B-Cell Activating Factor as a Cancer Biomarker and Its Implications in Cancer-Related Cachexia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26339644
PubMed Central
PMC4538579
DOI
10.1155/2015/792187
Knihovny.cz E-zdroje
- MeSH
- B-lymfocyty metabolismus patologie MeSH
- faktor aktivující B-buňky genetika MeSH
- humanizované monoklonální protilátky terapeutické užití MeSH
- kachexie genetika patologie MeSH
- lidé MeSH
- mnohočetný myelom genetika patologie MeSH
- monoklonální protilátky terapeutické užití MeSH
- nádorové biomarkery genetika MeSH
- systémový lupus erythematodes farmakoterapie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- belimumab MeSH Prohlížeč
- faktor aktivující B-buňky MeSH
- humanizované monoklonální protilátky MeSH
- monoklonální protilátky MeSH
- nádorové biomarkery MeSH
- TNFSF13B protein, human MeSH Prohlížeč
B-cell activating factor (BAFF) is a cytokine and adipokine of the TNF ligand superfamily. The main biological function of BAFF in maintaining the maturation of B-cells to plasma cells has recently made it a target of the first FDA-approved selective BAFF antibody, belimumab, for the therapy of systemic lupus erythematosus. Concomitantly, the role of BAFF in cancer has been a subject of research since its discovery. Here we review BAFF as a biomarker of malignant disease activity and prognostic factor in B-cell derived malignancies such as multiple myeloma. Moreover, anti-BAFF therapy seems to be a promising approach in treatment of B-cell derived leukemias/lymphomas. In nonhematologic solid tumors, BAFF may contribute to cancer progression by mechanisms both dependent on and independent of BAFF's proinflammatory role. We also describe ongoing research into the pathophysiological link between BAFF and cancer-related cachexia. BAFF has been shown to contribute to inflammation and insulin resistance which are known to worsen cancer cachexia syndrome. Taking all the above together, BAFF is emerging as a biomarker of several malignancies and a possible hallmark of cancer cachexia.
Zobrazit více v PubMed
Shu H.-B., Hu W.-H., Johnson H. TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. Journal of Leukocyte Biology. 1999;65(5):680–683. PubMed
Aggarwal B. B., Gupta S. C., Kim J. H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119(3):651–665. doi: 10.1182/blood-2011-04-325225. PubMed DOI PMC
Mackay F., Browning J. L. BAFF: a fundamental survival factor for B cells. Nature Reviews. Immunology. 2002;2(7):465–475. doi: 10.1038/nri844. PubMed DOI
Schiemann B., Gommerman J. L., Vora K., et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293(5537):2111–2114. doi: 10.1126/science.1061964. PubMed DOI
Gross J. A., Dillon S. R., Mudri S., et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease: impaired B cell maturation in mice lacking BLyS. Immunity. 2001;15(2):289–302. doi: 10.1016/S1074-7613(01)00183-2. PubMed DOI
Castigli E., Wilson S. A., Scott S., et al. TACI and BAFF-R mediate isotype switching in B cells. The Journal of Experimental Medicine. 2005;201(1):35–39. doi: 10.1084/jem.20032000. PubMed DOI PMC
Stadanlick J. E., Kaileh M., Karnell F. G., et al. Tonic B cell antigen receptor signals supply an NF-κB substrate for prosurvival BLyS signaling. Nature Immunology. 2008;9(12):1379–1387. doi: 10.1038/ni.1666. PubMed DOI PMC
Bossen C., Schneider P. BAFF, APRIL and their receptors: structure, function and signaling. Seminars in Immunology. 2006;18(5):263–275. doi: 10.1016/j.smim.2006.04.006. PubMed DOI
Thompson J. S., Bixler S. A., Qian F., et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science. 2001;293(5537):2108–2111. doi: 10.1126/science.1061965. PubMed DOI
