. 2020;367(6484):eaay5012. doi: 10.1126/science.aay5012. PubMed DOI PMC

Mills MC, Rahal C. A scientometric review of genome-wide association studies. Commun Biol. 2019;2(1):1–11. doi: 10.1038/s42003-018-0261-x. PubMed DOI PMC

Vuckovic D, Bao EL, Akbari P, Lareau CA, Mousas A, Jiang T, et al. The polygenic and monogenic basis of blood traits and diseases. Cell. 2020;182(5):1214–1231.e11. doi: 10.1016/j.cell.2020.08.008. PubMed DOI PMC

Chen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell. 2020;182(5):1198–1213.e14. doi: 10.1016/j.cell.2020.06.045. PubMed DOI PMC

Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell. 2016;167(5):1415–1429.e19. doi: 10.1016/j.cell.2016.10.042. PubMed DOI PMC

Feng L, Gu S, Wang P, Chen H, Chen Z, Meng Z, et al. White blood cell and granulocyte counts are independent predictive factors for prognosis of advanced pancreatic caner. Gastroenterol Res Pract. 2018;8(2018):8096234. PubMed PMC

Montagnana M, Danese E. Red cell distribution width and cancer. Ann Transl Med. 2016;4(20):399. doi: 10.21037/atm.2016.10.50. PubMed DOI PMC

Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104(1):65–75. doi: 10.1016/j.ajhg.2018.11.008. PubMed DOI PMC

Dang C, Wang M, Qin T, Qin R. Clinical importance of preoperative red-cell volume distribution width as a prognostic marker in patients undergoing radical surgery for pancreatic cancer. Surg Today. 2021 doi: 10.1007/s00595-021-02374-7. PubMed DOI PMC

Dannemann M, Andrés AM, Kelso J. Introgression of neandertal- and denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am J Hum Genet. 2016;98(1):22–33. doi: 10.1016/j.ajhg.2015.11.015. PubMed DOI PMC

Quach H, Rotival M, Pothlichet J, Loh YHE, Dannemann M, Zidane N, et al. Genetic adaptation and Neandertal admixture shaped the immune system of human populations. Cell. 2016;167(3):643–656.e17. doi: 10.1016/j.cell.2016.09.024. PubMed DOI PMC

Nédélec Y, Sanz J, Baharian G, Szpiech ZA, Pacis A, Dumaine A, et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell. 2016;167(3):657–669.e21. doi: 10.1016/j.cell.2016.09.025. PubMed DOI

Jagoda E, Xue JR, Reilly SK, Dannemann M, Racimo F, Huerta-Sanchez E, et al. Detection of Neanderthal adaptively introgressed genetic variants that modulate reporter gene expression in human immune cells. Mol Biol Evol. 2022;39(1):304. doi: 10.1093/molbev/msab304. PubMed DOI PMC

Huerta-Sánchez E, Jin X, Asan BZ, Peter BM, Vinckenbosch N, et al. Altitude adaptation in Tibetans caused by introgression of denisovan-like DNA. Nature. 2014;512(7513):194–7. doi: 10.1038/nature13408. PubMed DOI PMC

Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, et al. A high-resolution recombination map of the human genome. Nat Genet. 2002;31(3):241–247. doi: 10.1038/ng917. PubMed DOI

Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52–58. doi: 10.1038/nature09298. PubMed DOI PMC

Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, Arslan AA, et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet. 2009;41(9):986–990. doi: 10.1038/ng.429. PubMed DOI PMC

Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284–1287. doi: 10.1038/ng.3656. PubMed DOI PMC

McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279–1283. doi: 10.1038/ng.3643. PubMed DOI PMC

Campa D, Rizzato C, Capurso G, Giese N, Funel N, Greenhalf W, et al. Genetic susceptibility to pancreatic cancer and its functional characterisation: The PANcreatic disease ReseArch (PANDoRA) consortium. Dig Liver Dis. 2013;45(2):95–99. doi: 10.1016/j.dld.2012.09.014. PubMed DOI

Campa D, Gentiluomo M, Stein A, Aoki MN, Oliverius M, Vodičková L, et al. The PANcreatic Disease ReseArch (PANDoRA) consortium: ten years’ experience of association studies to understand the genetic architecture of pancreatic cancer. Crit Rev Oncol Hematol. 2023;1(186):104020. doi: 10.1016/j.critrevonc.2023.104020. PubMed DOI

Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508–518. doi: 10.1038/s41586-022-05473-8. PubMed DOI PMC

Lin Y, Nakatochi M, Hosono Y, Ito H, Kamatani Y, Inoko A, et al. Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nat Commun. 2020;11(1):3175. doi: 10.1038/s41467-020-16711-w. PubMed DOI PMC

Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. J Open Source Softw. 2018;3(25):731. doi: 10.21105/joss.00731. DOI

Yao Y, Ochoa A. Limitations of principal components in quantitative genetic association models for human studies. bioRxiv. 2023 doi: 10.1101/2022.03.25.485885v2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...