Coenzyme Q10: A Biomarker in the Differential Diagnosis of Parkinsonian Syndromes

. 2023 Dec 12 ; 12 (12) : . [epub] 20231212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38136223

Grantová podpora
LX22NPO5107 National Institute for Neurological Research, Program EXCELES
IP No 111, GIP-22-SL-05-212 General University Hospital in Prague
MH CZ-DRO VFN00064165 General University Hospital in Prague
Cooperatio Program in Paediatrics Charles University

Multiple system atrophy (MSA) is generally a sporadic neurodegenerative disease which ranks among atypical Parkinson's syndromes. The main clinical manifestation is a combination of autonomic dysfunction and parkinsonism and/or cerebellar disability. The disease may resemble other Parkinsonian syndromes, such as Parkinson's disease (PD) or progressive supranuclear palsy (PSP), from which MSA could be hardly distinguishable during the first years of progression. Due to the lack of a reliable and easily accessible biomarker, the diagnosis is still based primarily on the clinical picture. Recently, reduced levels of coenzyme Q10 (CoQ10) were described in MSA in various tissues, including the central nervous system. The aim of our study was to verify whether the level of CoQ10 in plasma and lymphocytes could serve as an easily available diagnostic biomarker of MSA. The study reported significantly lower levels of CoQ10 in the lymphocytes of patients with MSA compared to patients with PD and controls. The reduction in CoQ10 levels in lymphocytes correlated with the increasing degree of clinical involvement of patients with MSA. CoQ10 levels in lymphocytes seem to be a potential biomarker of disease progression.

Zobrazit více v PubMed

Gilman S., Wenning G., Low P.A., Brooks D., Mathias C.J., Trojanowski J.Q., Wood N., Colosimo C., Durr A., Fowler C.J., et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–676. doi: 10.1212/01.wnl.0000324625.00404.15. PubMed DOI PMC

Jakes R., Spillantini M.G., Goedert M. Identification of two distinct synucleins from human brain. FEBS Lett. 1994;345:27–32. doi: 10.1016/0014-5793(94)00395-5. PubMed DOI

Hashimoto M., Rockenstein E., Mante M., Mallory M., Masliah E. β-Synuclein inhibits α-synuclein aggregation: A possible role as an anti-parkinsonian factor. Neuron. 2001;32:213–223. doi: 10.1016/S0896-6273(01)00462-7. PubMed DOI

Askanas V., Engel W.K., Alvarez R.B., McFerrin J., Broccolini A. Novel Immunolocalization of α-Synuclein in Human Muscle of Inclusion-Body Myositis, Regenerating and Necrotic Muscle Fibers, and at Neuromuscular Junctions. J. Neuropathol. Exp. Neurol. 2000;59:592–598. doi: 10.1093/jnen/59.7.592. PubMed DOI

Shin E.C., Cho S.E., Lee D.K., Hur M.W., Paik S.R., Park J.H., Kim J. Expression Patterns of α-Synuclein in Human Hematopoietic Cells and in Drosophila at Different Developmental Stages. Mol. Cells. 2000;10:65–70. doi: 10.1007/s10059-000-0065-x. PubMed DOI

Baltic S., Perovic M., Mladenovic A., Raicevic N., Ruzdijic S., Rakic L., Kanazir S. α-synuclein is expressed in different tissues during human fetal development. J. Mol. Neurosci. 2004;22:199–203. doi: 10.1385/JMN:22:3:199. PubMed DOI

Tamo W., Imaizumi T., Tanji K., Yoshida H., Mori F., Yoshimoto M., Takahashi H., Fukuda I., Wakabayashi K., Satoh K. Expression of α-synuclein, the precursor of non-amyloid β component of Alzheimer’s disease amyloid, in human cerebral blood vessels. Neurosci. Lett. 2002;326:5–8. doi: 10.1016/S0304-3940(02)00297-5. PubMed DOI

Li J., Uversky V.N., Fink A.L. Conformational behavior of human α-synuclein is modulated by familial Parkinson’s disease point mutations A30P and A53T. Neurotoxicology. 2002;23:553–567. doi: 10.1016/S0161-813X(02)00066-9. PubMed DOI

Kim S., Seo J.H., Suh Y.H. α-synuclein, Parkinson’s disease, and Alzheimer’s disease. Park. Relat. Disord. 2004;10((Suppl. 1)):S9–S13. doi: 10.1016/j.parkreldis.2003.11.005. PubMed DOI

