Molecular Characterization of OXA-48-Like-Producing Enterobacteriaceae in the Czech Republic and Evidence for Horizontal Transfer of pOXA-48-Like Plasmids
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články
PubMed
27855076
PubMed Central
PMC5278705
DOI
10.1128/aac.01889-16
PII: AAC.01889-16
Knihovny.cz E-zdroje
- Klíčová slova
- ColE2-like, IncL, IncX3, Klebsiella pneumoniae, OXA-181, OXA-232, Tn1999.2, Tn1999.5,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální chromozomy genetika MeSH
- bakteriální proteiny genetika metabolismus MeSH
- beta-laktamasy genetika metabolismus MeSH
- Enterobacteriaceae účinky léků enzymologie genetika MeSH
- Escherichia coli účinky léků enzymologie genetika MeSH
- Klebsiella pneumoniae účinky léků enzymologie genetika MeSH
- mikrobiální testy citlivosti MeSH
- plazmidy genetika MeSH
- přenos genů horizontální genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- beta-laktamasy MeSH
- carbapenemase MeSH Prohlížeč
The aim of this study was to characterize the first cases and outbreaks of OXA-48-like-producing Enterobacteriaceae recovered from hospital settings in the Czech Republic. From 2013 to 2015, 22 Klebsiella pneumoniae isolates, 3 Escherichia coli isolates, and 1 Enterobacter cloacae isolate producing OXA-48-like carbapenemases were isolated from 20 patients. Four of the patients were colonized or infected by two or three different OXA-48-like producers. The K. pneumoniae isolates were classified into nine sequence types (STs), with ST101 being predominant (n = 8). The E. coli isolates were of different STs, while the E. cloacae isolate belonged to ST109. Twenty-four isolates carried blaOXA-48, while two isolates carried blaOXA-181 or blaOXA-232 Almost all isolates (n = 22) carried blaOXA-48-positive plasmids of a similar size (∼60 kb), except the two isolates producing OXA-181 or OXA-232. In an ST45 K. pneumoniae isolate and an ST38 E. coli isolate, S1 nuclease profiling plus hybridization indicated a chromosomal location of blaOXA-48 Sequencing showed that the majority of blaOXA-48-carrying plasmids exhibited high degrees of identity with the pOXA-48-like plasmid pE71T. Additionally, two novel pE71T derivatives, pOXA-48_30715 and pOXA-48_30891, were observed. The blaOXA-181-carrying plasmid was identical to the IncX3 plasmid pOXA181_EC14828, while the blaOXA-232-carrying plasmid was a ColE2-type plasmid, being a novel derivative of pOXA-232. Finally, sequencing data showed that the ST45 K. pneumoniae and ST38 E. coli isolates harbored the IS1R-based composite transposon Tn6237 containing blaOXA-48 integrated into their chromosomes. These findings underlined that the horizontal transfer of pOXA-48-like plasmids has played a major role in the dissemination of blaOXA-48 in the Czech Republic. In combination with the difficulties with their detection, OXA-48 producers constitute an important public threat.
Zobrazit více v PubMed
Poirel L, Heritier C, Tolun V, Nordmann P. 2004. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:15–22. doi:10.1128/AAC.48.1.15-22.2004. PubMed DOI PMC
Carrer A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P. 2008. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother 52:2950–2954. doi:10.1128/AAC.01672-07. PubMed DOI PMC
Poirel L, Potron A, Nordmann P. 2012. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 67:1597–1606. doi:10.1093/jac/dks121. PubMed DOI
Carrër A, Poirel L, Yilmaz M, Akan OA, Feriha C, Cuzon G, Matar G, Honderlick P, Nordmann P. 2010. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother 54:1369–1373. doi:10.1128/AAC.01312-09. PubMed DOI PMC
Cuzon G, Naas T, Lesenne A, Benhamou M, Nordmann P. 2010. Plasmid-mediated carbapenem-hydrolysing OXA-48 β-lactamase in Klebsiella pneumoniae from Tunisia. Int J Antimicrob Agents 36:91–93. doi:10.1016/j.ijantimicag.2010.02.014. PubMed DOI
Grundmann H, Livermore DM, Giske CG, Canton R, Rossolini GM, Campos J, Vatopoulos A, Gniadkowski M, Toth A, Pfeifer Y, Jarlier V, Carmeli Y, CNSE Working Group. 2010. Carbapenem-non-susceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Euro Surveill 15(46):pii=19711 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19711. PubMed
Thomas CP, Moore LS, Elamin N, Doumith M, Zhang J, Maharjan S, Warner M, Perry C, Turton JF, Johnstone C, Jepson A, Duncan ND, Holmes AH, Livermore DM, Woodford N. 2013. Early (2008-2010) hospital outbreak of Klebsiella pneumoniae producing OXA-48 carbapenemase in the UK. Int J Antimicrob Agents 42:531–536. doi:10.1016/j.ijantimicag.2013.08.020. PubMed DOI
Cuzon G, Ouanich J, Gondret R, Naas T, Nordmann P. 2011. Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob Agents Chemother 55:2420–2423. doi:10.1128/AAC.01452-10. PubMed DOI PMC
Glupczynski Y, Huang TD, Bouchahrouf W, Rezende de Castro R, Bauraing C, Gérard M, Verbruggen AM, Deplano A, Denis O, Bogaerts P. 2012. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int J Antimicrob Agents 39:168–172. doi:10.1016/j.ijantimicag.2011.10.005. PubMed DOI
Pfeifer Y, Schlatterer K, Engelmann E, Schiller RA, Frangenberg HR, Stiewe D, Holfelder M, Witte W, Nordmann P, Poirel L. 2012. Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob Agents Chemother 56:2125–2128. doi:10.1128/AAC.05315-11. PubMed DOI PMC
Barguigua A, El Otmani F, Talmi M, Zerouali K, Timinouni M. 2012. Emergence of carbapenem-resistant Enterobacteriaceae isolates in the Moroccan community. Diagn Microbiol Infect Dis 73:290–291. doi:10.1016/j.diagmicrobio.2012.03.011. PubMed DOI
Hrabák J, Niemczyková J, Chudáčková E, Fridrichová M, Studentová V, Cervená D, Urbášková P, Zemličková H. 2011. KPC-2-producing Klebsiella pneumoniae isolated from a Czech patient previously hospitalized in Greece and in vivo selection of colistin resistance. Folia Microbiol (Praha) 56:361–365. doi:10.1007/s12223-011-0057-6. PubMed DOI
Hrabak J, Papagiannitsis CC, Studentova V, Jakubu V, Fridrichová M, Zemlickova H, Czech Participants of European Antimicrobial Resistance Surveillance Network. 2013. Carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011. Euro Surveill 18(45):pii=20626. doi:10.2807/1560-7917.ES2013.18.45.20626. PubMed DOI
Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL, European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) Working Group. 2015. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill 20(45):pii=30062. doi:10.2807/1560-7917.ES.2015.20.45.30062. PubMed DOI
Papagiannitsis CC, Studentova V, Chudackova E, Bergerova T, Hrabak J, Radej J, Novak I. 2013. Identification of a New Delhi metallo-β-lactamase-4 (NDM-4)-producing Enterobacter cloacae from a Czech patient previously hospitalized in Sri Lanka. Folia Microbiol (Praha) 58:547–549. doi:10.1007/s12223-013-0247-5. PubMed DOI
Studentova V, Dobiasova H, Hedlova D, Dolejska M, Papagiannitsis CC, Hrabak J. 2015. Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain. Antimicrob Agents Chemother 59:1325–1328. doi:10.1128/AAC.04095-14. PubMed DOI PMC
Brañas P, Villa J, Viedma E, Mingorance J, Orellana MA, Chaves F. 2015. Molecular epidemiology of carbapenemase-producing Klebsiella pneumoniae in a hospital in Madrid: successful establishment of an OXA-48 ST11 clone. Int J Antimicrob Agents 46:111–116. doi:10.1016/j.ijantimicag.2015.02.019. PubMed DOI
Liapis E, Pantel A, Robert J, Nicolas-Chanoine MH, Cavalié L, van der Mee-Marquet N, de Champs C, Aissa N, Eloy C, Blanc V, Guyeux C, Hocquet D, Lavigne JP, Bertrand X, ONERBA. 2014. Molecular epidemiology of OXA-48-producing Klebsiella pneumoniae in France. Clin Microbiol Infect 20:O1121–O1123. doi:10.1111/1469-0691.12727. PubMed DOI
Potron A, Poirel L, Rondinaud E, Nordmann P. 2013. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill 18(31):pii=20549. doi:10.2807/1560-7917.ES2013.18.31.20549. PubMed DOI
Zurfluh K, Nüesch-Inderbinen MT, Poirel L, Nordmann P, Hächler H, Stephan R. 2015. Emergence of Escherichia coli producing OXA-48 β-lactamase in the community in Switzerland. Antimicrob Resist Infect Control 4:9. doi:10.1186/s13756-015-0051-x. PubMed DOI PMC
Turton JF, Doumith M, Hopkins KL, Perry C, Meunier D, Woodford N. 2016. Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene. J Med Microbiol 65:538–546. doi:10.1099/jmm.0.000248. PubMed DOI
Izdebski R, Baraniak A, Herda M, Fiett J, Bonten MJ, Carmeli Y, Goossens H, Hryniewicz W, Brun-Buisson C, Gniadkowski M, MOSAR WP2, WP3 and WP5 Study Groups. 2015. MLST reveals potentially high-risk international clones of Enterobacter cloacae. J Antimicrob Chemother 70:48–56. doi:10.1093/jac/dku359. PubMed DOI
Potron A, Nordmann P, Lafeuille E, Al Maskari Z, Al Rashdi F, Poirel L. 2011. Characterization of OXA-181, a carbapenem-hydrolyzing class D beta-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother 55:4896–4899. doi:10.1128/AAC.00481-11. PubMed DOI PMC
Potron A, Rondinaud E, Poirel L, Belmonte O, Boyer S, Camiade S, Nordmann P. 2013. Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D β-lactamase from Enterobacteriaceae. Int J Antimicrob Agents 41:325–329. doi:10.1016/j.ijantimicag.2012.11.007. PubMed DOI
Poirel L, Bonnin RA, Nordmann P. 2012. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 56:559–562. doi:10.1128/AAC.05289-11. PubMed DOI PMC
Power K, Wang J, Karczmarczyk M, Crowley B, Cotter M, Haughton P, Lynch M, Schaffer K, Fanning S. 2014. Molecular analysis of OXA-48-carrying conjugative IncL/M-like plasmids in clinical isolates of Klebsiella pneumoniae in Ireland. Microb Drug Resist 20:270–274. doi:10.1089/mdr.2013.0022. PubMed DOI
Carattoli A, Seiffert SN, Schwendener S, Perreten V, Endimiani A. 2015. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS One 10:e0123063. doi:10.1371/journal.pone.0123063. PubMed DOI PMC
Liu Y, Feng Y, Wu W, Xie Y, Wang X, Zhang X, Chen X, Zong Z. 2015. First report of OXA-181-producing Escherichia coli in China and characterization of the isolate using whole-genome sequencing. Antimicrob Agents Chemother 59:5022–5025. doi:10.1128/AAC.00442-15. PubMed DOI PMC
Beyrouthy R, Robin F, Delmas J, Gibold L, Dalmasso G, Dabboussi F, Hamzé M, Bonnet R. 2014. IS1R-mediated plasticity of IncL/M plasmids leads to the insertion of blaOXA-48 into the Escherichia coli chromosome. Antimicrob Agents Chemother 58:3785–3790. doi:10.1128/AAC.02669-14. PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing. 2012. EUCAST guidelines for detection of resistance mechanism and specific resistances of clinical and/or epidemiological importance. European Committee on Antimicrobial Susceptibility Testing, Växjö, Sweden: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Consultation/EUCAST_guidelines_detection_of_resistance_mechanisms_121222.pdf.
Papagiannitsis CC, Studentova V, Izdebski R, Oikonomou O, Pfeifer Y, Petinaki E, Hrabák J. 2015. MALDI-TOF MS meropenem hydrolysis assay with NH4HCO3, a reliable tool for the direct detection of carbapenemase activity. J Clin Microbiol 53:1731–1735. doi:10.1128/JCM.03094-14. PubMed DOI PMC
Lee K, Lim YS, Yong D, Yum JH, Chong Y. 2003. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 41:4623–4629. doi:10.1128/JCM.41.10.4623-4629.2003. PubMed DOI PMC
Doi Y, Potoski BA, Adams-Haduch JM, Sidjabat HE, Pasculle AW, Paterson DL. 2008. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J Clin Microbiol 46:4083–4086. doi:10.1128/JCM.01408-08. PubMed DOI PMC
Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. 2008. Genetic structure at the origin of acquisition of the beta-lactamase blaKPC gene. Antimicrob Agents Chemother 52:1257–1263. doi:10.1128/AAC.01451-07. PubMed DOI PMC
Ellington MJ, Kistler J, Livermore DM, Woodford N. 2007. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 59:321–322. PubMed
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. 2009. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054. doi:10.1128/AAC.00774-09. PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). 2003. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9:ix–xv. PubMed
Miyoshi-Akiyama T, Hayakawa K, Ohmagari N, Shimojima M, Kirikae T. 2013. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLoS One 8:e66358. doi:10.1371/journal.pone.0066358. PubMed DOI PMC
Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151. doi:10.1111/j.1365-2958.2006.05172.x. PubMed DOI PMC
Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–4182. doi:10.1128/JCM.43.8.4178-4182.2005. PubMed DOI PMC
Papagiannitsis CC, Študentová V, Jakubù V, Španělová P, Urbášková P, Žemličková H, Hrabák J. 2015. High prevalence of ST131 among CTX-M-producing Escherichia coli from community-acquired infections, in the Czech Republic. Microb Drug Resist 21:74–84. doi:10.1089/mdr.2014.0070. PubMed DOI
Coque TM, Novais A, Carattoli A, Poirel L, Pitout J, Peixe L, Baquero F, Cantón R, Nordmann P. 2008. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg Infect Dis 14:195–200. doi:10.3201/eid1402.070350. PubMed DOI PMC
Pałucha A, Mikiewicz B, Hryniewicz W, Gniadkowski M. 1999. Concurrent outbreaks of extended-spectrum beta-lactamase-producing organisms of the family Enterobacteriaceae in a Warsaw hospital. J Antimicrob Chemother 44:489–499. doi:10.1093/jac/44.4.489. PubMed DOI
Woodford N, Fagan EJ, Ellington MJ. 2006. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J Antimicrob Chemother 57:154–155. PubMed
Pérez-Pérez FJ, Hanson ND. 2002. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162. doi:10.1128/JCM.40.6.2153-2162.2002. PubMed DOI PMC
Vatopoulos AC, Philippon A, Tzouvelekis LS, Komninou Z, Legakis NJ. 1990. Prevalence of a transferable SHV-5 type beta-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J Antimicrob Chemother 26:635–648. doi:10.1093/jac/26.5.635. PubMed DOI
Cohen SN, Chang ACY, Hsu L. 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114. doi:10.1073/pnas.69.8.2110. PubMed DOI PMC
Barton BM, Harding GP, Zuccarelli AJ. 1995. A general method for detecting and sizing large plasmids. Anal Biochem 226:235–240. doi:10.1006/abio.1995.1220. PubMed DOI
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228. doi:10.1016/j.mimet.2005.03.018. PubMed DOI
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv e-Prints 1303:3997.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comp Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC
Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. doi:10.1371/journal.pone.0011147. PubMed DOI PMC