Transcriptomic analysis of Chinese yam (Dioscorea polystachya Turcz.) variants indicates brassinosteroid involvement in tuber development

. 2023 ; 10 () : 1112793. [epub] 20230505

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37215221

Dioscorea is an important but underutilized genus of flowering plants that grows predominantly in tropical and subtropical regions. Several species, known as yam, develop large underground tubers and aerial bulbils that are used as food. The Chinese yam (D. polystachya Turcz.) is one of the few Dioscorea species that grows well in temperate regions and has been proposed as a climate-resilient crop to enhance food security in Europe. However, the fragile, club-like tubers are unsuitable for mechanical harvesting, which is facilitated by shorter and thicker storage organs. Brassinosteroids (BRs) play a key role in plant cell division, cell elongation and proliferation, as well as in the gravitropic response. We collected RNA-Seq data from the head, middle and tip of two tuber shape variants: F60 (long, thin) and F2000 (short, thick). Comparative transcriptome analysis of F60 vs. F2000 revealed 30,229 differentially expressed genes (DEGs), 1,393 of which were differentially expressed in the growing tip. Several DEGs are involved in steroid/BR biosynthesis or signaling, or may be regulated by BRs. The quantification of endogenous BRs revealed higher levels of castasterone (CS), 28-norCS, 28-homoCS and brassinolide in F2000 compared to F60 tubers. The highest BR levels were detected in the growing tip, and CS was the most abundant (439.6 ± 196.41 pmol/g in F2000 and 365.6 ± 112.78 pmol/g in F60). Exogenous 24-epi-brassinolide (epi-BL) treatment (20 nM) in an aeroponic system significantly increased the width-to-length ratio (0.045 ± 0.002) compared to the mock-treated plants (0.03 ± 0.002) after 7 weeks, indicating that exogenous epi-BL produces shorter and thicker tubers. In this study we demonstrate the role of BRs in D. polystachya tuber shape, providing insight into the role of plant hormones in yam storage organ development. We found that BRs can influence tuber shape in Chinese yam by regulating the expression of genes involved cell expansion. Our data can help to improve the efficiency of Chinese yam cultivation, which could provide an alternative food source and thus contribute to future food security in Europe.

Zobrazit více v PubMed

Caddick LR, Wilkin P, Rudall PJ, Hedderson TAJ, Chase MW. Yams reclassified: a recircumscription of Dioscoreaceae and Dioscoreales. Taxon. (2002) 51:103–14. doi: 10.2307/1554967 DOI

Wilkin P, Schols P, Chase MW, Chayamarit K, Furness CA, Huysmans S, et al. . A plastid gene phylogeny of the yam genus, Dioscorea: roots, fruits and Madagascar. Syst Bot. (2005) 30:736–49. doi: 10.1600/036364405775097879 DOI

Hsu KM, Tsai JL, Chen MY, Ku HM, Liu SC. Molecular phylogeny of Dioscorea (Dioscoreaceae) in east and Southeast Asia. Blumea J Plant Taxon Plant Geogr. (2013) 58:21–7. doi: 10.3767/000651913X669022 DOI

Ding Z, Gilbert MG. Dioscoreaceae. Flora China. (2000) 24:276–96.

Asiedu R, Sartie A. Crops that feed the world 1. Yams. Food Secur. (2010) 2:305–15. doi: 10.1007/s12571-010-0085-0 DOI

Epping J, Laibach N. An underutilized orphan tuber crop—Chinese yam: a review. Planta. (2020) 252:1–19. doi: 10.1007/s00425-020-03458-3 PubMed DOI PMC

Coursey DG. Yams – An account of the nature, origins, cultivation and utilisation of the useful members of the dioscoreaceae. London: Longmans; (1967).

POWO – Plants of the World Online . Facilitated by the Royal Botanic Gardens, Kew. (2022). Available at: http://www.plantsoftheworldonline.org/

Lawton JR, Lawton J. The development of the tuber in seedlings of five species of Dioscorea from Nigeria. Bot J Linn Soc. (1969) 62:223–32. doi: 10.1111/j.1095-8339.1969.tb01966.x DOI

Wu Z-G, Jiang W, Nitin M, Bao X-Q, Chen S-L, Tao Z-M. Characterizing diversity based on nutritional and bioactive compositions of yam germplasm (Dioscorea spp.) commonly cultivated in China. J Food Drug Anal. (2016) 24:367–75. doi: 10.1016/j.jfda.2015.12.003, PMID: PubMed DOI PMC

Martin FW, Ortiz S. Chromosome numbers and behavior in some species of Dioscorea. Cytologia. (1963) 28:96–101. doi: 10.1508/cytologia.28.96 DOI

Shan JJ, Ling L, Goel V, Qi G, Wang S. Synergistic pharamceutical composition, method of making same and use of same. U.S. Patent No. 8,642,094. Washington, DC: Patent and Trademark Office; (2014).