Uéda K., Fukushima H., Masliah E., Xia Y., Iwai A., Yoshimoto M., Otero D.A., Kondo J., Ihara Y., Saitoh T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA. 1993;90:11282–11286. doi: 10.1073/pnas.90.23.11282. PubMed DOI PMC

Nakamura K., Nemani V.M., Wallender E.K., Kaehlcke K., Ott M., Edwards R.H. Optical reporters for the conformation of α-synuclein reveal a specific interaction with mitochondria. J. Neurosci. 2008;28:12305–12317. doi: 10.1523/JNEUROSCI.3088-08.2008. PubMed DOI PMC

Monzio Compagnoni G., Di Fonzo A. Understanding the pathogenesis of multiple system atrophy: State of the art and future perspectives. Acta Neuropathol. Commun. 2019;7:113. doi: 10.1186/s40478-019-0730-6. PubMed DOI PMC

Laurens B., Vergnet S., Lopez M.C., Foubert-Samier A., Tison F., Fernagut P.O., Meissner W.G. Multiple System Atrophy—State of the Art. Curr. Neurol. Neurosci. Rep. 2017;17:41. doi: 10.1007/s11910-017-0751-0. PubMed DOI

Bassil F., Canron M.-H., Vital A., Bezard E., Li Y., Greig N.H., Gulyani S., Kapogiannis D., Fernagut P.-O., Meissner W.G. Insulin resistance and exendin-4 treatment for multiple system atrophy. Brain. 2017;140:1420–1436. doi: 10.1093/brain/awx044. PubMed DOI PMC

Zhou L., Jiang Y., Zhu C., Ma L., Huang Q., Chen X. Oxidative Stress and Environmental Exposures are Associated with Multiple System Atrophy in Chinese Patients. Can. J. Neurol. Sci. 2016;43:703–709. doi: 10.1017/cjn.2016.261. PubMed DOI

Foti S.C., Hargreaves I., Carrington S., Kiely A.P., Houlden H., Holton J.L. Cerebral mitochondrial electron transport chain dysfunction in multiple system atrophy and Parkinson’s disease. Sci. Rep. 2019;9:6559. doi: 10.1038/s41598-019-42902-7. PubMed DOI PMC

Gu M., Gash M.T., Cooper J.M., Wenning G.K., Daniel S.E., Quinn N.P., Marsden C.D., Schapira A.H.V. Mitochondrial respiratory chain function in multiple system atrophy. Mov. Disord. 1997;12:418–422. doi: 10.1002/mds.870120323. PubMed DOI

Li W.-W., Yang R., Guo J.-C., Ren H.-M., Zha X.-L., Cheng J.-S., Cai D.-F. Localization of α-synuclein to mitochondria within midbrain of mice. Neuroreport. 2007;18:1543–1546. doi: 10.1097/WNR.0b013e3282f03db4. PubMed DOI

Liu G., Zhang C., Yin J., Li X., Cheng F., Li Y., Yang H., Uéda K., Chan P., Yu S. α-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci. Lett. 2009;454:187–192. doi: 10.1016/j.neulet.2009.02.056. PubMed DOI

Hsu L.J., Mallory M., Xia Y., Veinbergs I., Hashimoto M., Yoshimoto M., Thal L.J., Saitoh T., Masliah E. Expression pattern of synucleins (non-Aβ component of Alzheimer’s disease amyloid precursor protein/α-synuclein) during murine brain development. J. Neurochem. 1998;71:338–344. doi: 10.1046/j.1471-4159.1998.71010338.x. PubMed DOI

Junn E., Mouradian M.M. Human α-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci. Lett. 2002;320:146–150. doi: 10.1016/S0304-3940(02)00016-2. PubMed DOI

Winklhofer K.F., Haass C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta. 2010;1802:29–44. doi: 10.1016/j.bbadis.2009.08.013. PubMed DOI

Bose A., Beal M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 2016;139((Suppl. 1)):216–231. doi: 10.1111/jnc.13731. PubMed DOI

Büeler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp. Neurol. 2009;218:235–246. doi: 10.1016/j.expneurol.2009.03.006. PubMed DOI

Exner N., Lutz A.K., Haass C., Winklhofer K.F. Mitochondrial dysfunction in Parkinson’s disease: Molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31:3038–3062. doi: 10.1038/emboj.2012.170. PubMed DOI PMC

Kopin I.J., Markey S.P. MPTP toxicity: Implications for research in Parkinson’s disease. Annu. Rev. Neurosci. 1988;11:81–96. doi: 10.1146/annurev.ne.11.030188.000501. PubMed DOI

Cuenca-Bermejo L., Pizzichini E., Gonçalves V.C., Guillén-Díaz M., Aguilar-Moñino E., Sánchez-Rodrigo C., González-Cuello A.-M., Fernández-Villalba E., Herrero M.T. A New Tool to Study Parkinsonism in the Context of Aging: MPTP Intoxication in a Natural Model of Multimorbidity. Int. J. Mol. Sci. 2021;22:4341. doi: 10.3390/ijms22094341. PubMed DOI PMC

Köllensperger M., Geser F., Seppi K., Stampfer-Kountchev M., Sawires M., Scherfler C., Boesch S., Mueller J., Koukouni V., Quinn N., et al. Red flags for multiple system atrophy. Mov. Disord. 2008;23:1093–1099. doi: 10.1002/mds.21992. PubMed DOI

Palma J.A., Norcliffe-Kaufmann L., Kaufmann H. Diagnosis of multiple system atrophy. Auton. Neurosci. 2018;211:15–25. doi: 10.1016/j.autneu.2017.10.007. PubMed DOI PMC

Kim H.J., Jeon B., Fung V.S.C. Role of Magnetic Resonance Imaging in the Diagnosis of Multiple System Atrophy. Mov. Disord. Clin. Pract. 2017;4:12–20. doi: 10.1002/mdc3.12404. PubMed DOI PMC

Compta Y., Giraldo D.M., Muñoz E., Antonelli F., Fernández M., Bravo P., Soto M., Cámara A., Torres F., Martí M.J., et al. Cerebrospinal fluid levels of coenzyme Q10 are reduced in multiple system atrophy. Parkinsonism Relat. Disord. 2018;46:16–23. doi: 10.1016/j.parkreldis.2017.10.010. PubMed DOI

Mitsui J., Tsuji S. Plasma Coenzyme Q10 Levels and Multiple System Atrophy-Reply. JAMA Neurol. 2016;73:1499–1500. doi: 10.1001/jamaneurol.2016.4133. PubMed DOI

Schottlaender L.V., Bettencourt C., Kiely A.P., Chalasani A., Neergheen V., Holton J.L., Hargreaves I., Houlden H. Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients. PLoS ONE. 2016;11:e0149557. doi: 10.1371/journal.pone.0149557. PubMed DOI PMC

Lagendijk J., Ubbink J.B., Vermaak W.J. Measurement of the ratio between the reduced and oxidized forms of coenzyme Q10 in human plasma as a possible marker of oxidative stress. J. Lipid Res. 1996;37:67–75. doi: 10.1016/S0022-2275(20)37636-7. PubMed DOI

Federoff M., Schottlaender L.V., Houlden H., Singleton A. Multiple system atrophy: The application of genetics in understanding etiology. Clin. Auton. Res. 2015;25:19–36. doi: 10.1007/s10286-014-0267-5. PubMed DOI PMC

Payan C.A., Viallet F., Landwehrmeyer B.G., Bonnet A.-M., Borg M., Durif F., Lacomblez L., Bloch F., Verny M., Fermanian J., et al. Disease severity and progression in progressive supranuclear palsy and multiple system atrophy: Validation of the NNIPPS—Parkinson Plus Scale. PLoS ONE. 2011;6:e22293. doi: 10.1371/journal.pone.0022293. PubMed DOI PMC

Wenning G.K., Tison F., Seppi K., Sampaio C., Diem A., Yekhlef F., Ghorayeb I., Ory F., Galitzky M., Scaravilli T., et al. Development and validation of the Unified Multiple System Atrophy Rating Scale (UMSARS) Mov. Disord. 2004;19:1391–1402. doi: 10.1002/mds.20255. PubMed DOI

Hoglinger G.U., Respondek G., Stamelou M., Kurz C., Josephs K.A., Lang A.E., Mollenhauer B., Müller U., Nilsson C., Whitwell J.L., et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov. Disord. 2017;32:853–864. doi: 10.1002/mds.26987. PubMed DOI PMC

