Microarray and qPCR Analysis of Mitochondrial Metabolism Activation during Prenatal and Early Postnatal Development in Rats and Humans with Emphasis on CoQ10 Biosynthesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAUK 667612
Grantová Agentura, Univerzita Karlova
AZV MZ CR NU20-07-00026
Ministerstvo Zdravotnictví Ceské Republiky
GACR 14-36804G
Grantová Agentura České Republiky
SVV260367
Univerzita Karlova v Praze
PROGRES Q26/LF1/3
Univerzita Karlova v Praze
UNCE 204064
Univerzita Karlova v Praze
PubMed
34066731
PubMed Central
PMC8150536
DOI
10.3390/biology10050418
PII: biology10050418
Knihovny.cz E-zdroje
- Klíčová slova
- coenzyme Q, human, microarray, mitochondria, prenatal, qPCR, rat, ubiquinone,
- Publikační typ
- časopisecké články MeSH
At the end of the mammalian intra-uterine foetal development, a rapid switch from glycolytic to oxidative metabolism must proceed. Using microarray techniques, qPCR, enzyme activities and coenzyme Q content measurements, we describe perinatal mitochondrial metabolism acceleration in rat liver and skeletal muscle during the perinatal period and correlate the results with those in humans. Out of 1546 mitochondrial genes, we found significant changes in expression in 1119 and 827 genes in rat liver and skeletal muscle, respectively. The most remarkable expression shift occurred in the rat liver at least two days before birth. Coenzyme Q-based evaluation in both the rat model and human tissues showed the same trend: the total CoQ content is low prenatally, significantly increasing after birth in both the liver and skeletal muscle. We propose that an important regulator of rat coenzyme Q biosynthesis might be COQ8A, an atypical kinase involved in the biosynthesis of coenzyme Q. Our microarray data, a total of 16,557 RefSeq (Entrez) genes, have been deposited in NCBI's Gene Expression Omnibus and are freely available to the broad scientific community. Our microarray data could serve as a suitable background for finding key factors regulating mitochondrial metabolism and the preparation of the foetus for the transition to extra-uterine conditions.
Zobrazit více v PubMed
Benard G., Faustin B., Passerieux E., Galinier A., Rocher C., Bellance N., Delage J.P., Casteilla L., Letellier T., Rossignol R. Physiological diversity of mitochondrial oxidative phosphorylation. Am. J. Physiol. Cell Physiol. 2006;291:C1172–C1182. doi: 10.1152/ajpcell.00195.2006. PubMed DOI
Burch H.B., Lowry O.H., Kuhlman A.M., Skerjance J., Diamant E.J., Lowry S.R., Von Dippe P. Changes in patterns of enzymes of carbohydrate metabolism in the developing rat liver. J. Biol. Chem. 1963;238:2267–2273. doi: 10.1016/S0021-9258(19)67964-0. PubMed DOI
Prystowsky H. Fetal blood studies. VII. The oxygen pressure gradient between the maternal and foetal bloods of the human in normal and abnormal pregnancy. Bull. Johns Hopkins Hosp. 1957;101:48–56. PubMed
Sutton R., Pollak J.K. The increasing adenine nucleotide concentration and the maturation of rat liver mitochondria during neonatal development. Differentiation. 1978;12:15–21. doi: 10.1111/j.1432-0436.1979.tb00985.x. PubMed DOI
Izquierdo J.M., Cuezva J.M. Control of the translational efficiency of beta-F1-ATPase mRNA depends on the regulation of a protein that binds the 3’ untranslated region of the mRNA. Mol. Cell Biol. 1997;17:5255–5268. doi: 10.1128/MCB.17.9.5255. PubMed DOI PMC
Izquierdo J.M., Jiménez E., Cuezva J.M. Hypothyroidism affects the expression of the beta-F1-ATPase gene and limits mitochondrial proliferation in rat liver at all stages of development. Eur. J. Biochem. 1995;232:344–350. doi: 10.1111/j.1432-1033.1995.344zz.x. PubMed DOI