Zagoya JCD, Laguna J, Guzmán-García J. Studies on the regulation of cholesterol metabolism by the use of the structural analogue, diosgenin. Biochem Pharmacol. (1971) 20:3473–80. doi: 10.1016/0006-2952(71)90452-7, PMID: PubMed DOI

Hou W, Chen H, Lin Y. Dioscorins, the major tuber storage proteins of yam (Dioscorea batatas Decne), with dehydroascorbate reductase and monodehydroascorbate reductase activities. Plant Sci. (1999) 149:151–6. doi: 10.1016/S0168-9452(99)00152-1 DOI

Hou WC, Lee MH, Chen HJ, Liang WL, Han CH, Liu YW, et al. . Antioxidant activities of Dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber. J Agric Food Chem. (2001) 49:4956–60. doi: 10.1021/jf010606m, PMID: PubMed DOI

Xue YL, Miyakawa T, Sawano Y, Tanokura M. Cloning of genes and enzymatic characterizations of novel dioscorin isoforms from Dioscorea japonica. Plant Sci. (2012) 183:14–9. doi: 10.1016/j.plantsci.2011.10.021, PMID: PubMed DOI

Chen YT, Kao WT, Lin KW. Effects of pH on the total phenolic compound, antioxidative ability and the stability of dioscorin of various yam cultivars. Food Chem. (2008) 107:250–7. doi: 10.1016/j.foodchem.2007.08.017 DOI

Harvey PJ, Boulter D. Isolation and characterization of the storage protein of yam tubers (Dioscorea rotundata). Phytochemistry. (1983) 22:1687–93. doi: 10.1016/S0031-9422(00)80252-6 DOI

Mignouna HD, Abang MM, Asiedu R. Harnessing modern biotechnology for tropical tuber crop improvement: yam (Dioscorea spp.) molecular breeding. African J Biotechnol. (2003) 2:478–85. doi: 10.5897/ajb2003.000-1097 DOI

Darkwa K, Olasanmi B, Asiedu R, Asfaw A. Review of empirical and emerging breeding methods and tools for yam (Dioscorea spp.) improvement: status and prospects. Plant Breed. (2020) 139:474–97. doi: 10.1111/pbr.12783 DOI

Babil P, Kondo S, Iwata H, Kushikawa S, Shiwachi H. Intra-specific ploidy variations in cultivated Chinese yam (Dioscorea polystachya Turcz.). Trop Agr Dev. (2013) 57:101–7. doi: 10.11248/jsta.57.101 DOI

Sugihara Y, Kudoh A, Oli MT, Takagi H, Natsume S, Shimizu M, et al. . Population genomics of yams: evolution and domestication of Dioscorea species In: Rajora OP, editor. Population genomics: crop plants. Cham: Springer International Publishing; (2021). 1–28.

Onwueme IC. Tuber physiology in yams (Dioscorea Spp) and its agricultural implications In: . International symposium on tropical root and tuber crops (1979). 235–43.

Coursey DG. Yam storage-I: a review of yam storage practices and of information on storage losses. J Stored Prod Res. (1967) 2:229–44. doi: 10.1016/0022-474X(67)90070-7 DOI

Mueller TC, Robinson DK, Beeler JE, Main CL, Soehn D, Johnson K. Dioscorea oppositifolia L. phenotypic evaluations and comparison of control strategies. Weed Technol. (2003) 17:705–10. doi: 10.1614/wt-02-116 DOI

Kawasaki M, Taniguchi M, Miyake H. Dynamics of amyloplast sedimentation in growing yam tubers and its possible role in Graviperception. Plant Prod Sci. (2008) 11:393–7. doi: 10.1626/pps.11.393 DOI

Lang GA. Dormancy: a new universal terminology. HortScience. (1987) 22:817–20. doi: 10.21273/hortsci.22.5.817 DOI

Craufurd P, Summerfield R, Asiedu R, Prasad PVV. Dormancy of yams. Expl Agric. (2001) 37:147–81. doi: 10.1017/S001447970100206X DOI

Ile EI, Craufurd PQ, Battey NH, Asiedu R. Phases of dormancy in yam tubers (Dioscorea rotundata). Ann Bot. (2006) 97:497–504. doi: 10.1093/aob/mcl002, PMID: PubMed DOI PMC

Fridman Y, Savaldi-Goldstein S. Brassinosteroids in growth control: how, when and where. Plant Sci. (2013) 209:24–31. doi: 10.1016/j.plantsci.2013.04.002, PMID: PubMed DOI

Nolan TM, Vukasinović N, Liu D, Russinova E, Yin Y. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell. (2020) 32:295–318. doi: 10.1105/tpc.19.00335, PMID: PubMed DOI PMC

Rehman A, Shahzad B, Haider FU, Ibraheem Ahmed HA, Lee D-J, Im SY, et al. . An introduction to brassinosteroids: history, biosynthesis, and chemical diversity In: Ahammed GJ, Sharma A, Yu J, editors. Brassinosteroids in plant developmental biology and stress tolerance. Amsterdam: Elsevier Inc; (2022). 1–14.

Joo S-H, Kim T-W, Son S-H, Lee WS, Yokota T, Kim S-K. Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. J Exp Bot. (2012) 63:1823–33. doi: 10.1093/jxb/err354, PMID: PubMed DOI PMC

Tarkowská D, Novák O, Oklestkova J, Strnad M. The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESI–MS/MS. Anal Bioanal Chem. (2016) 408:6799–812. doi: 10.1007/s00216-016-9807-2, PMID: PubMed DOI

Bajguz A, Chmur M, Gruszka D. Comprehensive overview of the Brassinosteroid biosynthesis pathways: substrates, products, inhibitors, and connections. Front Plant Sci. (2020) 11:1034. doi: 10.3389/fpls.2020.01034, PMID: PubMed DOI PMC

Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, et al. . The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol. (2006) 140:548–57. doi: 10.1104/pp.105.067918, PMID: PubMed DOI PMC

Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, et al. . Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. (1999) 121:743–52. doi: 10.1104/pp.121.3.743, PMID: PubMed DOI PMC

Fujtia S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, Fujioka S, et al. . Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27 C28 and C29 sterols. Plant J. (2006) 45:765–74. doi: 10.1111/j.1365-313X.2005.02639.x, PMID: PubMed DOI