Golbe L.I., Ohman-Strickland P.A. A clinical rating scale for progressive supranuclear palsy. Brain. 2007;130:1552–1565. doi: 10.1093/brain/awm032. PubMed DOI

Askeland G., Dosoudilova Z., Rodinova M., Klempir J., Liskova I., Kuśnierczyk A., Bjørås M., Nesse G., Klungland A., Hansikova H., et al. Increased nuclear DNA damage precedes mitochondrial dysfunction in peripheral blood mononuclear cells from Huntington’s disease patients. Sci. Rep. 2018;8:9817. doi: 10.1038/s41598-018-27985-y. PubMed DOI PMC

Krizova J., Hulkova M., Capek V., Mlejnek P., Silhavy J., Tesarova M., Zeman J., Hansikova H. Microarray and qPCR Analysis of Mitochondrial Metabolism Activation during Prenatal and Early Postnatal Development in Rats and Humans with Emphasis on CoQ(10) Biosynthesis. Biology. 2021;10:418. doi: 10.3390/biology10050418. PubMed DOI PMC

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI

Srere P.A. [1] Citrate synthase. [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)] Methods Enzymol. 1969;13:3–11.

Mosca F., Fattorini D., Bompadre S., Littarru G.P. Assay of coenzyme Q(10) in plasma by a single dilution step. Anal. Biochem. 2002;305:49–54. doi: 10.1006/abio.2002.5653. PubMed DOI

Du J., Wang T., Huang P., Cui S., Gao C., Lin Y., Fu R., Shen J., He Y., Tan Y., et al. Clinical correlates of decreased plasma coenzyme Q10 levels in patients with multiple system atrophy. Parkinsonism Relat. Disord. 2018;57:58–62. doi: 10.1016/j.parkreldis.2018.07.017. PubMed DOI

Jenner P. Oxidative stress in Parkinson’s disease. Ann. Neurol. 2003;53((Suppl. 3)):S26–S36. doi: 10.1002/ana.10483. discussion S36–S38. PubMed DOI

Dias V., Junn E., Mouradian M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 2013;3:461–491. doi: 10.3233/JPD-130230. PubMed DOI PMC

Mantle D., Dybring A. Bioavailability of Coenzyme Q(10): An Overview of the Absorption Process and Subsequent Metabolism. Antioxidants. 2020;9:386. doi: 10.3390/antiox9050386. PubMed DOI PMC

Kasai T., Tokuda T., Ohmichi T., Ishii R., Tatebe H., Nakagawa M., Mizuno T. Serum Levels of Coenzyme Q10 in Patients with Multiple System Atrophy. PLoS ONE. 2016;11:e0147574. doi: 10.1371/journal.pone.0147574. PubMed DOI PMC

Kuo S.H., Quinzii C.M. Coenzyme Q10 as a Peripheral Biomarker for Multiple System Atrophy. JAMA Neurol. 2016;73:917–919. doi: 10.1001/jamaneurol.2016.1810. PubMed DOI PMC

Leoni V., Caccia C. Oxysterols as biomarkers in neurodegenerative diseases. Chem. Phys. Lipids. 2011;164:515–524. doi: 10.1016/j.chemphyslip.2011.04.002. PubMed DOI

Dorst J., Kühnlein P., Hendrich C., Kassubek J., Sperfeld A.D., Ludolph A.C. Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J Neurol. 2011;258:613–617. doi: 10.1007/s00415-010-5805-z. PubMed DOI

D’Amico E., Grosso G., Nieves J.W., Zanghì A., Factor-Litvak P., Mitsumoto H. Metabolic Abnormalities, Dietary Risk Factors and Nutritional Management in Amyotrophic Lateral Sclerosis. Nutrients. 2021;13:2273. doi: 10.3390/nu13072273. PubMed DOI PMC

Fu X., Wang Y., He X., Li H., Liu H., Zhang X. A systematic review and meta-analysis of serum cholesterol and triglyceride levels in patients with Parkinson’s disease. Lipids Health Dis. 2020;19:97. doi: 10.1186/s12944-020-01284-w. PubMed DOI PMC

Gustafson A., Elmfeldt D., Wilhelmsen L., Tibblin G. Serum lipids and lipoproteins in men after myocardial infarction compared with representative population sample. Circulation. 1972;46:709–716. doi: 10.1161/01.CIR.46.4.709. PubMed DOI

