Noninvasive diagnostics of mitochondrial disorders in isolated lymphocytes with high resolution respirometry
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26675066
PubMed Central
PMC4633944
DOI
10.1016/j.bbacli.2014.09.003
PII: S2214-6474(14)00020-8
Knihovny.cz E-zdroje
- Klíčová slova
- AA, antimycin A, BNE, Blue Native PAGE, COX, cytochrome c oxidase, Diagnostics, FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, GP, glycerol-3-phosphate, GPDH, mitochondrial FAD-dependent glycerophosphate dehydrogenase, Lymphocytes, Mitochondrial diseases, OXPHOS, oxidative phosphorylation, Oxidative phosphorylation, PAGE, polyacrylamide gel electrophoresis, Respirometry, TMPD, tetramethylphenylenediamine, TMRM, tetramethylrhodamine methyl ester, cI–cV, respiratory chain complexes I–V, s3, state 3-ADP, s3u, state 3-uncoupled, s4o, state 4-oligomycin, ΔΨm, mitochondrial membrane potential,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Mitochondrial diseases belong to the most severe inherited metabolic disorders affecting pediatric population. Despite detailed knowledge of mtDNA mutations and progress in identification of affected nuclear genes, diagnostics of a substantial part of mitochondrial diseases relies on clinical symptoms and biochemical data from muscle biopsies and cultured fibroblasts. METHODS: To investigate manifestation of oxidative phosphorylation defects in isolated lymphocytes, digitonin-permeabilized cells from 48 children were analyzed by high resolution respirometry, cytofluorometric detection of mitochondrial membrane potential and immunodetection of respiratory chain proteins with SDS and Blue Native electrophoreses. RESULTS: Evaluation of individual respiratory complex activities, ATP synthesis, kinetic parameters of mitochondrial respiratory chain and the content and subunit composition of respiratory chain complexes enabled detection of inborn defects of respiratory complexes I, IV and V within 2 days. Low respiration with NADH-dependent substrates and increased respiration with glycerol-3-phosphate revealed complex I defects; changes in p 50 for oxygen and elevated uncoupling control ratio pointed to complex IV deficiency due to SURF1 or SCO2 mutation; high oligomycin sensitivity of state 3-ADP respiration, upregulated mitochondrial membrane potential and low content of complex V were found in lymphocytes with ATP synthase deficiency due to TMEM70 mutations. CONCLUSION: Based on our results, we propose the best biochemical parameters predictive for defects of respiratory complexes I, IV and V manifesting in peripheral blood lymphocytes. GENERAL SIGNIFICANCE: The noninvasiveness, reliability and speed of an approach utilizing novel biochemical criteria demonstrate the high potential of isolated lymphocytes for diagnostics of oxidative phosphorylation disorders in pediatric patients.
Department of Neonatology Thomayer Hospital 140 00 Prague 4 Czech Republic
Department of Pediatrics and Adolescent Medicine Thomayer Hospital 140 00 Prague 4 Czech Republic
Zobrazit více v PubMed
DiMauro S. Mitochondrial medicine. Biochim. Biophys. Acta. 2004;1659:107–114. PubMed
DiMauro S. Mitochondrial DNA medicine. Biosci. Rep. 2007;27:5–9. PubMed
Vafai S.B., Mootha V.K. Mitochondrial disorders as windows into an ancient organelle. Nature. 2012;491:374–383. PubMed
Cizkova A., Stranecky V., Mayr J.A., Tesarova M., Havlickova V., Paul J., Ivanek R., Kuss A.W., Hansikova H., Kaplanova V., Vrbacky M., Hartmannova H., Noskova L., Honzik T., Drahota Z., Magner M., Hejzlarova K., Sperl W., Zeman J., Houstek J., Kmoch S. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat. Genet. 2008;40:1288–1290. PubMed
Houstek J., Kmoch S., Zeman J. TMEM70 protein — a novel ancillary factor of mammalian ATP synthase. Biochim. Biophys. Acta. 2009;1787:529–532. PubMed
Antonicka H., Ostergaard E., Sasarman F., Weraarpachai W., Wibrand F., Pedersen A.M., Rodenburg R.J., van der Knaap M.S., Smeitink J.A., Chrzanowska-Lightowlers Z.M., Shoubridge E.A. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am. J. Hum. Genet. 2010;87:115–122. PubMed PMC
Weraarpachai W., Sasarman F., Nishimura T., Antonicka H., Aure K., Rotig A., Lombes A., Shoubridge E.A. Mutations in C12orf62, a factor that couples COX I synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic acidosis. Am. J. Hum. Genet. 2012;90:142–151. PubMed PMC
Sugiana C., Pagliarini D.J., McKenzie M., Kirby D.M., Salemi R., Abu-Amero K.K., Dahl H.H., Hutchison W.M., Vascotto K.A., Smith S.M., Newbold R.F., Christodoulou J., Calvo S., Mootha V.K., Ryan M.T., Thorburn D.R. Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am. J. Hum. Genet. 2008;83:468–478. PubMed PMC
Weraarpachai W., Antonicka H., Sasarman F., Seeger J., Schrank B., Kolesar J.E., Lochmuller H., Chevrette M., Kaufman B.A., Horvath R., Shoubridge E.A. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet. 2009;41:833–837. PubMed
Janer A., Antonicka H., Lalonde E., Nishimura T., Sasarman F., Brown G.K., Brown R.M., Majewski J., Shoubridge E.A. An RMND1 mutation causes encephalopathy associated with multiple oxidative phosphorylation complex deficiencies and a mitochondrial translation defect. Am. J. Hum. Genet. 2012;91:737–743. PubMed PMC
Ghezzi D., Goffrini P., Uziel G., Horvath R., Klopstock T., Lochmuller H., D'Adamo P., Gasparini P., Strom T.M., Prokisch H., Invernizzi F., Ferrero I., Zeviani M. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat. Genet. 2009;41:654–656. PubMed
Hao H.X., Khalimonchuk O., Schraders M., Dephoure N., Bayley J.P., Kunst H., Devilee P., Cremers C.W., Schiffman J.D., Bentz B.G., Gygi S.P., Winge D.R., Kremer H., Rutter J. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325:1139–1142. PubMed PMC
Pagliarini D.J., Calvo S.E., Chang B., Sheth S.A., Vafai S.B., Ong S.E., Walford G.A., Sugiana C., Boneh A., Chen W.K., Hill D.E., Vidal M., Evans J.G., Thorburn D.R., Carr S.A., Mootha V.K. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134:112–123. PubMed PMC
Bohm M., Pronicka E., Karczmarewicz E., Pronicki M., Piekutowska-Abramczuk D., Sykut-Cegielska J., Mierzewska H., Hansikova H., Vesela K., Tesarova M., Houstkova H., Houstek J., Zeman J. Retrospective, multicentric study of 180 children with cytochrome C oxidase deficiency. Pediatr. Res. 2006;59:21–26. PubMed
Rotig A., Cormier V., Blanche S., Bonnefont J.P., Ledeist F., Romero N., Schmitz J., Rustin P., Fischer A., Saudubray J.M. Pearson's marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J. Clin. Invest. 1990;86:1601–1608. PubMed PMC
Cormier V., Rotig A., Tardieu M., Colonna M., Saudubray J.M., Munnich A. Autosomal dominant deletions of the mitochondrial genome in a case of progressive encephalomyopathy. Am. J. Hum. Genet. 1991;48:643–648. PubMed PMC
Burgeois M., Goutieres F., Chretien D., Rustin P., Munnich A., Aicardi J. Deficiency in complex II of the respiratory chain, presenting as a leukodystrophy in two sisters with Leigh syndrome. Brain Dev. 1992;14:404–408. PubMed
Tatuch Y., Robinson B.H. The mitochondrial DNA mutation at 8993 associated with NARP slows the rate of ATP synthesis in isolated lymphoblast mitochondria. Biochem. Biophys. Res. Commun. 1993;192:124–128. PubMed
Rustin P., Chretien D., Bourgeron T., Gerard B., Rotig A., Saudubray J.M., Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta. 1994;228:35–51. PubMed
Chretien D., Rustin P., Bourgeron T., Rotig A., Saudubray J.M., Munnich A. Reference charts for respiratory chain activities in human tissues. Clin. Chim. Acta. 1994;228:53–70. PubMed
Uziel G., Moroni I., Lamantea E., Fratta G.M., Ciceri E., Carrara F., Zeviani M. Mitochondrial disease associated with the T8993G mutation of the mitochondrial ATPase 6 gene: a clinical, biochemical, and molecular study in six families. J. Neurol. Neurosurg. Psychiatry. 1997;63:16–22. PubMed PMC
Artuch R., Colome C., Playan A., Alcaine M.J., Briones P., Montoya J., Vilaseca M.A., Pineda M. Oxygen consumption measurement in lymphocytes for the diagnosis of pediatric patients with oxidative phosphorylation diseases. Clin. Biochem. 2000;33:481–485. PubMed
Brown M.D., Trounce I.A., Jun A.S., Allen J.C., Wallace D.C. Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber's hereditary optic neuropathy mitochondrial DNA mutation. J. Biol. Chem. 2000;275:39831–39836. PubMed
Capkova M., Hansikova H., Godinot C., Houst'kova H., Houstek J., Zeman J. A new missense mutation of 574C>T in the SURF1 gene—biochemical and molecular genetic study in seven children with Leigh syndrome. Cas. Lek. Cesk. 2002;141:636–641. PubMed
Chretien D., Benit P., Chol M., Lebon S., Rotig A., Munnich A., Rustin P. Assay of mitochondrial respiratory chain complex I in human lymphocytes and cultured skin fibroblasts. Biochem. Biophys. Res. Commun. 2003;301:222–224. PubMed
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 1976;72:248–254. PubMed
Pecina P., Capkova M., Chowdhury S.K., Drahota Z., Dubot A., Vojtiskova A., Hansikova H., Houst'kova H., Zeman J., Godinot C., Houstek J. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim. Biophys. Acta. 2003;1639:53–63. PubMed
Pecina P., Gnaiger E., Zeman J., Pronicka E., Houstek J. Decreased affinity for oxygen of cytochrome-c oxidase in Leigh syndrome caused by SURF1 mutations. Am. J. Physiol. Cell Physiol. 2004;287:C1384–C1388. PubMed
Gnaiger E., Steinlechner-Maran R., Mendez G., Eberl T., Margreiter R. Control of mitochondrial and cellular respiration by oxygen. J. Bioenerg. Biomembr. 1995;27:583–596. PubMed
Schagger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987;166:368–379. PubMed
Wittig I., Braun H.P., Schagger H. Blue native PAGE. Nat. Protoc. 2006;1:418–428. PubMed
Floryk D., Houstek J. Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin. Biosci. Rep. 1999;19:27–34. PubMed
Tiranti V., Hoertnagel K., Carrozzo R., Galimberti C., Munaro M., Granatiero M., Zelante L., Gasparini P., Marzella R., Rocchi M., Bayona-Bafaluy M.P., Enriquez J.A., Uziel G., Bertini E., Dionisi-Vici C., Franco B., Meitinger T., Zeviani M. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am. J. Hum. Genet. 1998;63:1609–1621. PubMed PMC
Zhu Z., Yao J., Johns T., Fu K., De Bie I., Macmillan C., Cuthbert A.P., Newbold R.F., Wang J., Chevrette M., Brown G.K., Brown R.M., Shoubridge E.A. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat. Genet. 1998;20:337–343. PubMed
Kovarova N., Cizkova Vrbacka A., Pecina P., Stranecky V., Pronicka E., Kmoch S., Houstek J. Adaptation of respiratory chain biogenesis to cytochrome c oxidase deficiency caused by SURF1 gene mutations. Biochim. Biophys. Acta. 2012;1822:1114–1124. PubMed
Gnaiger E., Lassnig B., Kuznetsov A., Rieger G., Margreiter R. Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J. Exp. Biol. 1998;201:1129–1139. PubMed
Honzik T., Tesarova M., Mayr J.A., Hansikova H., Jesina P., Bodamer O., Koch J., Magner M., Freisinger P., Huemer M., Kostkova O., van Coster R., Kmoch S., Houstek J., Sperl W., Zeman J. Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch. Dis. Child. 2010;95:296–301. PubMed
Mazat J.P., Rossignol R., Malgat M., Rocher C., Faustin B., Letellier T. What do mitochondrial diseases teach us about normal mitochondrial functions…that we already knew: threshold expression of mitochondrial defects. Biochim. Biophys. Acta. 2001;1504:20–30. PubMed
Rossignol R., Faustin B., Rocher C., Malgat M., Mazat J.P., Letellier T. Mitochondrial threshold effects. Biochem. J. 2003;370:751–762. PubMed PMC
Mracek T., Drahota Z., Houstek J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim. Biophys. Acta. 2013;1827:401–410. PubMed
Jaksch M., Ogilvie I., Yao J., Kortenhaus G., Bresser H.G., Gerbitz K.D., Shoubridge E.A. Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency. Hum. Mol. Genet. 2000;9:795–801. PubMed
Vesela K., Hansikova H., Tesarova M., Martasek P., Elleder M., Houstek J., Zeman J. Clinical, biochemical and molecular analyses of six patients with isolated cytochrome c oxidase deficiency due to mutations in the SCO2 gene. Acta Paediatr. 2004;93:1312–1317. PubMed
Hejzlarova K., Mracek T., Vrbacky M., Kaplanova V., Karbanova V., Nuskova H., Pecina P., Houstek J. Nuclear genetic defects of mitochondrial ATP synthase. Physiol. Res. 2014;63(Suppl. 1):S57–S71. PubMed
Larsson N.G., Tulinius M.H., Holme E., Oldfors A., Andersen O., Wahlstrom J., Aasly J. Segregation and manifestations of the mtDNA tRNA(Lys) A→G(8344) mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet. 1992;51:1201–1212. PubMed PMC
Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A→G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet. 1993;52:551–556. PubMed PMC
Tulinius M.H., Houshmand M., Larsson N.G., Holme E., Oldfors A., Holmberg E., Wahlstrom J. De novo mutation in the mitochondrial ATP synthase subunit 6 gene (T8993G) with rapid segregation resulting in Leigh syndrome in the offspring. Hum. Genet. 1995;96:290–294. PubMed
Houshmand M., Lindberg C., Moslemi A.R., Oldfors A., Holme E. A novel heteroplasmic point mutation in the mitochondrial tRNA(Lys) gene in a sporadic case of mitochondrial encephalomyopathy: de novo mutation and no transmission to the offspring. Hum. Mutat. 1999;13:203–209. PubMed
Lamantea E., Carrara F., Mariotti C., Morandi L., Tiranti V., Zeviani M. A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul. Disord. 2002;12:49–52. PubMed
Leo-Kottler B., Luberichs J., Besch D., Christ-Adler M., Fauser S. Leber's hereditary optic neuropathy: clinical and molecular genetic results in a patient with a point mutation at np T11253C (isoleucine to threonine) in the ND4 gene and spontaneous recovery. Graefes Arch. Clin. Exp. Ophthalmol. 2002;240:758–764. PubMed
Chacko B.K., Kramer P.A., Ravi S., Johnson M.S., Hardy R.W., Ballinger S.W., Darley-Usmar V.M. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab. Invest. 2013;93:690–700. PubMed PMC
Widlansky M.E., Wang J., Shenouda S.M., Hagen T.M., Smith A.R., Kizhakekuttu T.J., Kluge M.A., Weihrauch D., Gutterman D.D., Vita J.A. Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. Transl. Res. 2010;156:15–25. PubMed PMC
Japiassu A.M., Santiago A.P., d'Avila J.C., Garcia-Souza L.F., Galina A., Castro Faria-Neto H.C., Bozza F.A., Oliveira M.F. Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5′-triphosphate synthase activity. Crit. Care Med. 2011;39:1056–1063. PubMed
Leuner K., Schulz K., Schutt T., Pantel J., Prvulovic D., Rhein V., Savaskan E., Czech C., Eckert A., Muller W.E. Peripheral mitochondrial dysfunction in Alzheimer's disease: focus on lymphocytes. Mol. Neurobiol. 2012;46:194–204. PubMed
Tyurina Y.Y., Winnica D.E., Kapralova V.I., Kapralov A.A., Tyurin V.A., Kagan V.E. LC/MS characterization of rotenone induced cardiolipin oxidation in human lymphocytes: implications for mitochondrial dysfunction associated with Parkinson's disease. Mol. Nutr. Food Res. 2013;57:1410–1422. PubMed PMC
Lee S., Sheck L., Crowston J.G., Van Bergen N.J., O'Neill E.C., O'Hare F., Kong Y.X., Chrysostomou V., Vincent A.L., Trounce I.A. Impaired complex-I-linked respiration and ATP synthesis in primary open-angle glaucoma patient lymphoblasts. Invest. Ophthalmol. Vis. Sci. 2012;53:2431–2437. PubMed
Cordero M.D., De Miguel M., Moreno Fernandez A.M., Carmona Lopez I.M., Garrido Maraver J., Cotan D., Gomez Izquierdo L., Bonal P., Campa F., Bullon P., Navas P., Sanchez Alcazar J.A. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Res. Ther. 2010;12:R17. PubMed PMC