Li J, Nagpal P, Vitart V, McMorris TC, Chory J. A role for Brassinosteroids in light-dependent development of Arabidopsis. Science. (1996) 272:398–401. doi: 10.1126/science.272.5260.398, PMID: PubMed DOI

Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cells. (1997) 90:929–38. doi: 10.1016/s0092-8674(00)80357-8, PMID: PubMed DOI

Yin Y, Wang Z-Y, Mora-Garcia S, Li J, Yoshida S, Asami T, et al. . BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cells. (2002) 109:181–91. doi: 10.1016/S0092-8674(02)00721-3, PMID: PubMed DOI

Wang Z-Y, Nakano T, Gendron J, He J, Chen M, Vafeados D, et al. . Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell. (2002) 2:505–13. doi: 10.1016/s1534-5807(02)00153-3, PMID: PubMed DOI

Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, et al. . PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol. (2011) 13:124–31. doi: 10.1038/ncb2151, PMID: PubMed DOI PMC

Clouse SD, Hall AF, Langford M, McMorris TC, Baker ME. Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana. J Plant Growth Regul. (1993) 12:61–6. doi: 10.1007/BF00193234 DOI

Hu Y, Xia S, Su Y, Wang H, Luo W, Su S, et al. . Brassinolide increases potato root growth in vitro in a dose-dependent way and alleviates salinity stress. Biomed Res Int. (2016) 2016:1–11. doi: 10.1155/2016/8231873, PMID: PubMed DOI PMC

Kim S-K, Chang SC, Lee EJ, Chung WS, Kim Y-S, Hwang S, et al. . Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol. (2000) 123:997–1004. doi: 10.1104/pp.123.3.997, PMID: PubMed DOI PMC

González-García MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-García S, Russinova E, et al. . Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development. (2011) 138:849–59. doi: 10.1242/dev.057331, PMID: PubMed DOI

Yokota T. The structure, biosynthesis and function of brassinosteriods. Trends Plant Sci. (1997) 2:137–43. doi: 10.1016/S1360-1385(97)01017-0 DOI

Wendeborn S, Lachia M, Jung PMJ, Leipner J, Brocklehurst D, De Mesmaeker A, et al. . Biological activity of brassinosteroids – direct comparison of known and new analogs in planta. Helv Chim Acta. (2017) 100:e1600305. doi: 10.1002/hlca.201600305 DOI

Fujioka S, Noguchi T, Takatsuto S, Yoshida S. Activity of brassinosteroids in the dwarf rice lamina inclination bioassay. Phytochemistry. (1998) 49:1841–8. doi: 10.1016/S0031-9422(98)00412-9 DOI

Kim BK, Fujioka S, Takatsuto S, Tsujimoto M, Choe S. Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochem Biophys Res Commun. (2008) 374:614–9. doi: 10.1016/j.bbrc.2008.07.073 PubMed DOI

Kanwar MK, Bajguz A, Zhou J, Bhardwaj R. Analysis of brassinosteroids in plants. J Plant Growth Regul. (2017) 36:1002–30. doi: 10.1007/s00344-017-9732-4 DOI

Chory J, Nagpal P, Peto CA. Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell. (1991) 3:445–59. doi: 10.2307/3869351 PubMed DOI PMC

Huang S, Zheng C, Zhao Y, Li Q, Liu J, Deng R, et al. . RNA interference knockdown of the brassinosteroid receptor BRI1 in potato (Solanum tuberosum L.) reveals novel functions for brassinosteroid signaling in controlling tuberization. Sci Hortic. (2021) 290:110516. doi: 10.1016/j.scienta.2021.110516 DOI

Gong M, Luo H, Wang A, Zhou Y, Huang W, Zhu P, et al. . Phytohormone profiling during tuber development of Chinese yam by ultra-high performance liquid chromatography–triple quadrupole tandem mass spectrometry. J Plant Growth Regul. (2017) 36:362–73. doi: 10.1007/s00344-016-9644-8 DOI

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. . Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. (2011) 29:644–52. doi: 10.1038/nbt.1883 PubMed DOI PMC

Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. (2014) 15:1–14. doi: 10.1186/s13059-014-0410-6 PubMed DOI PMC

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. (2015) 12:59–60. doi: 10.1038/nmeth.3176 PubMed DOI

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. . BLAST+: architecture and applications. BMC Bioinformat. (2009) 10:1–9. doi: 10.1186/1471-2105-10-421 PubMed DOI PMC

Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. (2011) 39:W29–37. doi: 10.1093/nar/gkr367 PubMed DOI PMC

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. (2007) 35:W182–5. doi: 10.1093/nar/gkm321 PubMed DOI PMC

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. (2005) 21:3674–6. doi: 10.1093/bioinformatics/bti610 PubMed DOI

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. (2011) 12:323. doi: 10.1186/1471-2105-12-323 PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

Benjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc Ser B. (1995) 57:289–300. doi: 10.2307/2346101 DOI

Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. (2006) 22:1600–7. doi: 10.1093/bioinformatics/btl140 PubMed DOI

Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. (2010) 11:R14. doi: 10.1186/gb-2010-11-2-r14 PubMed DOI PMC

Wu J, Mao X, Cai T, Luo J, Wei L. KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res. (2006) 34:W720–4. doi: 10.1093/nar/gkl167 PubMed DOI PMC

Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. . KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. (2011) 39:W316–22. doi: 10.1093/nar/gkr483 PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. (2001) 25:402–8. doi: 10.1006/meth.2001.1262 PubMed DOI

