Enhanced auxin signaling promotes root-hair growth at moderately low temperature in Arabidopsis thaliana

. 2025 Jun 09 ; 6 (6) : 101350. [epub] 20250506

Jazyk angličtina Země Čína Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40336200
Odkazy

PubMed 40336200
PubMed Central PMC12177487
DOI 10.1016/j.xplc.2025.101350
PII: S2590-3462(25)00112-9
Knihovny.cz E-zdroje

Root hairs (RHs) are mixed tip- and non-tip-growing protrusions derived from root epidermal cells that play essential roles in nutrient and water uptake, root anchorage, and interactions with soil microorganisms. Nutrient availability and temperature are critical and interconnected factors for sustained plant growth, but the molecular mechanisms that underlie their perception and downstream signaling pathways remain unclear. Here, we show that moderately low temperature (10°C) induces a strong RH elongation response mediated by several molecular components of the auxin pathway. Specifically, auxin biosynthesis mediated by TAA1/YUCCAs, auxin transport via PIN2, PIN4, and AUX1, and auxin signaling regulated by TIR1/AFB2 in conjunction with specific ARFs (ARF6/ARF8 and ARF7, but not ARF19) contribute to the RH response under moderately low temperature. These findings establish the auxin biosynthesis and signaling pathway as a central regulatory process driving RH growth under moderate low-temperature conditions in roots. Our work underscores the importance of moderately low temperature as a stimulus that interacts with complex nutritional signaling originating from the growth medium and the plant nutritional status; this process has the potential to be fine-tuned for future biotechnological applications to enhance nutrient uptake.

ANID Millennium Science Initiative Program Millennium Institute for Integrative Biology Santiago Chile; Centro de Biotecnología Vegetal Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile

College of Resources and Environmental Sciences National Academy of Agriculture Green Development China Agricultural University Beijing 100193 China

CONICET Universidad de Buenos Aires Instituto de Ecología Genética y Evolución de Buenos Aires Buenos Aires Argentina

Departamento de Fruticultura y Enología Facultad de Agronomía y Sistema Naturales Pontificia Universidad Católica de Chile Santiago Chile; Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile; ANID Millennium Science Initiative Program Millennium Institute Center for Genome Regulation Santiago Chile

Escuela de Agronomía Facultad de Ciencias Agronómicas y de los Alimentos Pontificia Universidad Católica de Valparaíso Calle San Francisco s n La Palma Quillota 2260000 Chile

Fundación Instituto Leloir and IIBBA CONICET Av Patricias Argentinas 435 Buenos Aires C1405BWE Argentina

Fundación Instituto Leloir and IIBBA CONICET Av Patricias Argentinas 435 Buenos Aires C1405BWE Argentina; ANID Millennium Science Initiative Program Millennium Institute for Integrative Biology Santiago Chile; Centro de Biotecnología Vegetal Facultad de Ciencias de la Vida Universidad Andres Bello Santiago Chile

Laboratory of Growth Regulators Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences Šlechtitelů 27 779 00 Olomouc Czech Republic

Microscopy and BioImaging Facility Fundación Instituto Leloir CONICET Buenos Aires Argentina

Microscopy and BioImaging Facility Fundación Instituto Leloir CONICET Buenos Aires Argentina; Imaging Platform Broad Institute of Harvard and MIT Cambridge MA USA

Molecular Plant Nutrition Department of Physiology and Cell Biology Leibniz Institute of Plant Genetics and Crop Plant Research Corrensstr 3 06466 Gatersleben Germany

Zobrazit více v PubMed

Balcerowicz D., Schoenaers S., Vissenberg K. Cell Fate Determination and the Switch from Diffuse Growth to Planar Polarity in Arabidopsis Root Epidermal Cells. Front. Plant Sci. 2015;6:1163. doi: 10.3389/fpls.2015.01163. PubMed DOI PMC

Barbez E., Kubeš M., Rolčík J., Béziat C., Pěnčík A., Wang B., Rosquete M.R., Zhu J., Dobrev P.I., Lee Y., et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature. 2012;485:119–122. doi: 10.1038/nature11001. PubMed DOI