Kaikkonen J., Nyyssönen K., Tuomainen T.P., Ristonmaa U., Salonen J.T. Determinants of plasma coenzyme Q10 in humans. FEBS Lett. 1999;443:163–166. doi: 10.1016/S0014-5793(98)01712-8. PubMed DOI

Jiménez-Jiménez F.J., Molina J.A., de Bustos F., García-Redondo A., Gómez-Escalonilla C., Martínez-Salio A., Berbel A., Camacho A., Zurdo M., Barcenilla B., et al. Serum levels of coenzyme Q10 in patients with Parkinson’s disease. J. Neural. Transm. 2000;107:177–181. doi: 10.1007/s007020050015. PubMed DOI

Pecina P., Houšťková H., Mráček T., Pecinová A., Nůsková H., Tesařová M., Hansíková H., Janota J., Zeman J., Houštěk J. Noninvasive diagnostics of mitochondrial disorders in isolated lymphocytes with high resolution respirometry. BBA Clin. 2014;2:62–71. doi: 10.1016/j.bbacli.2014.09.003. PubMed DOI PMC

Fišar Z., Hansíková H., Křížová J., Jirák R., Kitzlerová E., Zvěřová M., Hroudová J., Wenchich L., Zeman J., Raboch J. Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion. 2019;48:67–77. doi: 10.1016/j.mito.2019.07.013. PubMed DOI

Fišar Z., Hroudová J., Hansíková H., Spáčilová J., Lelková P., Wenchich L., Jirák R., Zvěřová M., Zeman J., Martásek P., et al. Mitochondrial Respiration in the Platelets of Patients with Alzheimer’s Disease. Curr. Alzheimer. Res. 2016;13:930–941. doi: 10.2174/1567205013666160314150856. PubMed DOI

Duncan A.J., Heales S.J., Mills K., Eaton S., Land J.M., Hargreaves I.P. Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle, and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standard. Clin. Chem. 2005;51:2380–2382. doi: 10.1373/clinchem.2005.054643. PubMed DOI

Rötig A., Appelkvist E.-L., Geromel V., Chretien D., Kadhom N., Edery P., Lebideau M., Dallner G., Munnich A., Ernster L., et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet. 2000;356:391–395. doi: 10.1016/S0140-6736(00)02531-9. PubMed DOI

Shinde S., Pasupathy K. Respiratory-chain enzyme activities in isolated mitochondria of lymphocytes from patients with Parkinson’s disease: Preliminary study. Neurol. India. 2006;54:390–393. doi: 10.4103/0028-3886.28112. PubMed DOI

Gollapudi S., Gupta S. Reversal of oxidative stress-induced apoptosis in T and B lymphocytes by Coenzyme Q10 (CoQ10) Am. J. Clin. Exp. Immunol. 2016;5:41–47. PubMed PMC

Monzio Compagnoni G., Kleiner G., Bordoni A., Fortunato F., Ronchi D., Salani S., Guida M., Corti C., Pichler I., Bergamini C., et al. Mitochondrial dysfunction in fibroblasts of Multiple System Atrophy. Biochim. Biophys. Acta Mol. Basis. Dis. 2018;1864:3588–3597. doi: 10.1016/j.bbadis.2018.09.018. PubMed DOI

Niklowitz P., Menke T., Andler W., Okun J.G. Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: Comparison of the antioxidant level in blood cells and their environment in healthy children and after oral supplementation in adults. Clin. Chim. Acta. 2004;342:219–226. doi: 10.1016/j.cccn.2003.12.020. PubMed DOI

Littarru G.P., Tiano L. Clinical aspects of coenzyme Q10: An update. Nutrition. 2010;26:250–254. doi: 10.1016/j.nut.2009.08.008. PubMed DOI

Nakamoto F.K., Okamoto S., Mitsui J., Sone T., Ishikawa M., Yamamoto Y., Kanegae Y., Nakatake Y., Imaizumi K., Ishiura H., et al. The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy. Sci. Rep. 2018;8:14215. doi: 10.1038/s41598-018-32573-1. PubMed DOI PMC

Herrera-Vaquero M., Heras-Garvin A., Krismer F., Deleanu R., Boesch S., Wenning G.K., Stefanova N. Signs of early cellular dysfunction in multiple system atrophy. Neuropathol. Appl. Neurobiol. 2021;47:268–282. doi: 10.1111/nan.12661. PubMed DOI PMC