Oklestkova J, Tarkowská D, Eyer L, Elbert T, Marek A, Smržová Z, et al. . Immunoaffinity chromatography combined with tandem mass spectrometry: a new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta. (2017) 170:432–40. doi: 10.1016/j.talanta.2017.04.044 PubMed DOI

Peng B, Zhang Y, Sun X, Li M, Xue J, Hang Y. Genetic relationship and identification of Dioscorea polystachya cultivars accessed by ISAP and SCAR markers. Arch Biol Sci. (2017) 69:277–84. doi: 10.2298/ABS150717098P DOI

Zhou Y, Luo S, Hameed S, Xiao D, Zhan J, Wand A, et al. . Integrated mRNA and miRNA transcriptome analysis reveals a regulatory network for tuber expansion in Chinese yam (Dioscorea opposita). BMC Genomics. (2020) 21:117. doi: 10.1186/s12864-020-6492-5 PubMed DOI PMC

Li J, Liang Q, Li C, Liu M, Zhang Y. Comparative transcriptome analysis identifies putative genes involved in dioscin biosynthesis in Dioscorea zingiberensis. Molecules. (2018) 23:1–13. doi: 10.3390/molecules23020454 PubMed DOI PMC

Shan J, Song W, Zhou J, Wang X, Xie C, Gao X, et al. . Transcriptome analysis reveals novel genes potentially involved in photoperiodic tuberization in potato. Genomics. (2013) 102:388–96. doi: 10.1016/j.ygeno.2013.07.001 PubMed DOI

Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, et al. . Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics. (2013) 14:460. doi: 10.1186/1471-2164-14-460 PubMed DOI PMC

Zhang Y-F, Li G-L, Wang X-F, Sun Y-Q, Zhang S-Y. Transcriptomic profiling of taproot growth and sucrose accumulation in sugar beet (Beta vulgaris L.) at different developmental stages. PLoS One. (2017) 12:e0175454–28. doi: 10.1371/journal.pone.0175454, PMID: PubMed DOI PMC

Douglas CJ. Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci. (1996) 1:171–8. doi: 10.1016/1360-1385(96)10019-4 DOI

Xu L, Wang J, Lei M, Li L, Fu Y, Wang Z, et al. . Transcriptome analysis of storage roots and fibrous roots of the traditional medicinal herb Callerya speciosa (champ.) ScHot. PLoS One. (2016) 11:e0160338. doi: 10.1371/journal.pone.0160338, PMID: PubMed DOI PMC

Sun P, Xiao X, Duan L, Guo Y, Qi J, Liao D, et al. . Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa. Front Plant Sci. (2015) 6:396. doi: 10.3389/fpls.2015.00396, PMID: PubMed DOI PMC

Sun M, Zhu ZP, Yu JX, Wu KX, Guo YX, Shen M, et al. . Transcriptomic and physiological analysis reveal phytohormone and phenylpropanoid biosynthesis in root of Cynanchum auriculatum. Plant Growth Regul. (2023). doi: 10.1007/s10725-022-00953-3 DOI

Rohman A, Dijkstra BW, Puspaningsih NNT. β-Xylosidases: structural diversity, catalytic mechanism, and inhibition by monosaccharides. Int J Mol Sci. (2019) 20:5524. doi: 10.3390/ijms20225524 PubMed DOI PMC

Klyosov AA. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry. (1990) 29:10577–85. doi: 10.1021/bi00499a001 PubMed DOI

Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, et al. . Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature. (2011) 478:119–22. doi: 10.1038/nature10431 PubMed DOI

Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, et al. . Activation tagging of the floral inducer FT. Science. (1999) 286:1962–5. doi: 10.1126/science.286.5446.1962 PubMed DOI

Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D. Phytochromes: photosensory perception and signal transduction. Science. (1995) 268:675–80. doi: 10.1126/science.7732376 PubMed DOI

Allen T, Ingles PJ, Praekelt U, Smith H, Whitelam GC. Phytochrome-mediated agravitropism in Arabidopsis hypocotyls requires GIL1 and confers a fitness advantage. Plant J. (2006) 46:641–8. doi: 10.1111/j.1365-313X.2006.02727.x PubMed DOI

Sojikul P, Saithong T, Kalapanulak S, Pisuttinusart N, Limsirichaikul S, Tanaka M, et al. . Genome-wide analysis reveals phytohormone action during cassava storage root initiation. Plant Mol Biol. (2015) 88:531–43. doi: 10.1007/s11103-015-0340-z PubMed DOI

Leyser O. Auxin signaling. Plant Physiol. (2018) 176:465–79. doi: 10.1104/pp.17.00765 PubMed DOI PMC

Lin W, Zhou X, Tang W, Takahashi K, Pan X, Dai J, et al. . TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature. (2021) 599:278–82. doi: 10.1038/s41586-021-03976-4 PubMed DOI PMC

Xu X, Van Lammeren AAM, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. (1998) 117:575–84. doi: 10.1104/pp.117.2.575 PubMed DOI PMC

Thomas SG, Phillips AL, Hedden P. Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A. (1999) 96:4698–703. doi: 10.1073/pnas.96.8.4698 PubMed DOI PMC

Hibara K, Karim MR, Takada S, Taoka K, Furutani M, Aida M, et al. . Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell. (2006) 18:2946–57. doi: 10.1105/tpc.106.045716 PubMed DOI PMC

Thornton LE, Peng H, Neff MM. Rice CYP734A cytochrome P450s inactivate brassinosteroids in Arabidopsis. Planta. (2011) 234:1151–62. doi: 10.1007/s00425-011-1464-2 PubMed DOI