Yan M., Brady J. R., Chan B., et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Current Biology. 2001;11(19):1547–1552. doi: 10.1016/S0960-9822(01)00481-X. PubMed DOI
Bossen C., Cachero T. G., Tardivel A., et al. TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood. 2008;111(3):1004–1012. doi: 10.1182/blood-2007-09-110874. PubMed DOI
Seshasayee D., Valdez P., Yan M., et al. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity. 2003;18(2):279–288. doi: 10.1016/s1074-7613(03)00025-6. PubMed DOI
Johns Hopkins University. Online Mendelian Inheritance in Man, OMIM. Baltimore, Md, USA: Johns Hopkins University; 2012. http://omim.org/
Deng B. P., Zhang Y., Wang Q. J., et al. Soluble BAFF-R produced by decidual stromal cells plays an inhibitory role in monocytes and macrophages. Reproductive Biomedicine Online. 2012;24(6):654–663. doi: 10.1016/j.rbmo.2012.02.024. PubMed DOI
Rodig S. J., Shahsafaei A., Li B., Mackay C. R., Dorfman D. M. BAFF-R, the major B cell-activating factor receptor, is expressed on most mature B cells and B-cell lymphoproliferative disorders. Human Pathology. 2005;36(10):1113–1119. doi: 10.1016/j.humpath.2005.08.005. PubMed DOI
Ye Q., Wang L., Wells A. D., et al. BAFF binding to T cell-expressed BAFF-R costimulates T cell proliferation and alloresponses. European Journal of Immunology. 2004;34(10):2750–2759. doi: 10.1002/eji.200425198. PubMed DOI
Alexaki V.-I., Notas G., Pelekanou V., et al. Adipocytes as immune cells: differential expression of TWEAK, BAFF, and APRIL and their receptors (Fn14, BAFF-R, TACI, and BCMA) at different stages of normal and pathological adipose tissue development. The Journal of Immunology. 2009;183(9):5948–5956. doi: 10.4049/jimmunol.0901186. PubMed DOI
Fu L., Lin-Lee Y.-C., Pham L. V., Tamayo A. T., Yoshimura L. C., Ford R. J. BAFF-R promotes cell proliferation and survival through interaction with IKKβ and NF-κB/c-Rel in the nucleus of normal and neoplastic B-lymphoid cells. Blood. 2009;113(19):4627–4636. doi: 10.1182/blood-2008-10-183467. PubMed DOI PMC
Carter R. H., Zhao H., Liu X., et al. Expression and occupancy of BAFF-R on B cells in systemic lupus erythematosus. Arthritis and Rheumatism. 2005;52(12):3943–3954. doi: 10.1002/art.21489. PubMed DOI
Pers J.-O., Daridon C., Devauchelle V., et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Annals of the New York Academy of Sciences. 2005;1050:34–39. doi: 10.1196/annals.1313.004. PubMed DOI
Johns Hopkins University. Online Mendelian Inheritance in Man, OMIM. Baltimore, Md, USA: Johns Hopkins University; 2011. http://omim.org/
Wang R., Ma N., Guo Y., et al. Identify the key amino acid of BAFF binding with TACI. Cellular Immunology. 2013;284(1-2):84–90. doi: 10.1016/j.cellimm.2013.06.003. PubMed DOI
Wang H., Marsters S. A., Baker T., et al. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nature Immunology. 2001;2(7):632–637. doi: 10.1038/89782. PubMed DOI
Yan M., Marsters S. A., Grewal I. S., Wang H., Ashkenazi A., Dixit V. M. Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nature Immunology. 2000;1(1):37–41. doi: 10.1038/76889. PubMed DOI
Yu G., Boone T., Delaney J., et al. APRIL and TALL-I and receptor BCMA and TACI: system for regulating humoral immunity. Nature Immunology. 2000;1(3):252–256. doi: 10.1038/79802. PubMed DOI
Poodt A. E. J., Driessen G. J. A., de Klein A., van Dongen J. J. M., van Der Burg M., de Vries E. TACI mutations and disease susceptibility in patients with common variable immunodeficiency. Clinical and Experimental Immunology. 2009;156(1):35–39. doi: 10.1111/j.1365-2249.2008.03863.x. PubMed DOI PMC
Salzer U., Chapel H. M., Webster A. D. B., et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nature Genetics. 2005;37(8):820–828. doi: 10.1038/ng1600. PubMed DOI
Online Mendelian Inheritance in Man, OMIM, Johns Hopkins University, Baltimore, Md, USA, MIM Number: 109545, 2012, http://omim.org/