Blin O., Desnuelle C., Rascol O., Borg M., Peyro Saint Paul H., Azulay J.-P., Billè F., Figarella D., Coulom F., Pellissier J.F., et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J. Neurol. Sci. 1994;125:95–101. doi: 10.1016/0022-510X(94)90248-8. PubMed DOI

Ebadi M., Govitrapong P., Sharma S., Muralikrishnan D., Shavali S., Pellett L., Schafer R., Albano C., Eken J. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of parkinson’s disease. Biol. Signals Recept. 2001;10:224–253. doi: 10.1159/000046889. PubMed DOI

Alcázar-Fabra M., Navas P., Brea-Calvo G. Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochim. Biophys. Acta. 2016;1857:1073–1078. doi: 10.1016/j.bbabio.2016.03.010. PubMed DOI

Multiple-System Atrophy Research Collaboration Mutations in COQ2 in familial and sporadic multiple-system atrophy. N. Engl. J. Med. 2013;369:233–244. doi: 10.1056/NEJMoa1212115. PubMed DOI

Guo J.F., Zhang L., Li K., Mei J.P., Xue J., Chen J., Tang X., Shen L., Hong J., Chen C., et al. Coding mutations in NUS1 contribute to Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2018;115:11567–11572. doi: 10.1073/pnas.1809969115. PubMed DOI PMC

Bleasel J.M., Wong J.H., Halliday G.M., Kim W.S. Lipid dysfunction and pathogenesis of multiple system atrophy. Acta Neuropathol. Commun. 2014;2:15. doi: 10.1186/2051-5960-2-15. PubMed DOI PMC

Valentino R.R., Heckman M.G., Johnson P.W., Soto-Beasley A.I., Walton R.L., Koga S., Uitti R.J., Wszolek Z.K., Dickson D.W., Ross O.A. Association of mitochondrial genomic background with risk of Multiple System Atrophy. Parkinsonism Relat. Disord. 2020;81:200–204. doi: 10.1016/j.parkreldis.2020.10.040. PubMed DOI PMC

Mitsui J., Koguchi K., Momose T., Takahashi M., Matsukawa T., Yasuda T., Tokushige S.-I., Ishiura H., Goto J., Nakazaki S., et al. Three-Year Follow-Up of High-Dose Ubiquinol Supplementation in a Case of Familial Multiple System Atrophy with Compound Heterozygous COQ2 Mutations. Cerebellum. 2017;16:664–672. doi: 10.1007/s12311-017-0846-9. PubMed DOI PMC

Rembold C.M. Coenzyme Q10 Supplementation in Orthostatic Hypotension and Multiple-System Atrophy: A Report on 7 Cases. Am. J. Med. 2018;131:444–446. doi: 10.1016/j.amjmed.2017.10.021. PubMed DOI

Compta Y., Muñoz E., Martí M.J. Ubiquinone, ubiquinol, 4-hydroxybenzoic acid… What ‘coenzyme Q10’ should we care about in multiple system atrophy? Parkinsonism Relat. Disord. 2018;50:117–118. doi: 10.1016/j.parkreldis.2018.01.020. PubMed DOI

Distelmaier F. 4-Hydroxybenzoic acid for multiple system atrophy? Parkinsonism Relat. Disord. 2018;50:119–120. doi: 10.1016/j.parkreldis.2018.01.019. PubMed DOI

Perez-Lloret S., Flabeau O., Fernagut P., Traon A.P., Rey M.V., Foubert-Samier A., Tison F., Rascol O., Meissner W.G. Current Concepts in the Treatment of Multiple System Atrophy. Mov. Disord. Clin. Pract. 2015;2:6–16. doi: 10.1002/mdc3.12145. PubMed DOI PMC

Colosimo C., Pezzella F.R. The symptomatic treatment of multiple system atrophy. Eur. J. Neurol. 2002;9:195–199. doi: 10.1046/j.1468-1331.2002.00348.x. PubMed DOI

Levin J., Kurz A., Arzberger T., Giese A., Höglinger G.U. The Differential Diagnosis and Treatment of Atypical Parkinsonism. Dtsch. Arztebl. Int. 2016;113:61–69. doi: 10.3238/arztebl.2016.0061. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...