Cuadrado-Pedetti MB, Rauschert I, Sainz MM, Botella MA, Borsani O, Sotelo-Silveira M. The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 gene is involved in anisotropic root growth during osmotic stress adaptation. Genes. (2021) 12:236. doi: 10.3390/genes12020236 PubMed DOI PMC

Amorim-Silva V, García-Moreno Á, Castillo AG, Lakhssassi N, Del Valle AE, Pérez-Sancho J, et al. . TTL proteins scaffold brassinosteroid signaling components at the plasma membrane to optimize signal transduction in Arabidopsis. Plant Cell. (2019) 31:1807–28. doi: 10.1105/tpc.19.00150 PubMed DOI PMC

Nemhauser JL, Chory J. BRing it on: New insights into the mechanism of brassinosteroid action. J Exp Bot. (2004) 55:265–70. doi: 10.1093/jxb/erh024 PubMed DOI

Zheng L, Gao C, Zhao C, Zhang L, Han M, An N, et al. . Effects of brassinosteroid associated with auxin and gibberellin on apple tree growth and gene expression patterns. Hortic Plant J. (2019) 5:93–108. doi: 10.1016/j.hpj.2019.04.006 DOI

Zhao B, Li J. Regulation of brassinosteroid biosynthesis and inactivation. J Integr Plant Biol. (2012) 54:746–59. doi: 10.1111/j.1744-7909.2012.01168.x PubMed DOI

Jeong DH, Lee S, Kim SL, Hwang I, An G. Regulation of brassinosteroid responses by Phytochrome B in rice. Plant Cell Environ. (2007) 30:590–9. doi: 10.1111/j.1365-3040.2007.01644.x PubMed DOI

Zhu WJ, Chen F, Li PP, Chen YM, Chen M, Yang Q. Identification and characterization of brassinosteroid biosynthesis and signaling pathway genes in Solanum tuberosum. Russ J Plant Physiol. (2019) 66:628–36. doi: 10.1134/S1021443719040186 DOI

Müssig C, Fischer S, Altmann T. Brassinosteroid-regulated gene expression. Plant Physiol. (2002) 129:1241–51. doi: 10.1104/pp.011003 PubMed DOI PMC

Xiao Y, Liu D, Zhang G, Tong H, Chu C. Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in Rice. Front Plant Sci. (2017) 8:1698. doi: 10.3389/fpls.2017.01698 PubMed DOI PMC

Gendron JM, Liu JS, Fan M, Bai MY, Wenkel S, Springer PS, et al. . Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proc Natl Acad Sci U S A. (2012) 109:21152–7. doi: 10.1073/pnas.1210799110 PubMed DOI PMC

Zhou Y, Li Y, Gong M, Qin F, Xiao D, Zhan J, et al. . Regulatory mechanism of GA3 on tuber growth by DELLA-dependent pathway in yam (Dioscorea opposita). Plant Mol Biol. (2021) 106:433–48. doi: 10.1007/s11103-021-01163-7 PubMed DOI

Lebot V. Tropical root and tuber crops: An overview In: . Soils, plant growth and crop production, vol. 2 (2010)

Jiang Y, Liao Q, Zou Y, Liu Y, Lan J. Transcriptome analysis reveals the genetic basis underlying the biosynthesis of volatile oil, gingerols, and diarylheptanoids in ginger (Zingiber officinale Rosc.). Bot Stud. (2017) 58:41. doi: 10.1186/s40529-017-0195-5, PMID: PubMed DOI PMC

Ramirez-Ahumada Del CM, Timmermann BN, Gang DR. Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases. Phytochemistry. (2006) 67:2017–29. doi: 10.1016/j.phytochem.2006.06.028, PMID: PubMed DOI

Fritzemeier KH, Kindl H, Schlösser E. Two different pathways leading to phenanthrenes and 9,10-dihydrophenanthrenes of the genus Dioscorea. Zeitschrift fur Naturforsch. (1984) 39:217–21. doi: 10.1515/znc-1984-3-403 DOI

Jeong SY, Kim M, Park EK, Kim JS, Hahn D, Bae JS. Inhibitory functions of novel compounds from Dioscorea batatas Decne Peel on HMGB1-mediated septic responses. Biotechnol Bioprocess Eng. (2020) 25:1–8. doi: 10.1007/s12257-019-0382-1 DOI

Liu Q, Luo L, Zheng L. Lignins: biosynthesis and biological functions in plants. Int J Mol Sci. (2018) 19:335. doi: 10.3390/ijms19020335 PubMed DOI PMC

Tribble CM, Martínez-Gómez J, Alzate-Guarín F, Rothfels CJ, Specht CD. Comparative transcriptomics of a monocotyledonous geophyte reveals shared molecular mechanisms of underground storage organ formation. Evol Dev. (2021) 23:e12369. doi: 10.1111/ede.12369 PubMed DOI

Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell. (2010) 22:594–605. doi: 10.1105/tpc.109.072892 PubMed DOI PMC

Dutt S, Manjul AS, Raigond P, Singh B, Siddappa S, Bhardwaj V, et al. . Key players associated with tuberization in potato: potential candidates for genetic engineering. Crit Rev Biotechnol. (2017) 37:942–57. doi: 10.1080/07388551.2016.1274876 PubMed DOI

Nakamichi N, Kita M, Niinuma K, Ito S, Yamashino T, Mizoguchi T, et al. . Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol. (2007) 48:822–32. doi: 10.1093/pcp/pcm056 PubMed DOI

Hayama R, Sarid-Krebs L, Richter R, Fernández V, Jang S, Coupland G. PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length. EMBO J. (2017) 36:904–18. doi: 10.15252/embj.201693907 PubMed DOI PMC