Bargmann B.O.R., Vanneste S., Krouk G., Nawy T., Efroni I., Shani E., Choe G., Friml J., Bergmann D.C., Estelle M., et al. A map of cell type-specific auxin responses. Mol. Syst. Biol. 2013;9:688. doi: 10.1038/msb.2013.40. PubMed DOI PMC

Bates D., R Core Team . CRAN; 2025. Nlme: Linear and Nonlinear Mixed Effects Models (Version 3.1-167) [R Package]https://CRAN.R-project.org/package=nlme

Bhosale R., Giri J., Pandey B.K., Giehl R.F.H., Hartmann A., Traini R., Truskina J., Leftley N., Hanlon M., Swarup K., et al. A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nat. Commun. 2018;9:1409. doi: 10.1038/s41467-018-03851-3. PubMed DOI PMC

Blakeslee J.J., Spatola Rossi T., Kriechbaumer V. Auxin biosynthesis: spatial regulation and adaptation to stress. J. Exp. Bot. 2019;70:5041–5049. doi: 10.1093/jxb/erz283. PubMed DOI

Brunoud G., Wells D.M., Oliva M., Larrieu A., Mirabet V., Burrow A.H., Beeckman T., Kepinski S., Traas J., Bennett M.J., et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature. 2012;482:103–106. doi: 10.1038/nature10791. PubMed DOI

Brooks M., Kristensen K., Benthem K.v., Magnusson A., Berg C., Nielsen A., Skaug H., Mächler M., Bolker B. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400. doi: 10.32614/RJ-2017-066. DOI

Calderón Villalobos L.I.A., Lee S., De Oliveira C., Ivetac A., Brandt W., Armitage L., Sheard L.B., Tan X., Parry G., Mao H., et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 2012;8:477–485. doi: 10.1038/nchembio.926. PubMed DOI PMC

Casal J.J., Estevez J.M. Auxin-Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harbor Perspect. Biol. 2021;13 doi: 10.1101/cshperspect.a040030. PubMed DOI PMC

Chen H., Xiong L. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development. J. Biol. Chem. 2010;285:24238–24247. doi: 10.1074/jbc.M110.123661. PubMed DOI PMC

Chen Q., Dai X., De-Paoli H., Cheng Y., Takebayashi Y., Kasahara H., Kamiya Y., Zhao Y. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol. 2014;55:1072–1079. doi: 10.1093/pcp/pcu039. PubMed DOI PMC

Cho M., Lee S.H., Cho H.-T. P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell. 2007;19:3930–3943. doi: 10.1105/tpc.107.054288. PubMed DOI PMC

Datta S., Prescott H., Dolan L. Intensity of a pulse of RSL4 transcription factor synthesis determines Arabidopsis root hair cell size. Nat. Plants. 2015;1 doi: 10.1038/nplants.2015.138. PubMed DOI

Dharmasiri N., Dharmasiri S., Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435:441–445. doi: 10.1038/nature03543. PubMed DOI

Dindas J., Scherzer S., Roelfsema M.R.G., von Meyer K., Müller H.M., Al-Rasheid K.A.S., Palme K., Dietrich P., Becker D., Bennett M.J., et al. AUX1-mediated root hair auxin influx governs SCF-type Ca signaling. Nat. Commun. 2018;9:1174. doi: 10.1038/s41467-018-03582-5. PubMed DOI PMC

Dodt M., Roehr J.T., Ahmed R., Dieterich C. FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms. Biology. 2012;1:895–905. doi: 10.3390/biology1030895. PubMed DOI PMC

Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. DevelopmentEngland. 1993;119:71–84. doi: 10.1242/dev.119.1.71. PubMed DOI

Fox J., Weisberg S. 3rd ed. Sage; 2019. An R Companion to Applied Regression.https://www.john-fox.ca/Companion/

Gaillochet C., Burko Y., Platre M.P., Zhang L., Simura J., Willige B.C., Kumar S.V., Ljung K., Chory J., Busch W. HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in. DevelopmentEngland. 2020;147 doi: 10.1242/dev.192625. PubMed DOI PMC

Ganguly A., Lee S.H., Cho M., Lee O.R., Yoo H., Cho H.-T. Differential auxin-transporting activities of PIN-FORMED proteins in Arabidopsis root hair cells. Plant Physiol. 2010;153:1046–1061. doi: 10.1104/pp.110.156505. PubMed DOI PMC

García-González J., Lacek J., Retzer K. Dissecting Hierarchies between Light, Sugar and Auxin Action Underpinning Root and Root Hair Growth. Plants. 2021;10 doi: 10.3390/plants10010111. PubMed DOI PMC

Giri J., Bhosale R., Huang G., Pandey B.K., Parker H., Zappala S., Yang J., Dievart A., Bureau C., Ljung K., et al. Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nat. Commun. 2018;9:1408. doi: 10.1038/s41467-018-03850-4. PubMed DOI PMC

Hartig F. CRAN; 2024. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/mixed) Regression Models (Version 0.4.7) [R Package]https://CRAN.R-project.org/package=DHARMa

Hayashi K.-I., Arai K., Aoi Y., Tanaka Y., Hira H., Guo R., Hu Y., Ge C., Zhao Y., Kasahara H., et al. The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 2021;12:6752. doi: 10.1038/s41467-021-27020-1. PubMed DOI PMC

Heisler M.G., Ohno C., Das P., Sieber P., Reddy G.V., Long J.A., Meyerowitz E.M. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 2005;15:1899–1911. doi: 10.1016/j.cub.2005.09.052. PubMed DOI

Hentrich M., Böttcher C., Düchting P., Cheng Y., Zhao Y., Berkowitz O., Masle J., Medina J., Pollmann S. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 2013;74:626–637. doi: 10.1111/tpj.12152. PubMed DOI PMC

Herburger K., Schoenaers S., Vissenberg K., Mravec J. Shank-localized cell wall growth contributes to Arabidopsis root hair elongation. Nat. Plants. 2022;8:1222–1232. doi: 10.1038/s41477-022-01259-y. PubMed DOI

Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI

Huang K.-L., Ma G.-J., Zhang M.-L., Xiong H., Wu H., Zhao C.-Z., Liu C.-S., Jia H.-X., Chen L., Kjorven J.O., et al. The ARF7 and ARF19 Transcription Factors Positively Regulate in Arabidopsis Roots. Plant Physiol. 2018;178:413–427. doi: 10.1104/pp.17.01713. PubMed DOI PMC

Ikeda Y., Men S., Fischer U., Stepanova A.N., Alonso J.M., Ljung K., Grebe M. Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat. Cell Biol. 2009;11:731–738. doi: 10.1038/ncb1879. PubMed DOI

Jia Z., Giehl R.F.H., Hartmann A., Estevez J.M., Bennett M.J., von Wirén N. A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Curr. Biol. 2023;33:3926–3941.e5. doi: 10.1016/j.cub.2023.08.040. PubMed DOI

Jia Z., Giehl R.F.H., von Wirén N. Nutrient-hormone relations: Driving root plasticity in plants. Mol. Plant. 2022;15:86–103. doi: 10.1016/j.molp.2021.12.004. PubMed DOI

Jones A.R., Kramer E.M., Knox K., Swarup R., Bennett M.J., Lazarus C.M., Leyser H.M.O., Grierson C.S. Auxin transport through non-hair cells sustains root-hair development. Nat. Cell Biol. 2009;11:78–84. doi: 10.1038/ncb1815. PubMed DOI PMC

Kai K., Horita J., Wakasa K., Miyagawa H. Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry. 2007;68:1651–1663. doi: 10.1016/j.phytochem.2007.04.030. PubMed DOI

Karas B., Amyot L., Johansen C., Sato S., Tabata S., Kawaguchi M., Szczyglowski K. Conservation of lotus and Arabidopsis basic helix-loop-helix proteins reveals new players in root hair development. Plant Physiol. 2009;151:1175–1185. doi: 10.1104/pp.109.143867. PubMed DOI PMC

Kasahara H. Current aspects of auxin biosynthesis in plants. Biosci. Biotechnol. Biochem. 2016;80:34–42. doi: 10.1080/09168451.2015.1086259. PubMed DOI

Kepinski S., Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005;435:446–451. doi: 10.1038/nature03542. PubMed DOI

Kowalczyk M., Sandberg G. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 2001;127:1845–1853. doi: 10.1104/pp.127.4.1845. PubMed DOI PMC

Lenth R. CRAN; 2024. Emmeans: Estimated Marginal Means, Aka Least-Squares Means (Version 1.10.5) [R Package]https://CRAN.R-project.org/package=emmeans

Liao Y., Smyth G.K., Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47 doi: 10.1093/nar/gkz114. PubMed DOI PMC

Ljung K. Auxin metabolism and homeostasis during plant development. DevelopmentEngland. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI

Löfke C., Dünser K., Scheuring D., Kleine-Vehn J. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. Elife. 2015;4 doi: 10.7554/eLife.05868. PubMed DOI PMC

Lopez L.E., Chuah Y.S., Encina F., Carignani Sardoy M., Berdion Gabarain V., Mutwil M., Estevez J.M. New molecular components that regulate the transcriptional hub in root hairs: coupling environmental signals with endogenous hormones to coordinate growth. J. Exp. Bot. 2024;75:4171–4179. doi: 10.1093/jxb/erad419. PubMed DOI

Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011;62:1757–1773. doi: 10.1093/jxb/erq412. PubMed DOI

Luschnig C., Gaxiola R.A., Grisafi P., Fink G.R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998;12:2175–2187. doi: 10.1101/gad.12.14.2175. PubMed DOI PMC

Mangano S., Denita-Juarez S.P., Choi H.-S., Marzol E., Hwang Y., Ranocha P., Velasquez S.M., Borassi C., Barberini M.L., Aptekmann A.A., et al. Molecular link between auxin and ROS-mediated polar growth. Proc. Natl. Acad. Sci. USA. 2017;114:5289–5294. doi: 10.1073/pnas.1701536114. PubMed DOI PMC

Mano Y., Nemoto K. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 2012;63:2853–2872. doi: 10.1093/jxb/ers091. PubMed DOI

Marzol E., Borassi C., Denita Juárez S.P., Mangano S., Estevez J.M. RSL4 Takes Control: Multiple Signals, One Transcription Factor. Trends Plant Sci. 2017;22:553–555. doi: 10.1016/j.tplants.2017.04.007. PubMed DOI

Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., Hanada A., Yaeno T., Shirasu K., Yao H., et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18512–18517. doi: 10.1073/pnas.1108434108. PubMed DOI PMC

Mellor N.L., Voß U., Janes G., Bennett M.J., Wells D.M., Band L.R. Auxin fluxes through plasmodesmata modify root-tip auxin distribution. DevelopmentEngland. 2020;147 doi: 10.1242/dev.181669. PubMed DOI PMC

Menand B., Yi K., Jouannic S., Hoffmann L., Ryan E., Linstead P., Schaefer D.G., Dolan L. An ancient mechanism controls the development of cells with a rooting function in land plants. Science (New York, N.Y.) 2007;316:1477–1480. doi: 10.1126/science.1142618. PubMed DOI

Nishimura T., Hayashi K.-I., Suzuki H., Gyohda A., Takaoka C., Sakaguchi Y., Matsumoto S., Kasahara H., Sakai T., Kato J.-I., et al. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J. 2014;77:352–366. doi: 10.1111/tpj.12399. PubMed DOI

Östin A., Kowalyczk M., Bhalerao R.P., Sandberg G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 1998;118:285–296. doi: 10.1104/pp.118.1.285. PubMed DOI PMC

Pacheco J.M., Mansilla N., Moison M., Lucero L., Gabarain V.B., Ariel F., Estevez J.M. The lncRNA and the transcription factor WRKY42 target common cell wall EXTENSIN encoding genes to trigger root hair cell elongation. Plant Signal. Behav. 2021;16 doi: 10.1080/15592324.2021.1920191. PubMed DOI PMC

Pacheco J.M., Ranocha P., Kasulin L., Fusari C.M., Servi L., Aptekmann A.A., Gabarain V.B., Peralta J.M., Borassi C., Marzol E., et al. Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nat. Commun. 2022;13:1310. doi: 10.1038/s41467-022-28833-4. PubMed DOI PMC

Pacheco J.M., Song L., Kuběnová L., Ovečka M., Berdion Gabarain V., Peralta J.M., Lehuedé T.U., Ibeas M.A., Ricardi M.M., Zhu S., et al. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. New Phytol. 2023;238:169–185. doi: 10.1111/nph.18723. PubMed DOI

Parry G., Delbarre A., Marchant A., Swarup R., Napier R., Perrot-Rechenmann C., Bennett M.J. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J. 2001;25:399–406. doi: 10.1046/j.1365-313x.2001.00970.x. PubMed DOI

Pěnčík A., Casanova-Sáez R., Pilarová V., Žukauskaite A., Pinto R., Micol J.L., Ljung K., Novák O. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 2018;69:2569–2579. doi: 10.1093/jxb/ery084. PubMed DOI PMC

Pěnčík A., Simonovik B., Petersson S.V., Henyková E., Simon S., Greenham K., Zhang Y., Kowalczyk M., Estelle M., Zazímalová E., et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell. 2013;25:3858–3870. doi: 10.1105/tpc.113.114421. PubMed DOI PMC

Pires N.D., Yi K., Breuninger H., Catarino B., Menand B., Dolan L. Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc. Natl. Acad. Sci. USA. 2013;110:9571–9576. doi: 10.1073/pnas.1305457110. PubMed DOI PMC

Porco S., Pěnčík A., Rashed A., Voß U., Casanova-Sáez R., Bishopp A., Golebiowska A., Bhosale R., Swarup R., Swarup K., et al. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113:11016–11021. doi: 10.1073/pnas.1604375113. PubMed DOI PMC

Posit Team . Posit Software, PBC; 2025. RStudio: Integrated Development Environment for R.https://www.posit.co/

Rademacher E.H., Möller B., Lokerse A.S., Llavata-Peris C.I., van den Berg W., Weijers D. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J. 2011;68:597–606. doi: 10.1111/j.1365-313X.2011.04710.x. PubMed DOI

Rigas S., Ditengou F.A., Ljung K., Daras G., Tietz O., Palme K., Hatzopoulos P. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytol. 2013;197:1130–1141. doi: 10.1111/nph.12092. PubMed DOI

Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. BioinformaticsEngland. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Sauer M., Robert S., Kleine-Vehn J. Auxin: simply complicated. J. Exp. Bot. 2013;64:2565–2577. doi: 10.1093/jxb/ert139. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Schoenaers S., Balcerowicz D., Breen G., Hill K., Zdanio M., Mouille G., Holman T.J., Oh J., Wilson M.H., Nikonorova N., et al. The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Curr. Biol. 2018;28:722–732.e6. doi: 10.1016/j.cub.2018.01.050. PubMed DOI

Shibata M., Favero D.S., Takebayashi R., Takebayashi A., Kawamura A., Rymen B., Hosokawa Y., Sugimoto K. Trihelix transcription factors GTL1 and DF1 prevent aberrant root hair formation in an excess nutrient condition. New Phytol. 2022;235:1426–1441. doi: 10.1111/nph.18255. PubMed DOI PMC

Shibata M., Sugimoto K. A gene regulatory network for root hair development. J. Plant Res. 2019;132:301–309. doi: 10.1007/s10265-019-01100-2. PubMed DOI PMC

Swarup R., Péret B. AUX/LAX family of auxin influx carriers-an overview. Front. Plant Sci. 2012;3:225. doi: 10.3389/fpls.2012.00225. PubMed DOI PMC

Shibata M., Breuer C., Kawamura A., Clark N.M., Rymen B., Braidwood L., Morohashi K., Busch W., Benfey P.N., Sozzani R., et al. GTL1 and DF1 regulate root hair growth through transcriptional repression of in. DevelopmentEngland. 2018;145 doi: 10.1242/dev.159707. PubMed DOI PMC

Swarup R., Perry P., Hagenbeek D., Van Der Straeten D., Beemster G.T.S., Sandberg G., Bhalerao R., Ljung K., Bennett M.J. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 2007;19:2186–2196. doi: 10.1105/tpc.107.052100. PubMed DOI PMC

Takeda S., Gapper C., Kaya H., Bell E., Kuchitsu K., Dolan L. Local positive feedback regulation determines cell shape in root hair cells. Science (New York, N.Y.) 2008;319:1241–1244. doi: 10.1126/science.1152505. PubMed DOI

Tam Y.Y., Epstein E., Normanly J. Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol. 2000;123:589–596. doi: 10.1104/pp.123.2.589. PubMed DOI PMC

Tivendale N.D., Ross J.J., Cohen J.D. The shifting paradigms of auxin biosynthesis. Trends Plant Sci. 2014;19:44–51. doi: 10.1016/j.tplants.2013.09.012. PubMed DOI

Urzúa Lehuedé T., Berdion Gabarain V., Ibeas M.A., Salinas-Grenet H., Achá-Escobar R., Moyano T.C., Ferrero L., Núñez-Lillo G., Pérez-Díaz J., Perotti M.F., et al. Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment. New Phytol. 2025;245:2645–2664. doi: 10.1111/nph.20406. PubMed DOI

Velasquez S.M., Barbez E., Kleine-Vehn J., Estevez J.M. Auxin and Cellular Elongation. Plant Physiol. 2016;170:1206–1215. doi: 10.1104/pp.15.01863. PubMed DOI PMC

Wang B., Chu J., Yu T., Xu Q., Sun X., Yuan J., Xiong G., Wang G., Wang Y., Li J. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2015;112:4821–4826. doi: 10.1073/pnas.1503998112. PubMed DOI PMC

Wisniewska J., Xu J., Seifertová D., Brewer P.B., Ruzicka K., Blilou I., Rouquié D., Benková E., Scheres B., Friml J. Polar PIN localization directs auxin flow in plants. Science (New York, N.Y.) 2006;312:883. doi: 10.1126/science.1121356. PubMed DOI

Won C., Shen X., Mashiguchi K., Zheng Z., Dai X., Cheng Y., Kasahara H., Kamiya Y., Chory J., Zhao Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18518–18523. doi: 10.1073/pnas.1108436108. PubMed DOI PMC

Woodward A.W., Bartel B. Auxin: regulation, action, and interaction. Ann. Bot. 2005;95:707–735. doi: 10.1093/aob/mci083. PubMed DOI PMC

Yang H., Murphy A.S. Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J. 2009;59:179–191. doi: 10.1111/j.1365-313X.2009.03856.x. PubMed DOI

Yang Y., Hammes U.Z., Taylor C.G., Schachtman D.P., Nielsen E. High-affinity auxin transport by the AUX1 influx carrier protein. Curr. Biol. 2006;16:1123–1127. doi: 10.1016/j.cub.2006.04.029. PubMed DOI

Yi K., Menand B., Bell E., Dolan L. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat. Genet. 2010;42:264–267. doi: 10.1038/ng.529. PubMed DOI

Yu G., Wang L.-G., Han Y., He Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC

Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant. 2012;5:334–338. doi: 10.1093/mp/ssr104. PubMed DOI PMC

Zhao Y., Christensen S.K., Fankhauser C., Cashman J.R., Cohen J.D., Weigel D., Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science (New York, N.Y.) 2001;291:306–309. doi: 10.1126/science.291.5502.306. PubMed DOI

Zhu S., Estévez J.M., Liao H., Zhu Y., Yang T., Li C., Wang Y., Li L., Liu X., Pacheco J.M., et al. The RALF1-FERONIA Complex Phosphorylates eIF4E1 to Promote Protein Synthesis and Polar Root Hair Growth. Mol. Plant. 2020;13:698–716. doi: 10.1016/j.molp.2019.12.014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...