O'Connor B. P., Raman V. S., Erickson L. D., et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. Journal of Experimental Medicine. 2004;199(1):91–97. doi: 10.1084/jem.20031330. PubMed DOI PMC
Novak A. J., Darce J. R., Arendt B. K., et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103(2):689–694. doi: 10.1182/blood-2003-06-2043. PubMed DOI
Moreaux J., Legouffe E., Jourdan E., et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood. 2004;103(8):3148–3157. doi: 10.1182/blood-2003-06-1984. PubMed DOI PMC
Carpenter R. O., Evbuomwan M. O., Pittaluga S., et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clinical Cancer Research. 2013;19(8):2048–2060. doi: 10.1158/1078-0432.ccr-12-2422. PubMed DOI PMC
Sasaki Y., Derudder E., Hobeika E., et al. Canonical NF-kappaB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity. 2006;24(6):729–739. doi: 10.1016/j.immuni.2006.04.005. PubMed DOI
Inoue J.-I., Ishida T., Tsukamoto N., et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Experimental Cell Research. 2000;254(1):14–24. doi: 10.1006/excr.1999.4733. PubMed DOI
Schneider P., Mackay F., Steiner V., et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. Journal of Experimental Medicine. 1999;189(11):1747–1756. doi: 10.1084/jem.189.11.1747. PubMed DOI PMC
Nardelli B., Belvedere O., Roschke V., et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood. 2001;97(1):198–204. doi: 10.1182/blood.v97.1.198. PubMed DOI
Kreuzaler M., Rauch M., Salzer U., et al. Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors. Journal of Immunology. 2012;188(1):497–503. doi: 10.4049/jimmunol.1102321. PubMed DOI
Moore P. A., Belvedere O., Orr A., et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science. 1999;285(5425):260–263. doi: 10.1126/science.285.5425.260. PubMed DOI
Kim Y.-H., Choi B.-H., Cheon H.-G., Do M.-S. B cell activation factor (BAFF) is a novel adipokine that links obesity and inflammation. Experimental and Molecular Medicine. 2009;41(3):208–216. doi: 10.3858/emm.2009.41.3.024. PubMed DOI PMC
Hamada M., Abe M., Miyake T., et al. B cell-activating factor controls the production of adipokines and induces insulin resistance. Obesity. 2011;19(10):1915–1922. doi: 10.1038/oby.2011.165. PubMed DOI
Knight A. K., Radigan L., Marron T., Langs A., Zhang L., Cunningham-Rundles C. High serum levels of BAFF, APRIL, and TACI in common variable immunodeficiency. Clinical Immunology. 2007;124(2):182–189. doi: 10.1016/j.clim.2007.04.012. PubMed DOI PMC
Davidson A. Targeting BAFF in autoimmunity. Current Opinion in Immunology. 2010;22(6):732–739. doi: 10.1016/j.coi.2010.09.010. PubMed DOI PMC
Ahima R. S., Osei S. Y. Adipokines in obesity. Frontiers of Hormone Research. 2008;36:182–197. doi: 10.1159/0000115365. PubMed DOI
Ferraccioli G., Gremese E. Adiposity, joint and systemic inflammation: the additional risk of having a metabolic syndrome in rheumatoid arthritis. Swiss Medical Weekly. 2011;141 doi: 10.4414/smw.2011.13211.w13211 PubMed DOI
Xu H., He X., Zhu Y., Yan T., Ma H., Zhang X. Abnormally high expression of BAFF on T lymphocytes from lung cancer-associated pleural effusions and its potent anti-tumor effect. Acta Biochimica et Biophysica Sinica. 2007;39(12):964–973. PubMed
Woo S.-J., Im J., Jeon J. H., et al. Induction of BAFF expression by IFN-γ via JAK/STAT signaling pathways in human intestinal epithelial cells. Journal of Leukocyte Biology. 2013;93(3):363–368. doi: 10.1189/jlb.0412210. PubMed DOI
Zhou L., Zhong R., Hao W., et al. Interleukin-10 and interferon-γ up-regulate the expression of B-cell activating factor in cultured human promyelocytic leukemia cells. Experimental and Molecular Pathology. 2009;87(1):54–58. doi: 10.1016/j.yexmp.2009.04.002. PubMed DOI
Ittah M., Miceli-Richard C., Gottenberg J.-E., et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren's syndrome. Arthritis Research and Therapy. 2006;8(2, article R51) doi: 10.1186/ar1912. PubMed DOI PMC
Scapini P., Bazzoni F., Cassatella M. A. Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunology Letters. 2008;116(1):1–6. doi: 10.1016/j.imlet.2007.11.009. PubMed DOI
Gandhi K. S., McKay F. C., Schibeci S. D., et al. BAFF is a biological response marker to IFN-β treatment in multiple sclerosis. Journal of Interferon and Cytokine Research. 2008;28(9):529–539. doi: 10.1089/jir.2008.0007. PubMed DOI
Hedegaard C. J., Sellebjerg F., Krakauer M., Hesse D., Bendtzen K., Nielsen C. H. Interferon-beta increases systemic BAFF levels in multiple sclerosis without increasing autoantibody production. Multiple Sclerosis. 2011;17(5):567–577. doi: 10.1177/1352458510393771. PubMed DOI
Panchanathan R., Choubey D. Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity. Molecular Immunology. 2013;53(1-2):15–23. doi: 10.1016/j.molimm.2012.06.013. PubMed DOI PMC
Peeva E., Venkatesh J., Diamond B. Tamoxifen blocks estrogen-induced B cell maturation but not survival. Journal of Immunology. 2005;175(3):1415–1423. doi: 10.4049/jimmunol.175.3.1415. PubMed DOI
Gilmore T. D. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25(51):6680–6684. doi: 10.1038/sj.onc.1209954. PubMed DOI
Hayden M. S., West A. P., Ghosh S. NF-κB and the immune response. Oncogene. 2006;25(51):6758–6780. doi: 10.1038/sj.onc.1209943. PubMed DOI
Tak P. P., Firestein G. S. NF-κB: a key role in inflammatory diseases. The Journal of Clinical Investigation. 2001;107(1):7–11. doi: 10.1172/jci11830. PubMed DOI PMC
Hildebrand J. M., Luo Z., Manske M. K., et al. A BAFF-R mutation associated with non-Hodgkin lymphoma alters TRAF recruitment and reveals new insights into BAFF-R signaling. Journal of Experimental Medicine. 2010;207(12):2569–2579. doi: 10.1084/jem.20100857. PubMed DOI PMC
Shen X., Zhu W., Zhang X., Xu G., Ju S. A role of both NF-kappaB pathways in expression and transcription regulation of BAFF-R gene in multiple myeloma cells. Molecular and Cellular Biochemistry. 2011;357(1-2):21–30. doi: 10.1007/s11010-011-0871-9. PubMed DOI
Brandi G., Pantaleo M. A., Biasco G., Paterini P. Activated NF-kB in colorectal cancer: predictive or prognostic factor? Journal of Clinical Oncology. 2008;26(8):1388–1389. doi: 10.1200/jco.2007.15.1845. PubMed DOI
Pikarsky E., Porat R. M., Stein I., et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–466. doi: 10.1038/nature02924. PubMed DOI
Baumann B., Seufert J., Jakob F., et al. Activation of NF-κB signalling and TNFα-expression in THP-1 macrophages by TiAlV- and polyethylene-wear particles. Journal of Orthopaedic Research. 2005;23(6):1241–1248. doi: 10.1016/j.orthres.2005.02.017. PubMed DOI
Treml J. F., Hao Y., Stadanlick J. E., Cancro M. P. The BLyS family: toward a molecular understanding of B cell homeostasis. Cell Biochemistry and Biophysics. 2009;53(1):1–16. doi: 10.1007/s12013-008-9036-1. PubMed DOI PMC
Hiscott J., Marois J., Garoufalis J., et al. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Molecular and Cellular Biology. 1993;13(10):6231–6240. PubMed PMC
Cogswell J. P., Godlevski M. M., Wisely G. B., et al. NF-κB regulates IL-1β transcription through a consensus NF-κB binding site and a nonconsensus CRE-like site. Journal of Immunology. 1994;153(2):712–723. PubMed
Los M., Schenk H., Hexel K., Baeuerle P. A., Droge W., Schulze-Osthoff K. IL-2 gene expression and NF-κB activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO Journal. 1995;14(15):3731–3740. PubMed PMC
Xiao W., Hodge D. R., Wang L., Yang X., Zhang X., Farrar W. L. NF-κB activates IL-6 expression through cooperation with c-Jun and IL6-AP1 site, but is independent of its IL6-NFκB regulatory site in autocrine human multiple myeloma cells. Cancer Biology & Therapy. 2004;3(10):1007–1017. doi: 10.4161/cbt.3.10.1141. PubMed DOI
Libermann T. A., Baltimore D. Activation of interleukin-6 gene expression through the NF-κB transcription factor. Molecular and Cellular Biology. 1990;10(5):2327–2334. PubMed PMC
Crinelli R., Antonelli A., Bianchi M., et al. Selective inhibition of NF-κB activation and TNF-alpha production in macrophages by red blood cell-mediated delivery of dexamethasone. Blood Cells, Molecules & Diseases. 2000;26(3):211–222. PubMed
Fan C., Yang J., Engelhardt J. F. Temporal pattern of NFκB activation influences apoptotic cell fate in a stimuli-dependent fashion. Journal of Cell Science. 2002;115(24):4843–4853. doi: 10.1242/jcs.00151. PubMed DOI
Kaltschmidt B., Kaltschmidt C., Hofmann T. G., Hehner S. P., Dröge W., Schmitz M. L. The pro- or anti-apoptotic function of NF-κB is determined by the nature of the apoptotic stimulus. European Journal of Biochemistry. 2000;267(12):3828–3835. doi: 10.1046/j.1432-1327.2000.01421.x. PubMed DOI
Wang C.-Y., Mayo M. W., Korneluk R. G., Goeddel D. V., Baldwin A. S., Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281(5383):1680–1683. doi: 10.1126/science.281.5383.1680. PubMed DOI
Wang P., Qian L., Yuan X., et al. BlyS: a potential hallmark of multiple myeloma. Frontiers in Bioscience. 2013;18(1):324–331. doi: 10.2741/4103. PubMed DOI
Chu V. T., Beller A., Nguyen T. T. N., Steinhauser G., Berek C. The long-term survival of plasma cells. Scandinavian Journal of Immunology. 2011;73(6):508–511. doi: 10.1111/j.1365-3083.2011.02544.x. PubMed DOI
Bolkun L., Lemancewicz D., Jablonska E., et al. BAFF and APRIL as TNF superfamily molecules and angiogenesis parallel progression of human multiple myeloma. Annals of Hematology. 2014;93(4):635–644. doi: 10.1007/s00277-013-1924-9. PubMed DOI PMC
Lemancewicz D., Bolkun L., Jablonska E., et al. Evaluation of TNF superfamily molecules in multiple myeloma patients: correlation with biological and clinical features. Leukemia Research. 2013;37(9):1089–1093. doi: 10.1016/j.leukres.2013.05.014. PubMed DOI
Alexandrakis M. G., Roussou P., Pappa C. A., et al. Relationship between circulating BAFF serum levels with proliferating markers in patients with multiple myeloma. BioMed Research International. 2013;2013:6. doi: 10.1155/2013/389579.389579 PubMed DOI PMC
Itoh K., Hirohata S. The role of IL-10 in human B cell activation, proliferation, and differentiation. The Journal of Immunology. 1995;154(9):4341–4350. PubMed
Kovacs E. Interleukin-6 leads to interleukin-10 production in several human multiple myeloma cell lines. Does interleukin-10 enhance the proliferation of these cells? Leukemia Research. 2010;34(7):912–916. doi: 10.1016/j.leukres.2009.08.012. PubMed DOI
Otsuki T., Yata K., Sakaguchi H., et al. IL-10 in myeloma cells. Leukemia and Lymphoma. 2002;43(5):969–974. PubMed
Novak A. J., Grote D. M., Stenson M., et al. Expression of BLyS and its receptors in B-cell non-Hodgkin lymphoma: correlation with disease activity and patient outcome. Blood. 2004;104(8):2247–2253. doi: 10.1182/blood-2004-02-0762. PubMed DOI
Kuo S.-H., Yeh P.-Y., Chen L.-T., et al. Overexpression of B cell activating factor of TNF family (BAFF) is associated with Helicobacter pylori independent growth of gastric diffuse large B-cell lymphoma with histologic evidence of MALT lymphoma. Blood. 2008;112(7):2927–2934. doi: 10.1182/blood-2008-02-137513. PubMed DOI
Bienertova-Vasku J., Bienert P., Kodytkova D., et al. BAFF levels are elevated in paediatric patients with acute lymphoblastic leukaemia compared to other B-lineage neoplasms. Journal of Hematology. 2012;1(1):20–22.
Yang S., Li J.-Y., Xu W. Role of BAFF/BAFF-R axis in B-cell non-Hodgkin lymphoma. Critical Reviews in Oncology/Hematology. 2014;91(2):113–122. doi: 10.1016/j.critrevonc.2014.02.004. PubMed DOI
Oki Y., Georgakis G. V., Migone T.-S., Kwak L. W., Younes A. Prognostic significance of serum B-lymphocyte stimulator level in Hodgkin's lymphoma. Haematologica. 2007;92(2):269–270. doi: 10.3324/haematol.10678. PubMed DOI
Tecchio C., Nadali G., Scapini P., et al. High serum levels of B-lymphocyte stimulator are associated with clinical-pathological features and outcome in classical Hodgkin lymphoma. British Journal of Haematology. 2007;137(6):553–559. doi: 10.1111/j.1365-2141.2007.06615.x. PubMed DOI
Onda K., Iijima K., Katagiri Y. U., et al. Differential effects of BAFF on B cell precursor acute lymphoblastic leukemia and Burkitt lymphoma. International Journal of Hematology. 2010;91(5):808–819. doi: 10.1007/s12185-010-0567-z. PubMed DOI
Wu W., Li S., Zhang W., Ren G., Dong Q. A novel VHH antibody targeting the B cell-activating factor for B-cell lymphoma. International Journal of Molecular Sciences. 2014;15(6):9481–9496. doi: 10.3390/ijms15069481. PubMed DOI PMC
Maia S., Pelletier M., Ding J., et al. Aberrant expression of functional baff-system receptors by malignant b-cell precursors impacts leukemia cell survival. PLoS ONE. 2011;6(6) doi: 10.1371/journal.pone.0020787.e20787 PubMed DOI PMC
Parameswaran R., Lim M., Fei F., et al. Effector-mediated eradication of precursor B acute lymphoblastic leukemia with a novel Fc-engineered monoclonal antibody targeting the BAFF-R. Molecular Cancer Therapeutics. 2014;13(6):1567–1577. doi: 10.1158/1535-7163.mct-13-1023. PubMed DOI PMC
Parameswaran R., Müschen M., Kim Y.-M., Groffen J., Heisterkamp N. A functional receptor for B-cell-activating factor is expressed on human acute lymphoblastic leukemias. Cancer Research. 2010;70(11):4346–4356. doi: 10.1158/0008-5472.can-10-0300. PubMed DOI PMC
Koizumi M., Hiasa Y., Kumagi T., et al. Increased B cell-activating factor promotes tumor invasion and metastasis in human pancreatic cancer. PLoS ONE. 2013;8(8) doi: 10.1371/journal.pone.0071367.e71367 PubMed DOI PMC
Pelekanou V., Kampa M., Kafousi M., et al. Expression of TNF-superfamily members BAFF and APRIL in breast cancer: immunohistochemical study in 52 invasive ductal breast carcinomas. BMC Cancer. 2008;8, article 76 doi: 10.1186/1471-2407-8-76. PubMed DOI PMC
Pelekanou V., Notas G., Kampa M., et al. BAFF, APRIL, TWEAK, BCMA, TACI and Fn14 proteins are related to human glioma tumor grade: immunohistochemistry and public microarray data meta-analysis. PLoS ONE. 2013;8(12) doi: 10.1371/journal.pone.0083250.e83250 PubMed DOI PMC
Fabris M., Tonutti E., Panighel C., et al. The role of B-lymphocyte stimulator in neuroendocrine tumors: correlation with tumor differentiation, disease status and the presence of metastases. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry. 2011;11(4):306–314. doi: 10.2174/1871522211108040306. DOI
Bienertova-Vasku J., Lungova A., Bienert P., et al. Circulating levels of B-cell activating factor in paediatric patients with malignancy with or without cancer-related cachexia. Klinicka Onkologie. 2012;25(2):S58–S63. PubMed
Shu H.-B., Johnson H. B cell maturation protein is a receptor for the tumor necrosis factor family member TALL-1. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(16):9156–9161. doi: 10.1073/pnas.160213497. PubMed DOI PMC
Xia X.-Z., Treanor J., Senaldi G., et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. Journal of Experimental Medicine. 2000;192(1):137–143. doi: 10.1084/jem.192.1.137. PubMed DOI PMC
Sakurai H., Suzuki S., Kawasaki N., et al. Tumor necrosis factor-α-induced IKK phosphorylation of NF-κB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. Journal of Biological Chemistry. 2003;278(38):36916–36923. doi: 10.1074/jbc.m301598200. PubMed DOI
Viatour P., Merville M.-P., Bours V., Chariot A. Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation. Trends in Biochemical Sciences. 2005;30(1):43–52. doi: 10.1016/j.tibs.2004.11.009. PubMed DOI
Sun S. C. Controlling the fate of NIK: a central stage in noncanonical NF-kappaB signaling. Science Signaling. 2010;3(123, article pe18) doi: 10.1126/scisignal.3123pe18. PubMed DOI PMC
Senftleben U., Cao Y., Xiao G., et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science. 2001;293(5534):1495–1499. doi: 10.1126/science.1062677. PubMed DOI
Solan N. J., Miyoshi H., Carmona E. M., Bren G. D., Paya C. V. RelB cellular regulation and transcriptional activity are regulated by p100. The Journal of Biological Chemistry. 2002;277(2):1405–1418. doi: 10.1074/jbc.m109619200. PubMed DOI
Hotamisligil G. S. Mechanisms of TNF-α-induced insulin resistance. Experimental and Clinical Endocrinology and Diabetes. 1999;107(2):119–125. doi: 10.1055/s-0029-1212086. PubMed DOI
Sundgren-Andersson A. K., Ostlund P., Bartfai T. IL-6 is essential in TNF-α-induced fever. The American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 1998;275(6):R2028–R2034. PubMed
Tracey K. J., Wei H., Manogue K. R., et al. Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. The Journal of Experimental Medicine. 1988;167(3):1211–1227. doi: 10.1084/jem.167.3.1211. PubMed DOI PMC
Carson J. A., Baltgalvis K. A. Interleukin 6 as a key regulator of muscle mass during cachexia. Exercise and Sport Sciences Reviews. 2010;38(4):168–176. doi: 10.1097/jes.0b013e3181f44f11. PubMed DOI PMC
Haddad F., Zaldivar F., Cooper D. M., Adams G. R. IL-6-induced skeletal muscle atrophy. Journal of Applied Physiology. 2005;98(3):911–917. doi: 10.1152/japplphysiol.01026.2004. PubMed DOI
Zamir O., Hasselgren P. O., Higashiguchi T., Frederick J. A., Fischer J. E. Tumour necrosis factor (TNF) and interleukin-1 (IL-1) induce muscle proteolysis through different mechanisms. Mediators of Inflammation. 1992;1(4):247–250. doi: 10.1155/s0962935192000371. PubMed DOI PMC
Gulati P. Janeway's immunobiology, 7th edition by kenneth murphy, paul travers, and mark walport. Biochemistry and Molecular Biology Education. 2009;37(2):134–134. doi: 10.1002/bmb.20272. DOI
Oliff A., Defeo-Jones D., Boyer M., et al. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell. 1987;50(4):555–563. doi: 10.1016/0092-8674(87)90028-6. PubMed DOI
Guyton A. C., Hall J. E. Textbook of Medical Physiology. 12. Philadelphia, Pa, USA: Elsevier Science Health Science Division; 2012.
Skipworth R. J. E., Stewart G. D., Dejong C. H. C., Preston T., Fearon K. C. H. Pathophysiology of cancer cachexia: much more than host-tumour interaction? Clinical Nutrition. 2007;26(6):667–676. doi: 10.1016/j.clnu.2007.03.011. PubMed DOI
Dickson S. L., Egecioglu E., Landgren S., Skibicka K. P., Engel J. A., Jerlhag E. The role of the central ghrelin system in reward from food and chemical drugs. Molecular and Cellular Endocrinology. 2011;340(1):80–87. doi: 10.1016/j.mce.2011.02.017. PubMed DOI
Dixit V. D., Schaffer E. M., Pyle R. S., et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. The Journal of Clinical Investigation. 2004;114(1):57–66. doi: 10.1172/jci200421134. PubMed DOI PMC
Brach M. A., Gruss H. J., Riedel D., Mertelsmann R., Herrmann F. Activation of NF-κ B by interleukin 2 in human blood monocytes. Cell Growth & Differentiation. 1992;3(7):421–427. PubMed
Tayek J. A. A review of cancer cachexia and abnormal glucose metabolism in humans with cancer. Journal of the American College of Nutrition. 1992;11(4):445–456. doi: 10.1080/07315724.1992.10718249. PubMed DOI
Kawasaki K., Abe M., Tada F., et al. Blockade of B-cell-activating factor signaling enhances hepatic steatosis induced by a high-fat diet and improves insulin sensitivity. Laboratory Investigation. 2013;93(3):311–321. doi: 10.1038/labinvest.2012.176. PubMed DOI
Asp M. L., Tian M., Wendel A. A., Belury M. A. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. International Journal of Cancer. 2010;126(3):756–763. doi: 10.1002/ijc.24784. PubMed DOI
Tsoli M., Robertson G. Cancer cachexia: malignant inflammation, tumorkines, and metabolic mayhem. Trends in Endocrinology & Metabolism. 2013;24(4):174–183. doi: 10.1016/j.tem.2012.10.006. PubMed DOI
Cabal-Manzano R., Bhargava P., Torres-Duarte A., Marshall J., Bhargava P., Wainer I. W. Proteolysis-inducing factor is expressed in tumours of patients with gastrointestinal cancers and correlates with weight loss. British Journal of Cancer. 2001;84(12):1599–1601. doi: 10.1054/bjoc.2001.1830. PubMed DOI PMC
Khan S., Tisdale M. J. Catabolism of adipose tissue by a tumour-produced lipid-mobilising factor. International Journal of Cancer. 1999;80(3):444–447. doi: 10.1002/(SICI)1097-0215(19990129)80:3<444::AID-IJC18>3.0.CO;2-U. PubMed DOI
Gullett N. P., Mazurak V. C., Hebbar G., Ziegler T. R. Nutritional interventions for cancer-induced cachexia. Current Problems in Cancer. 2011;35(2):58–90. doi: 10.1016/j.currproblcancer.2011.01.001. PubMed DOI PMC
Batten M., Fletcher C., Ng L. G., et al. TNF deficiency fails to protect BAFF transgenic mice against autoimmunity and reveals a predisposition to B cell lymphoma. The Journal of Immunology. 2004;172(2):812–822. doi: 10.4049/jimmunol.172.2.812. PubMed DOI
Chang S. K., Arendt B. K., Darce J. R., Wu X., Jelinek D. F. A role for BLyS in the activation of innate immune cells. Blood. 2006;108(8):2687–2694. doi: 10.1182/blood-2005-12-017319. PubMed DOI PMC