Niu Y, Li G, Jian Y, Duan S, Liu J, Xu J, et al. . Genes related to circadian rhythm are involved in regulating tuberization time in potato. Hortic Plant J. (2022) 8:369–80. doi: 10.1016/j.hpj.2021.09.003 DOI

Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, An G, et al. . Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant. (2013) 6:1877–88. doi: 10.1093/mp/sst088 PubMed DOI

Nakamichi N. Adaptation to the local environment by modifications of the photoperiod response in crops. Plant Cell Physiol. (2015) 56:594–604. doi: 10.1093/pcp/pcu181 PubMed DOI PMC

Abelenda JA, Navarro C, Prat S. Flowering and tuberization a tale of two nightshades. Trends Plant. (2014) 19:115–22. doi: 10.1016/j.tplants.2013.09.010 PubMed DOI

Kloosterman B, Abelenda JA, Gomez MDMC, Oortwijn M, De Boer JM, Kowitwanich K, et al. . Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature. (2013) 495:246–50. doi: 10.1038/nature11912 PubMed DOI

Abelenda JA, Cruz-Oró E, Franco-Zorrilla JM, Prat S. Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor. Curr Biol. (2016) 26:872–81. doi: 10.1016/j.cub.2016.01.066 PubMed DOI

Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature. (2001) 410:1116–20. doi: 10.1038/35074138 PubMed DOI

Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cells. (1995) 80:847–57. doi: 10.1016/0092-8674(95)90288-0 PubMed DOI

Laudert D, Pfannschmidt U, Lottspeich F, Holländer-Czytko H, Weiler EW. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol Biol. (1996) 31:323–35. doi: 10.1007/BF00021793 PubMed DOI

Von Malek B, Van Der Graaff E, Schneitz K, Keller B. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta. (2002) 216:187–92. doi: 10.1007/s00425-002-0906-2 PubMed DOI

Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell. (2004) 16:2117–27. doi: 10.1105/tpc.104.023549 PubMed DOI PMC

Staswick PE, Tiryaki I, Rowe ML. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell. (2002) 14:1405–15. doi: 10.1105/tpc.000885 PubMed DOI PMC

Koda Y, Kikuta Y. Possible involvement of jasmonic acid in tuberization of yam plants. Plant Cell Physiol. (1991) 32:629–33. doi: 10.1093/oxfordjournals.pcp.a078125 DOI

Pelacho AM, Mingo-Castel AM. Jasmonic acid induces tuberization of potato stolons cultured in vitro. Plant Physiol. (1991) 97:1253–5. doi: 10.1104/pp.97.3.1253 PubMed DOI PMC

Yoshihara T, Omer ESA, Koshino H, Sakamura S, Kikuta Y, Koda Y. Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem. (1989) 53:2835–7. doi: 10.1080/00021369.1989.10869712 DOI

Jasik J, Mantell SH. Effects of jasmonic acid and its methylester on in vitro microtuberisation of three food yam (Dioscorea) species. Plant Cell Rep. (2000) 19:863–7. doi: 10.1007/s002990000207 PubMed DOI

Bazabakana R, Wattiez R, Baucher M, Diallo B, Jaziri M. Effect of jasmonic acid on developmental morphology during in vitro tuberization of Dioscorea alata (L.). Plant Growth Regul. (2003) 40:229–37. doi: 10.1023/A:1025087111148 DOI

Kim SK, Kim JT, Jang SW, Lee SC, Lee BH, Lee IJ. Exogenous effect of gibberellins and jasmonate on tuber enlargement of Dioscorea opposita. Agron Res. (2005) 3:39–44.

Abdala G, Castro G, Miersch O, Pearce D. Changes in jasmonate and gibberellin levels during development of potato plants (Solanum tuberosum). Plant Growth Regul. (2002) 36:121–6. doi: 10.1023/A:1015065011536 DOI

Ovono PO, Kevers C, Dommes J. Tuber formation and growth of Dioscorea cayenensis-D. rotundata complex: interactions between exogenous and endogenous jasmonic acid and polyamines. Plant Growth Regul. (2009) 60:247–53. doi: 10.1007/s10725-009-9441-5 DOI

Koda Y. Possible involvement of jasmonates in various morphogenic events. Physiol Plant. (1997) 100:639–46. doi: 10.1111/j.1399-3054.1997.tb03070.x DOI

Sarkar D, Pandey SK, Sharma S. Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum) tuber formation in vitro. Plant Cell Tissue Organ Cult. (2006) 87:285–95. doi: 10.1007/s11240-006-9166-3 DOI

Begum S, Jing S, Yu L, Sun X, Wang E, Abu Kawochar M, et al. . Modulation of JA signalling reveals the influence of StJAZ1-like on tuber initiation and tuber bulking in potato. Plant J. (2022) 109:952–64. doi: 10.1111/tpj.15606 PubMed DOI

Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, et al. . The JAZ family of repressors is the missing link in jasmonate signalling. Nature. (2007) 448:666–71. doi: 10.1038/nature06006 PubMed DOI

Hoo SC, Howe GA. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell. (2009) 21:131–45. doi: 10.1105/tpc.108.064097 PubMed DOI PMC

Sohn HB, Lee HY, Seo JS, Jung C, Jeon JH, Kim JH, et al. . Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato. Plant Biotechnol Rep. (2011) 5:27–34. doi: 10.1007/s11816-010-0153-0 DOI

Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, et al. . Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci U S A. (2001) 98:4788–93. doi: 10.1073/pnas.081557298 PubMed DOI PMC