Minai L., Martinovic J., Chretien D., Dumez F., Razavi F., Munnich A., Rötig A. Mitochondrial respiratory chain complex assembly and function during human foetal development. Mol. Genet. Metab. 2008;94:120–126. doi: 10.1016/j.ymgme.2007.12.007. PubMed DOI
Pejznochová M., Tesarová M., Honzík T., Hansíková H., Magner M., Zeman J. The developmental changes in mitochondrial DNA content per cell in human cord blood leukocytes during gestation. Physiol. Res. 2008;57:947–955. PubMed
Pejznochova M., Tesarova M., Hansikova H., Magner M., Honzik T., Vinsova K., Hajkova Z., Havlickova V., Zeman J. Mitochondrial DNA content and expression of genes involved in mtDNA transcription, regulation and maintenance during human foetal development. Mitochondrion. 2010;10:321–329. doi: 10.1016/j.mito.2010.01.006. PubMed DOI
Lenaz G., Genova M.L. Structural and functional organization of the mitochondrial respiratory chain: A dynamic super-assembly. Int. J. Biochem. Cell Biol. 2009;41:1750–1772. doi: 10.1016/j.biocel.2009.04.003. PubMed DOI
Schägger H., Pfeiffer K. The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J. Biol. Chem. 2001;276:37861–37867. doi: 10.1074/jbc.M106474200. PubMed DOI
Lenaz G., Genova M.L. Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochim. Biophys. Acta. 2009;1787:563–573. doi: 10.1016/j.bbabio.2009.02.019. PubMed DOI
Bentinger M., Brismar K., Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007;7:S41–S50. doi: 10.1016/j.mito.2007.02.006. PubMed DOI
Hermans N., Cos P., De Meyer G.R., Maes L., Pieters L., Vanden Berghe D., Vlietinck A.J., De Bruyne T. Study of potential systemic oxidative stress animal models for the evaluation of antioxidant activity: Status of lipid peroxidation and fat-soluble antioxidants. J. Pharm. Pharmacol. 2007;59:131–136. doi: 10.1211/jpp.59.1.0017. PubMed DOI
Bravo E., Palleschi S., Rossi B., Napolitano M., Tiano L., D’Amore E., Botham K.M. Coenzyme Q metabolism is disturbed in high fat diet-induced non-alcoholic fatty liver disease in rats. Int. J. Mol. Sci. 2012;13:1644–1657. doi: 10.3390/ijms13021644. PubMed DOI PMC
Turunen M., Olsson J., Dallner G. Metabolism and function of coenzyme Q. Biochim. Biophys. Acta. 2004;1660:171–199. doi: 10.1016/j.bbamem.2003.11.012. PubMed DOI
Guaras A., Perales-Clemente E., Calvo E., Acin-Perez R., Loureiro-Lopez M., Pujol C., Martinez-Carrascoso I., Nunez E., Garcia-Marques F., Rodriguez-Hernandez M.A., et al. The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency. Cell Rep. 2016;15:197–209. doi: 10.1016/j.celrep.2016.03.009. PubMed DOI
Sato S., Tsukahara H., Ohshima Y., Ohta N., Uchiyama M., Sekine K., Uetake T., Mayumi M. Changes of plasma coenzyme Q10 levels in early infancy. Redox Rep. 2004;9:289–290. doi: 10.1179/135100004225006768. PubMed DOI
Ochoa J.J., Ramirez-Tortosa M.C., Quiles J.L., Palomino N., Robles R., Mataix J., Huertas J.R. Oxidative stress in erythrocytes from premature and full-term infants during their first 72 h of life. Free Radic. Res. 2003;37:317–322. doi: 10.1080/1071576021000050438. PubMed DOI
Navas P., Villalba J.M., de Cabo R. The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion. 2007;7:S34–S40. doi: 10.1016/j.mito.2007.02.010. PubMed DOI
Martin A., Faes C., Debevec T., Rytz C., Millet G., Pialoux V. Preterm birth and oxidative stress: Effects of acute physical exercise and hypoxia physiological responses. Redox Biol. 2018;17:315–322. doi: 10.1016/j.redox.2018.04.022. PubMed DOI PMC
Perez M., Robbins M.E., Revhaug C., Saugstad O.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med. 2019;142:61–72. doi: 10.1016/j.freeradbiomed.2019.03.035. PubMed DOI PMC
Perrone S., Laschi E., Buonocore G. Biomarkers of oxidative stress in the foetus and in the newborn. Free Radic. Biol. Med. 2019;142:23–31. doi: 10.1016/j.freeradbiomed.2019.03.034. PubMed DOI
Ferrante G., Carota G., Li Volti G., Giuffre M. Biomarkers of Oxidative Stress for Neonatal Lung Disease. Front. Pediatr. 2021;9:618867. doi: 10.3389/fped.2021.618867. PubMed DOI PMC
Ozsurekci Y., Aykac K. Oxidative Stress Related Diseases in Newborns. Oxid. Med. Cell Longev. 2016;2016:2768365. doi: 10.1155/2016/2768365. PubMed DOI PMC
Torres-Cuevas I., Parra-Llorca A., Sanchez-Illana A., Nunez-Ramiro A., Kuligowski J., Chafer-Pericas C., Cernada M., Escobar J., Vento M. Oxygen and oxidative stress in the perinatal period. Redox Biol. 2017;12:674–681. doi: 10.1016/j.redox.2017.03.011. PubMed DOI PMC
Qin X., Cheng J., Zhong Y., Mahgoub O.K., Akter F., Fan Y., Aldughaim M., Xie Q., Qin L., Gu L., et al. Mechanism and Treatment Related to Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy. Front. Mol. Neurosci. 2019;12:88. doi: 10.3389/fnmol.2019.00088. PubMed DOI PMC
Serrenho I., Rosado M., Dinis A., Cardoso M.C., Graos M., Manadas B., Baltazar G. Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy: A Systematic Review of Preclinical Studies. Int. J. Mol. Sci. 2021;22:3142. doi: 10.3390/ijms22063142. PubMed DOI PMC
Izquierdo J.M., Ricart J., Ostronoff L.K., Egea G., Cuezva J.M. Changing patterns of transcriptional and post-transcriptional control of beta-F1-ATPase gene expression during mitochondrial biogenesis in liver. J. Biol. Chem. 1995;270:10342–10350. doi: 10.1074/jbc.270.17.10342. PubMed DOI
Kim K., Lecordier A., Bowman L.H. Both nuclear and mitochondrial cytochrome c oxidase mRNA levels increase dramatically during mouse postnatal development. Biochem. J. 1995;306:353–358. doi: 10.1042/bj3060353. PubMed DOI PMC
Cuezva J.M., Ostronoff L.K., Ricart J., López de Heredia M., Di Liegro C.M., Izquierdo J.M. Mitochondrial biogenesis in the liver during development and oncogenesis. J. Bioenerg. Biomembr. 1997;29:365–377. doi: 10.1023/A:1022450831360. PubMed DOI
Willers I.M., Martínez-Reyes I., Martínez-Diez M., Cuezva J.M. miR-127-5p targets the 3’UTR of human β-F1-ATPase mRNA and inhibits its translation. Biochim. Biophys. Acta. 2012;1817:838–848. doi: 10.1016/j.bbabio.2012.03.005. PubMed DOI
Spacilova J., Hulkova M., Hrustincova A., Capek V., Tesarova M., Hansikova H., Zeman J. Analysis of Expression Profiles of Genes Involved in F0F1-ATP Synthase Biogenesis During Perinatal Development in Rat Liver and Skeletal Muscle. Physiol. Res. 2016;65:597–608. doi: 10.33549/physiolres.933126. PubMed DOI
Chapple R.H., Tizioto P.C., Wells K.D., Givan S.A., Kim J., McKay S.D., Schnabel R.D., Taylor J.F. Characterization of the rat developmental liver transcriptome. Physiol. Genomics. 2013;45:301–311. doi: 10.1152/physiolgenomics.00128.2012. PubMed DOI PMC
Kolarova H., Krizova J., Hulkova M., Hansikova H., Hulkova H., Smid V., Zeman J., Honzik T., Tesarova M. Changes in transcription pattern lead to a marked decrease in COX, CS and SQR activity after the developmental point of the 22(nd) gestational week. Physiol. Res. 2018;67:79–91. doi: 10.33549/physiolres.933542. PubMed DOI
R: A language and Environment for Statistical Computing, 2014: “R Core Team”. [(accessed on 3 May 2021)]; Available online: http://www.r-project.org/
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI
Rustin P., Chretien D., Bourgeron T., Gérard B., Rötig A., Saudubray J.M., Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta. 1994;228:35–51. doi: 10.1016/0009-8981(94)90055-8. PubMed DOI
Wharton D., Tzagoloff A. Cytochrome oxidase from beef heart mitochondria. Methods Enzymol. 1967;10:245–250. doi: 10.1016/0076-6879(67)10048-7. DOI
Mosca F., Fattorini D., Bompadre S., Littarru G.P. Assay of coenzyme Q(10) in plasma by a single dilution step. Anal. Biochem. 2002;305:49–54. doi: 10.1006/abio.2002.5653. PubMed DOI
Lang J.K., Gohil K., Packer L. Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions. Anal. Biochem. 1986;157:106–116. doi: 10.1016/0003-2697(86)90203-4. PubMed DOI
The Gene Ontology C. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017;45:D331–D338. doi: 10.1093/nar/gkw1108. PubMed DOI PMC
Mi H., Huang X., Muruganujan A., Tang H., Mills C., Kang D., Thomas P.D. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45:D183–D189. doi: 10.1093/nar/gkw1138. PubMed DOI PMC
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC
Vijay V., Han T., Moland C.L., Kwekel J.C., Fuscoe J.C., Desai V.G. Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages. PLoS ONE. 2015;10:e0117047. doi: 10.1371/journal.pone.0117047. PubMed DOI PMC
Ernst J., Bar-Joseph Z. STEM: A tool for the analysis of short time series gene expression data. BMC Bioinform. 2006;7:191. doi: 10.1186/1471-2105-7-191. PubMed DOI PMC
Saeed A.I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T., Thiagarajan M., et al. TM4: A free, open-source system for microarray data management and analysis. Biotechniques. 2003;34:374–378. doi: 10.2144/03342mt01. PubMed DOI
Kim Y., Yang D.S., Katti P., Glancy B. Protein composition of the muscle mitochondrial reticulum during postnatal development. J. Physiol. 2019;597:2707–2727. doi: 10.1113/JP277579. PubMed DOI PMC
Ouyang H., Wang Z., Chen X., Yu J., Li Z., Nie Q. Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development. Front. Physiol. 2017;8:281. doi: 10.3389/fphys.2017.00281. PubMed DOI PMC
Piquereau J., Ventura-Clapier R. Maturation of Cardiac Energy Metabolism During Perinatal Development. Front. Physiol. 2018;9:959. doi: 10.3389/fphys.2018.00959. PubMed DOI PMC
Cardoso-Moreira M., Halbert J., Valloton D., Velten B., Chen C., Shao Y., Liechti A., Ascencao K., Rummel C., Ovchinnikova S., et al. Gene expression across mammalian organ development. Nature. 2019;571:505–509. doi: 10.1038/s41586-019-1338-5. PubMed DOI PMC
Hurley E., Zabala V., Boylan J.M., Gruppuso P.A., Sanders J.A. Hepatic Gene Expression During the Perinatal Transition in the Rat. Gene Expr. 2018;19:1–13. doi: 10.3727/105221618X15293258688953. PubMed DOI PMC
Fernandez-Ayala D.J., Guerra I., Jimenez-Gancedo S., Cascajo M.V., Gavilan A., Dimauro S., Hirano M., Briones P., Artuch R., De Cabo R., et al. Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: A modelling study for human coenzyme Q10 deficiencies. BMJ Open. 2013;3 doi: 10.1136/bmjopen-2012-002524. PubMed DOI PMC
Stefely J.A., Reidenbach A.G., Ulbrich A., Oruganty K., Floyd B.J., Jochem A., Saunders J.M., Johnson I.E., Minogue C.E., Wrobel R.L., et al. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis. Mol. Cell. 2015;57:83–94. doi: 10.1016/j.molcel.2014.11.002. PubMed DOI PMC
Vazquez Fonseca L., Doimo M., Calderan C., Desbats M.A., Acosta M.J., Cerqua C., Cassina M., Ashraf S., Hildebrandt F., Sartori G., et al. Mutations in COQ8B (ADCK4) found in patients with steroid-resistant nephrotic syndrome alter COQ8B function. Hum. Mutat. 2018;39:406–414. doi: 10.1002/humu.23376. PubMed DOI PMC
Cullen J.K., Abdul Murad N., Yeo A., McKenzie M., Ward M., Chong K.L., Schieber N.L., Parton R.G., Lim Y.C., Wolvetang E., et al. AarF Domain Containing Kinase 3 (ADCK3) Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation. PLoS ONE. 2016;11:e0148213. doi: 10.1371/journal.pone.0148213. PubMed DOI PMC
Cullen J.K., Abdul Murad N., Yeo A., McKenzie M., Ward M., Chong K.L., Schieber N.L., Parton R.G., Lim Y.C., Wolvetang E., et al. Correction: AarF Domain Containing Kinase 3 (ADCK3) Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation. PLoS ONE. 2016;11:e0160162. doi: 10.1371/journal.pone.0160162. PubMed DOI PMC
Gonzalez-Mariscal I., Martin-Montalvo A., Vazquez-Fonseca L., Pomares-Viciana T., Sanchez-Cuesta A., Fernandez-Ayala D.J., Navas P., Santos-Ocana C. The mitochondrial phosphatase PPTC7 orchestrates mitochondrial metabolism regulating coenzyme Q10 biosynthesis. Biochim. Biophys. Acta Bioenerg. 2018;1859:1235–1248. doi: 10.1016/j.bbabio.2018.09.369. PubMed DOI
Lapointe C.P., Stefely J.A., Jochem A., Hutchins P.D., Wilson G.M., Kwiecien N.W., Coon J.J., Wickens M., Pagliarini D.J. Multi-omics Reveal Specific Targets of the RNA-Binding Protein Puf3p and Its Orchestration of Mitochondrial Biogenesis. Cell Syst. 2018;6:125–135. doi: 10.1016/j.cels.2017.11.012. PubMed DOI PMC
Kershaw C.J., Costello J.L., Talavera D., Rowe W., Castelli L.M., Sims P.F., Grant C.M., Ashe M.P., Hubbard S.J., Pavitt G.D. Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p. Sci Rep. 2015;5:15518. doi: 10.1038/srep15518. PubMed DOI PMC
Lin K., Qiang W., Zhu M., Ding Y., Shi Q., Chen X., Zsiros E., Wang K., Yang X., Kurita T., et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434–2450. doi: 10.1016/j.celrep.2019.01.111. PubMed DOI PMC
Veling M.T., Reidenbach A.G., Freiberger E.C., Kwiecien N.W., Hutchins P.D., Drahnak M.J., Jochem A., Ulbrich A., Rush M.J.P., Russell J.D., et al. Multi-omic Mitoprotease Profiling Defines a Role for Oct1p in Coenzyme Q Production. Mol. Cell. 2017;68:970–977. doi: 10.1016/j.molcel.2017.11.023. PubMed DOI PMC
Eldomery M.K., Akdemir Z.C., Vogtle F.N., Charng W.L., Mulica P., Rosenfeld J.A., Gambin T., Gu S., Burrage L.C., Al Shamsi A., et al. MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Med. 2016;8:106. doi: 10.1186/s13073-016-0360-6. PubMed DOI PMC
Gennarino V.A., Palmer E.E., McDonell L.M., Wang L., Adamski C.J., Koire A., See L., Chen C.A., Schaaf C.P., Rosenfeld J.A., et al. A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures. Cell. 2018;172:924–936. doi: 10.1016/j.cell.2018.02.006. PubMed DOI PMC
Shalata A., Edery M., Habib C., Genizi J., Mahroum M., Khalaily L., Assaf N., Segal I., Abed El Rahim H., Shapira H., et al. Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature. Neurochem. Res. 2019;44:2372–2384. doi: 10.1007/s11064-019-02786-5. PubMed DOI
Traschutz A., Schirinzi T., Laugwitz L., Murray N.H., Bingman C.A., Reich S., Kern J., Heinzmann A., Vasco G., Bertini E., et al. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann. Neurol. 2020 doi: 10.1002/ana.25751. PubMed DOI PMC
Alcazar-Fabra M., Trevisson E., Brea-Calvo G. Clinical syndromes associated with Coenzyme Q10 deficiency. Essays Biochem. 2018;62:377–398. doi: 10.1042/EBC20170107. PubMed DOI
Hughes B.G., Harrison P.M., Hekimi S. Estimating the occurrence of primary ubiquinone deficiency by analysis of large-scale sequencing data. Sci. Rep. 2017;7:17744. doi: 10.1038/s41598-017-17564-y. PubMed DOI PMC
Levavasseur F., Miyadera H., Sirois J., Tremblay M.L., Kita K., Shoubridge E., Hekimi S. Ubiquinone is necessary for mouse embryonic development but is not essential for mitochondrial respiration. J. Biol. Chem. 2001;276:46160–46164. doi: 10.1074/jbc.M108980200. PubMed DOI
Quinzii C.M., Garone C., Emmanuele V., Tadesse S., Krishna S., Dorado B., Hirano M. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. FASEB J. 2013;27:612–621. doi: 10.1096/fj.12-209361. PubMed DOI PMC
Garcia-Corzo L., Luna-Sanchez M., Doerrier C., Garcia J.A., Guaras A., Acin-Perez R., Bullejos-Peregrin J., Lopez A., Escames G., Enriquez J.A., et al. Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Hum. Mol. Genet. 2013;22:1233–1248. doi: 10.1093/hmg/dds530. PubMed DOI
Coenzyme Q10: A Biomarker in the Differential Diagnosis of Parkinsonian Syndromes