Vandenbussche F, Callebert P, Zadnikova P, Benkova E, Van Der Straeten D. Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am J Bot. (2013) 100:215–25. doi: 10.3732/ajb.1200264 PubMed DOI

Retzer K, Akhmanova M, Konstantinova N, Malínská K, Leitner J, Petrášek J, et al. . Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nat Commun. (2019) 10:5516. doi: 10.1038/s41467-019-13543-1 PubMed DOI PMC

Somssich M, Vandenbussche F, Ivakov A, Funke N, Ruprecht C, Vissenberg K, et al. . Brassinosteroids influence Arabidopsis hypocotyl graviresponses through changes in mannans and cellulose. Plant Cell Physiol. (2021) 0:1–15. doi: 10.1093/pcp/pcab024 PubMed DOI

Song X, Qi Z, Ahammed GJ, Yu J, Xia X. Brassinosteroids’ regulation of plant architecture In: Ahammed GJ, Sharma A, Yu J, editors. Brassinosteroids in plant developmental biology and stress tolerance. Amsterdam: Elsevier Inc; (2022). 43–57.

Han Y, Yang R, Zhang X, Wang Q, Wang B, Zheng X, et al. . Brassinosteroid accelerates wound healing of potato tubers by activation of reactive oxygen metabolism and phenylpropanoid metabolism. Foods. (2022) 11:906. doi: 10.3390/foods11070906 PubMed DOI PMC

Wang W, Sun Y, Li G, Zhang S. Brassinosteroids promote parenchyma cell and secondary xylem development in sugar beet (Beta vulgaris L.) root. Plant Direct. (2021) 5:e340. doi: 10.1002/pld3.340 PubMed DOI PMC

He S, Wang H, Hao X, Wu Y, Bian X, Yin M, et al. . Dynamic network biomarker analysis discovers IbNAC083 in the initiation and regulation of sweet potato root tuberization. Plant J. (2021) 108:793–813. doi: 10.1111/tpj.15478 PubMed DOI

Nuruzzaman M, Sato M, Okamoto S, Hoque M, Shea DJ, Fujimoto R, et al. . Comparative transcriptome analysis during tuberous stem formation in Kohlrabi (B. oleracea var. gongylodes) at early growth periods (seedling stages). Physiol Plant. (2022) 174:e13770. doi: 10.1111/ppl.13770 PubMed DOI

Symons GM, Reid JB. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol. (2004) 135:2196–206. doi: 10.1104/pp.104.043034 PubMed DOI PMC

Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol. (2003) 131:287–97. doi: 10.1104/pp.013029 PubMed DOI PMC

Yin W, Dong N, Niu M, Zhang X, Li L, Liu J, et al. . Brassinosteroid-regulated plant growth and development and gene expression in soybean. Crop J. (2019) 7:411–8. doi: 10.1016/j.cj.2018.10.003 DOI

Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, et al. . Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell. (2010) 19:765–77. doi: 10.1016/j.devcel.2010.10.010 PubMed DOI PMC

Coll-Garcia D, Mazuch J, Altmann T, Müssig C. EXORDIUM regulates brassinosteroid-responsive genes. FEBS Lett. (2004) 563:82–6. doi: 10.1016/S0014-5793(04)00255-8 PubMed DOI

Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Stephen C, Braam J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell. (1995) 7:1555–67. doi: 10.1105/tpc.7.10.1555 PubMed DOI PMC

Schröder F, Lisso J, Lange P, Müssig C. The extracellular EXO protein mediates cell expansion in Arabidopsis leaves. BMC Plant Biol. (2009) 9:20. doi: 10.1186/1471-2229-9-20 PubMed DOI PMC

Sousa AO, Camillo LR, Assis ETCM, Lima NS, Silva GO, Kirch RP, et al. . EgPHI-1, a PHOSPHATE-INDUCED-1 gene from Eucalyptus globulus, is involved in shoot growth, xylem fiber length and secondary cell wall properties. Planta. (2020) 252:45. doi: 10.1007/s00425-020-03450-x PubMed DOI

Maugarny A, Gonçalves B, Arnaud N, Laufs P. CUC transcription factors: to the meristem and beyond In: Gonzalez DH, editor. Plant transcription factors: Evolutionary, structural and functional aspects. Cambridge, MA: Academic Press; (2016). 229–47.

Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S. Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol. (2005) 138:1117–25. doi: 10.1104/pp.104.058040 PubMed DOI PMC

Mathur J, Molnár G, Fujioka S, Takatsuto S, Sakurai A, Yokota T, et al. . Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J. (1998) 14:593–602. doi: 10.1046/j.1365-313X.1998.00158.x PubMed DOI

Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, et al. . A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell. (2003) 15:2900–10. doi: 10.1105/tpc.014712 PubMed DOI PMC

Youn JH, Kim TW, Joo SH, Son SH, Roh J, Kim S, et al. . Function and molecular regulation of DWARF1 as a C-24 reductase in brassinosteroid biosynthesis in Arabidopsis. J Exp Bot. (2018) 69:1873–86. doi: 10.1093/jxb/ery038 PubMed DOI PMC

Keuskamp DH, Sasidharan R, Vos I, Peeters AJM, Voesenek LACJ, Pierik R. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J. (2011) 67:208–17. doi: 10.1111/j.1365-313X.2011.04597.x PubMed DOI

Wu S, Zhang B, Keyhaninejad N, Rodríguez GR, Kim HJ, Chakrabarti M, et al. . A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat Commun. (2018) 9:4734. doi: 10.1038/s41467-018-07216-8 PubMed DOI PMC

Endelman JB, Jansky SH. Genetic mapping with an inbred line-derived F2 population in potato. Theor Appl Genet. (2016) 129:935–43. doi: 10.1007/s00122-016-2673-7 PubMed DOI

Lazzaro MD, Wu S, Snouffer A, Wang Y, van der Knaap E. Plant organ shapes are regulated by protein interactions and associations with microtubules. Front Plant Sci. (2018) 871:1–12. doi: 10.3389/fpls.2018.01766 PubMed DOI PMC

Ai J, Wang Y, Yan Y, Li C, Luo W, Ma L, et al. . StOFP20 regulates tuber shape and interacts with TONNEAU1 Recruiting Motif proteins in potato. J Integr Agric. (2022) 22:752–61. doi: 10.1016/j.jia.2022.08.069 DOI

Wang Y, Wang Q, Hao W, Sun H, Zhang L. Characterization of the OFP gene family and its putative involvement of tuberous root shape in radish. Int J Mol Sci. (2020) 21:1293. doi: 10.3390/ijms21041293 PubMed DOI PMC

Yang C, Shen W, He Y, Tian Z, Li J. OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in Rice. PLoS Genet. (2016) 12:e1006118. doi: 10.1371/journal.pgen.1006118 PubMed DOI PMC

Peres ALGL, Soares JS, Tavares RG, Righetto G, Zullo MAT, Mandava NB, et al. . Brassinosteroids, the sixth class of phytohormones: a molecular view from the discovery to hormonal interactions in plant development and stress adaptation. Int J Mol Sci. (2019) 20:331. doi: 10.3390/ijms20020331 PubMed DOI PMC

Li Z, He Y. Roles of brassinosteroids in plant reproduction. Int J Mol Sci. (2020) 21:872. doi: 10.3390/ijms21030872 PubMed DOI PMC

Müssig C, Biesgen C, Lisso J, Uwer U, Weiler EW, Altmann T. A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between Brassinosteroid-action and Jasmonic-acid synthesis. J Plant Physiol. (2000) 157:143–52. doi: 10.1016/S0176-1617(00)80184-4 DOI

Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, et al. . Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell. (2015) 27:2261–72. doi: 10.1105/tpc.15.00433 PubMed DOI PMC

Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, et al. . Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell. (2014) 26:4376–93. doi: 10.1105/tpc.114.132092 PubMed DOI PMC

Yoshida Y, Takahashi H, Kanda H, Kanahama K. Interactive effects of photoperiods and plant growth regulators on the development of tubers and flowering spikes in Chinese yam (Dioscorea opposita) cv. Nagaimo J Japanese Soc Hortic Sci. (2002) 71:752–7. doi: 10.2503/jjshs.71.752 DOI

Kim SK, Lee SC, Lee BH, Choi HJ, Kim KU, Lee IJ. Bulbil formation and yield responses of Chinese yam to application of gibberellic acid, mepiquat chloride and trinexapac-ethyl. J Agron Crop Sci. (2003) 189:255–60. doi: 10.1046/j.1439-037X.2003.00039.x DOI

Kim H, Park PJ, Hwang HJ, Lee SY, Oh MH, Kim SG. Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development. Biosci Biotechnol Biochem. (2006) 70:768–73. doi: 10.1271/bbb.70.768 PubMed DOI

Kim MH, Kim Y, Kim JW, Lee HS, Lee WS, Kim SK, et al. . Identification of Arabidopsis BAK1-associating receptor-like kinase 1 (BARK1) and characterization of its gene expression and brassinosteroid- regulated root phenotypes. Plant Cell Physiol. (2013) 54:1620–34. doi: 10.1093/pcp/pct106 PubMed DOI

Song L, Zhou XY, Li L, Xue LJ, Yang X, Xue HW. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis. Mol Plant. (2009) 2:755–72. doi: 10.1093/mp/ssp039 PubMed DOI

Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. (2004) 134:1555–73. doi: 10.1104/pp.103.034736 PubMed DOI PMC

Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. (2002) 130:1319–34. doi: 10.1104/pp.011254 PubMed DOI PMC

van Mourik H, van Dijk ADJ, Stortenbeker N, Angenent GC, Bemer M. Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade. BMC Plant Biol. (2017) 17:245. doi: 10.1186/s12870-017-1210-4 PubMed DOI PMC

Spartz AK, Ren H, Park MY, Grandt KN, Lee SH, Murphy AS, et al. . SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell. (2014) 26:2129–42. doi: 10.1105/tpc.114.126037 PubMed DOI PMC

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. Aux/lAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. (1997) 9:1963–71. doi: 10.1105/tpc.9.11.1963 PubMed DOI PMC

Abel S, Oeller PW, Theologis A. Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci U S A. (1994) 91:326–30. doi: 10.1073/pnas.91.1.326 PubMed DOI PMC

Li Z, Ou Y, Zhang Z, Li J, He Y. Brassinosteroid signaling recruits histone 3 Lysine-27 demethylation activity to FLOWERING LOCUS C chromatin to inhibit the floral transition in Arabidopsis. Mol Plant. (2018) 11:1135–46. doi: 10.1016/j.molp.2018.06.007 PubMed DOI

Janeczko A, Filek W, Biesaga-Kościelniak J, Marcińska I, Janeczko Z. The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. Plant Cell Tissue Organ Cult. (2003) 72:147–51. doi: 10.1023/A:1022291718398 DOI

Ju L, Dong H, Yang R, Jing Y, Zhang Y, Liu L, et al. . BIN2 phosphorylates the Thr280 of CO to restrict its function in promoting Arabidopsis flowering. Front Plant Sci. (2023) 14:1068949. doi: 10.3389/fpls.2023.1068949 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace