Phylogenomic analysis of a global collection of Escherichia coli ST38: evidence of interspecies and environmental transmission?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37675998
PubMed Central
PMC10654095
DOI
10.1128/msystems.01236-22
Knihovny.cz E-zdroje
- Klíčová slova
- EAEC, One Health, ST38, bla CTX-M, drug resistance, enteroaggregative E. coli, genomic surveillance, phylogenomics, β-lactamase genes,
- MeSH
- Escherichia coli genetika MeSH
- extraintestinální patogenní Escherichia coli * MeSH
- fylogeneze MeSH
- infekce vyvolané Escherichia coli * epidemiologie MeSH
- lidé MeSH
- plazmidy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Extraintestinal pathogenic Escherichia coli (ExPEC) sequence type (ST) 38 is one of the top 10 human pandemic lineages. Although a major cause of urinary tract and blood stream infections, ST38 has been poorly characterized from a global phylogenomic perspective. A comprehensive genome-scale analysis of 925 ST38 isolate genomes identified two broad ancestral clades and linkage of discrete ST38 clusters with specific bla CTX-M variants. In addition, the clades and clusters carry important virulence genes, with diverse but poorly characterized plasmids. Numerous putative interhost and environment transmission events were identified here by the presence of ST38 clones (defined as isolates with ≤35 SNPs) within humans, companion animals, food sources, urban birds, wildlife, and the environment. A small cluster of international ST38 clones from diverse sources, likely representing progenitors of a hospital outbreak that occurred in Brisbane, Australia, in 2017, was also identified. Our study emphasizes the importance of characterizing isolate genomes derived from nonhuman sources and geographical locations, without any selection bias.
Biomedical Center Charles University Brno Czech Republic
Faculty of Medicine University of Sydney Sydney New South Wales Australia
Zobrazit více v PubMed
Peirano G, Pitout JDD. 2019. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: update on molecular epidemiology and treatment options. Drugs 79:1529–1541. doi:10.1007/s40265-019-01180-3 PubMed DOI
Banerjee R, Strahilevitz J, Johnson JR, Nagwekar PP, Schora DM, Shevrin I, Du H, Peterson LR, Robicsek A. 2013. Predictors and molecular epidemiology of community-onset extended-spectrum beta-lactamase-producing Escherichia coli infection in a midwestern community. Infect Control Hosp Epidemiol 34:947–953. doi:10.1086/671725 PubMed DOI PMC
Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. 2019. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 32:e00135-18. doi:10.1128/CMR.00135-18 PubMed DOI PMC
Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM, Martin V, Peacock SJ, Parkhill J. 2017. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res 27:1437–1449. doi:10.1101/gr.216606.116 PubMed DOI PMC
Pitout JDD. 2021. Population dynamics of Escherichia coli causing bloodstream infections over extended time periods. mSphere 6:e0095621. doi:10.1128/msphere.00956-21 PubMed DOI PMC
Poolman JT, Wacker M. 2016. Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J Infect Dis 213:6–13. doi:10.1093/infdis/jiv429 PubMed DOI PMC
La Combe B, Clermont O, Messika J, Eveillard M, Kouatchet A, Lasocki S, Corvec S, Lakhal K, Billard-Pomares T, Fernandes R, Armand-Lefevre L, Bourdon S, Reignier J, Fihman V, de Prost N, Bador J, Goret J, Wallet F, Denamur E, Ricard J-D, Colocoli group . 2019. Pneumonia-specific Escherichia coli with distinct phylogenetic and virulence profiles, France, 2012-2014. Emerg Infect Dis 25:710–718. doi:10.3201/eid2504.180944 PubMed DOI PMC
Baker S, Thomson N, Weill FX, Holt KE. 2018. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 360:733–738. doi:10.1126/science.aar3777 PubMed DOI PMC
Denamur E, Clermont O, Bonacorsi S, Gordon D. 2021. The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol 19:37–54. doi:10.1038/s41579-020-0416-x PubMed DOI
Doumith M, Day M, Ciesielczuk H, Hope R, Underwood A, Reynolds R, Wain J, Livermore DM, Woodford N. 2015. Rapid identification of major Escherichia coli sequence types causing urinary tract and bloodstream infections. J Clin Microbiol 53:160–166. doi:10.1128/JCM.02562-14 PubMed DOI PMC
Manges AR, Johnson JR. 2015. Reservoirs of extraintestinal pathogenic Escherichia coli. Microbiol Spectr 3. doi:10.1128/microbiolspec.UTI-0006-2012 PubMed DOI
Johnson TJ, Elnekave E, Miller EA, Munoz-Aguayo J, Flores Figueroa C, Johnston B, Nielson DW, Logue CM, Johnson JR. 2019. Phylogenomic analysis of extraintestinal pathogenic Escherichia coli sequence type 1193, an emerging multidrug-resistant clonal group. Antimicrob Agents Chemother 63. doi:10.1128/AAC.01913-18 PubMed DOI PMC
Wyrsch ER, Bushell RN, Marenda MS, Browning GF, Djordjevic SP. 2022. Global phylogeny and F virulence plasmid carriage in pandemic Escherichia coli ST1193. Microbiol Spectr 10:e0255422. doi:10.1128/spectrum.02554-22 PubMed DOI PMC
Hastak P, Cummins ML, Gottlieb T, Cheong E, Merlino J, Myers GSA, Djordjevic SP, Roy Chowdhury P. 2020. Genomic profiling of Escherichia coli isolates from bacteraemia patients: a 3-year cohort study of isolates collected at a Sydney teaching hospital. Microb Genom 6:e000371. doi:10.1099/mgen.0.000371 PubMed DOI PMC
Roer L, Overballe-Petersen S, Hansen F, Schønning K, Wang M, Røder BL, Hansen DS, Justesen US, Andersen LP, Fulgsang-Damgaard D, Hopkins KL, Woodford N, Falgenhauer L, Chakraborty T, Samuelsen Ø, Sjöström K, Johannesen TB, Ng K, Nielsen J, Ethelberg S, Stegger M, Hammerum AM, Hasman H. 2018. Escherichia coli sequence type 410 is causing new International high-risk clones. mSphere 3:e00337-18. doi:10.1128/mSphere.00337-18 PubMed DOI PMC
Nesporova K, Wyrsch ER, Valcek A, Bitar I, Chaw K, Harris P, Hrabak J, Literak I, Djordjevic SP, Dolejska M. 2020. Escherichia coli sequence type 457 is an emerging extended-spectrum-beta-lactam-resistant lineage with reservoirs in wildlife and food-producing animals. Antimicrob Agents Chemother 65:e01118-20. doi:10.1128/AAC.01118-20 PubMed DOI PMC
Schaufler K, Semmler T, Wieler LH, Wöhrmann M, Baddam R, Ahmed N, Müller K, Kola A, Fruth A, Ewers C, Guenther S. 2016. Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410--another successful pandemic clone? FEMS Microbiol Ecol 92:fiv155. doi:10.1093/femsec/fiv155 PubMed DOI
Cummins ML, Reid CJ, Djordjevic SP, Yildirim S. 2022. F Plasmid lineages in Escherichia coli ST95: implications for host range, antibiotic resistance, and zoonoses. mSystems 7:e0021022. doi:10.1128/msystems.00210-22 PubMed DOI PMC
Wyrsch ER, Dolejska M, Djordjevic SP. 2022. Genomic analysis of an I1 plasmid hosting a sul3-class 1 integron and bla(SHV-12) within an unusual Escherichia coli ST297 from urban wildlife. Microorganisms 10:1387. doi:10.3390/microorganisms10071387 PubMed DOI PMC
Turton JF, Doumith M, Hopkins KL, Perry C, Meunier D, Woodford N. 2016. Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene. J Med Microbiol 65:538–546. doi:10.1099/jmm.0.000248 PubMed DOI
Abril D, Bustos Moya IG, Marquez-Ortiz RA, Josa Montero DF, Corredor Rozo ZL, Torres Molina I, Vanegas Gómez N, Escobar-Perez J. 2019. First report and comparative genomics analysis of a blaOXA-244-harboring Escherichia coli isolate recovered in the American continent. Antibiotics 8:222. doi:10.3390/antibiotics8040222 PubMed DOI PMC
Skalova A, Chudejova K, Rotova V, Medvecky M, Studentova V, Chudackova E, Lavicka P, Bergerova T, Jakubu V, Zemlickova H, Papagiannitsis CC, Hrabak J. 2017. Molecular characterization of OXA-48-like-producing Enterobacteriaceae in the Czech Republic and evidence for horizontal transfer of pOXA-48-like plasmids. Antimicrob Agents Chemother 61:e01889-16. doi:10.1128/AAC.01889-16 PubMed DOI PMC
Beyrouthy R, Robin F, Delmas J, Gibold L, Dalmasso G, Dabboussi F, Hamzé M, Bonnet R. 2014. IS1R-mediated plasticity of IncL/M plasmids leads to the insertion of bla OXA-48 into the Escherichia coli chromosome. Antimicrob Agents Chemother 58:3785–3790. doi:10.1128/AAC.02669-14 PubMed DOI PMC
Soliman AM, Ramadan H, Sadek M, Nariya H, Shimamoto T, Hiott LM, Frye JG, Jackson CR, Shimamoto T. 2020. Draft genome sequence of a bla(NDM-1)- and bla(OXA-244)-carrying multidrug-resistant Escherichia coli D-ST69 clinical isolate from Egypt. J Glob Antimicrob Resist 22:832–834. doi:10.1016/j.jgar.2020.07.015 PubMed DOI
Findlay J, Gould VC, North P, Bowker KE, Williams MO, MacGowan AP, Avison MB. 2020. Characterization of cefotaxime-resistant urinary Escherichia coli from primary care in South-West England 2017-18. J Antimicrob Chemother 75:65–71. doi:10.1093/jac/dkz397 PubMed DOI
Vogt D, Overesch G, Endimiani A, Collaud A, Thomann A, Perreten V. 2014. Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microb Drug Resist 20:485–494. doi:10.1089/mdr.2013.0210 PubMed DOI
Mostafa HH, Cameron A, Taffner SM, Wang J, Malek A, Dumyati G, Hardy DJ, Pecora ND. 2020. Genomic surveillance of ceftriaxone-resistant Escherichia coli in Western New York suggests the extended-spectrum beta-lactamase bla (CTX-M-27) is emerging on distinct plasmids in ST38. Front Microbiol 11:1747. doi:10.3389/fmicb.2020.01747 PubMed DOI PMC
Pietsch M, Irrgang A, Roschanski N, Brenner Michael G, Hamprecht A, Rieber H, Käsbohrer A, Schwarz S, Rösler U, Kreienbrock L, Pfeifer Y, Fuchs S, Werner G, RESET Study Group . 2018. Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genomics 19:601. doi:10.1186/s12864-018-4976-3 PubMed DOI PMC
Valenza G, Werner M, Eisenberger D, Nickel S, Lehner-Reindl V, Höller C, Bogdan C. 2019. First report of the new emerging global clone ST1193 among clinical isolates of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from Germany. J Glob Antimicrob Resist 17:305–308. doi:10.1016/j.jgar.2019.01.014 PubMed DOI
Gauthier L, Dortet L, Cotellon G, Creton E, Cuzon G, Ponties V, Bonnin RA, Naas T. 2018. Diversity of carbapenemase-producing Escherichia coli isolates in France in 2012-2013. Antimicrob Agents Chemother 62:e00266-18. doi:10.1128/AAC.00266-18 PubMed DOI PMC
Poirel L, Bernabeu S, Fortineau N, Podglajen I, Lawrence C, Nordmann P. 2011. Emergence of OXA-48-producing Escherichia coli clone ST38 in France. Antimicrob Agents Chemother 55:4937–4938. doi:10.1128/AAC.00413-11 PubMed DOI PMC
Suzuki S, Shibata N, Yamane K, Wachino J, Ito K, Arakawa Y. 2009. Change in the prevalence of extended-spectrum-beta-lactamase-producing Escherichia coli in Japan by clonal spread. J Antimicrob Chemother 63:72–79. doi:10.1093/jac/dkn463 PubMed DOI
Bubpamala J, Khuntayaporn P, Thirapanmethee K, Montakantikul P, Santanirand P, Chomnawang MT. 2018. Phenotypic and genotypic characterizations of extended-spectrum beta-lactamase-producing Escherichia coli in Thailand. Infect Drug Resist 11:2151–2157. doi:10.2147/IDR.S174506 PubMed DOI PMC
Alghoribi MF, Gibreel TM, Farnham G, Al Johani SM, Balkhy HH, Upton M. 2015. Antibiotic-resistant ST38, ST131 and ST405 strains are the leading uropathogenic Escherichia coli clones in Riyadh, Saudi Arabia. J Antimicrob Chemother 70:2757–2762. doi:10.1093/jac/dkv188 PubMed DOI
Rafaque Z, Dasti JI, Andrews SC. 2019. Draft genome sequence of a uropathogenic Escherichia coli isolate (ST38 O1:H15) from Pakistan, an emerging multidrug-resistant sequence type with a high virulence profile. New Microbes New Infect 27:1–2. doi:10.1016/j.nmni.2018.10.004 PubMed DOI PMC
Hayashi W, Ohsaki Y, Taniguchi Y, Koide S, Kawamura K, Suzuki M, Kimura K, Wachino J-I, Nagano Y, Arakawa Y, Nagano N. 2018. High prevalence of blaCTX-M-14 among genetically diverse Escherichia coli recovered from retail raw chicken meat portions in Japan. Int J Food Microbiol 284:98–104. doi:10.1016/j.ijfoodmicro.2018.08.003 PubMed DOI
Yamaji R, Friedman CR, Rubin J, Suh J, Thys E, McDermott P, Hung-Fan M, Riley LW, Bradford PA. 2018. A population-based surveillance study of shared genotypes of Escherichia coli isolates from retail meat and suspected cases of urinary tract infections. mSphere 3:e00179-18. doi:10.1128/mSphere.00179-18 PubMed DOI PMC
Al Bayssari C, Olaitan AO, Dabboussi F, Hamze M, Rolain J-M. 2015. Emergence of OXA-48-producing Escherichia coli clone ST38 in fowl. Antimicrob Agents Chemother 59:745–746. doi:10.1128/AAC.03552-14 PubMed DOI PMC
Belmahdi M, Bakour S, Al Bayssari C, Touati A, Rolain J-M. 2016. Molecular characterisation of extended-spectrum beta-lactamase- and plasmid AmpC-producing Escherichia coli strains isolated from broilers in Béjaïa, Algeria. J Glob Antimicrob Resist 6:108–112. doi:10.1016/j.jgar.2016.04.006 PubMed DOI
Berg ES, Wester AL, Ahrenfeldt J, Mo SS, Slettemeås JS, Steinbakk M, Samuelsen Ø, Grude N, Simonsen GS, Løhr IH, Jørgensen SB, Tofteland S, Lund O, Dahle UR, Sunde M. 2017. Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/blaCMY-2 resistance plasmids. Clin Microbiol Infect 23:407. doi:10.1016/j.cmi.2016.12.035 PubMed DOI
Lifshitz Z, Sturlesi N, Parizade M, Blum SE, Gordon M, Taran D, Adler A. 2018. Distinctiveness and similarities between extended-spectrum beta-lactamase-producing Escherichia coli isolated from cattle and the community in Israel. Microb Drug Resist 24:868–875. doi:10.1089/mdr.2017.0407 PubMed DOI
Guenther S, Semmler T, Stubbe A, Stubbe M, Wieler LH, Schaufler K. 2017. Chromosomally encoded ESBL genes in Escherichia coli of ST38 from Mongolian wild birds. J Antimicrob Chemother 72:1310–1313. doi:10.1093/jac/dkx006 PubMed DOI
Kidsley AK, O’Dea M, Saputra S, Jordan D, Johnson JR, Gordon DM, Turni C, Djordjevic SP, Abraham S, Trott DJ. 2020. Genomic analysis of phylogenetic group B2 extraintestinal pathogenic E. coli causing infections in dogs in Australia. Vet Microbiol 248:108783. doi:10.1016/j.vetmic.2020.108783 PubMed DOI
Rusdi B, Laird T, Abraham R, Ash A, Robertson ID, Mukerji S, Coombs GW, Abraham S, O’Dea MA. 2018. Carriage of critically important antimicrobial resistant bacteria and zoonotic parasites amongst camp dogs in remote Western Australian indigenous communities. Sci Rep 8:8725. doi:10.1038/s41598-018-26920-5 PubMed DOI PMC
Mukerji S, Stegger M, Truswell AV, Laird T, Jordan D, Abraham RJ, Harb A, Barton M, O’Dea M, Abraham S. 2019. Resistance to critically important antimicrobials in Australian silver gulls (Chroicocephalus novaehollandiae) and evidence of anthropogenic origins. J Antimicrob Chemother 74:2566–2574. doi:10.1093/jac/dkz242 PubMed DOI
Wyrsch ER, Nesporova K, Tarabai H, Jamborova I, Bitar I, Literak I, Dolejska M, Djordjevic SP. 2022. Urban wildlife crisis: Australian silver gull is a bystander host to widespread clinical antibiotic resistance. mSystems 7:e0015822. doi:10.1128/msystems.00158-22 PubMed DOI PMC
Diab M, Hamze M, Bonnet R, Saras E, Madec J-Y, Haenni M. 2018. Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae in water sources in Lebanon. Vet Microbiol 217:97–103. doi:10.1016/j.vetmic.2018.03.007 PubMed DOI
de Carvalho MPN, Fernandes MR, Sellera FP, Lopes R, Monte DF, Hippólito AG, Milanelo L, Raso TF, Lincopan N. 2020. International clones of extended-spectrum beta-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. Transbound Emerg Dis 67:1804–1815. doi:10.1111/tbed.13558 PubMed DOI PMC
Dolejska M, Masarikova M, Dobiasova H, Jamborova I, Karpiskova R, Havlicek M, Carlile N, Priddel D, Cizek A, Literak I. 2016. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on five Islands, Australia. J Antimicrob Chemother 71:63–70. doi:10.1093/jac/dkv306 PubMed DOI PMC
Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. doi:10.1371/journal.pcbi.1005595 PubMed DOI PMC
Treangen TJ, Ondov BD, Koren S, Phillippy AM. 2014. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 15:524. doi:10.1186/s13059-014-0524-x PubMed DOI PMC
Seemann T. 2015. Snippy: fast bacterial variant calling from NGS reads (version 4.6.0), V4.6.0. Github. Available from: https://github.com/tseemann/snippy
Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow enables reproducible computational workflows. Nat Biotechnol 35:316–319. doi:10.1038/nbt.3820 PubMed DOI
Price MN, Dehal PS, Arkin AP. 2010. Fasttree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi:10.1371/journal.pone.0009490 PubMed DOI PMC
Morgan PN, Dehal SP, Adam AP. 2022. Why does fasttree report so many branch lengths of 0.0005 or 0.0001, or even negative branch lengths? fasttree 2.1: approximately-maximum-likelihood trees for large alignments.
Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. doi:10.1093/nar/gkab301 PubMed DOI PMC
Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. doi:10.1186/1471-2164-12-402 PubMed DOI PMC
Liu CM. 2018. Escherichia coli ST131-H22 as a foodborne uropathogen. mBio 9. doi:10.1128/mBio.00470-18 PubMed DOI PMC
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. doi:10.1186/1471-2164-9-75 PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2 PubMed DOI
Schubert S, Picard B, Gouriou S, Heesemann J, Denamur E. 2002. Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections. Infect Immun 70:5335–5337. doi:10.1128/IAI.70.9.5335-5337.2002 PubMed DOI PMC
Galardini M, Clermont O, Baron A, Busby B, Dion S, Schubert S, Beltrao P, Denamur E, Didelot X. 2020. Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study. PLoS Genet 16:e1009065. doi:10.1371/journal.pgen.1009065 PubMed DOI PMC
Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR, Le Bouguénec C, Gounon P, Phillips A, Nataro JP. 2002. A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest 110:1329–1337. doi:10.1172/JCI16172 PubMed DOI PMC
Boll EJ, Struve C, Sander A, Demma Z, Nataro JP, McCormick BA, Krogfelt KA. 2012. The fimbriae of enteroaggregative Escherichia coli induce epithelial inflammation in vitro and in a human intestinal xenograft model. J Infect Dis 206:714–722. doi:10.1093/infdis/jis417 PubMed DOI PMC
Chattaway MA, Jenkins C, Ciesielczuk H, Day M, DoNascimento V, Day M, Rodríguez I, van Essen-Zandbergen A, Schink A-K, Wu G, Threlfall J, Woodward MJ, Coldham N, Kadlec K, Schwarz S, Dierikx C, Guerra B, Helmuth R, Mevius D, Woodford N, Wain J. 2014. Evidence of evolving extraintestinal enteroaggregative Escherichia coli ST38 clone. Emerg Infect Dis 20:1935–1937. doi:10.3201/eid2011.131845 PubMed DOI PMC
Cusumano CK, Hung CS, Chen SL, Hultgren SJ. 2010. Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 78:1457–1467. doi:10.1128/IAI.01260-09 PubMed DOI PMC
DebRoy C, Sidhu MS, Sarker U, Jayarao BM, Stell AL, Bell NP, Johnson TJ. 2010. Complete sequence of pEC14_114, a highly conserved IncFIB/FIIA plasmid associated with uropathogenic Escherichia coli cystitis strains. Plasmid 63:53–60. doi:10.1016/j.plasmid.2009.10.003 PubMed DOI
McKinnon J, Roy Chowdhury P, Djordjevic SP. 2018. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int J Antimicrob Agents 52:430–435. doi:10.1016/j.ijantimicag.2018.06.017 PubMed DOI
Roberts LW, Forde BM, Henderson A, Playford EG, Runnegar N, Henderson B, Watson C, Lindsay M, Bursle E, Douglas J, Paterson DL, Schembri MA, Harris PNA, Beatson SA. 2019. Intensive infection control responses and whole genome sequencing to interrupt and resolve widespread transmission of OXA-181 Escherichia coli in a hospital setting. biorxiv. doi:10.1101/850628 DOI
Riley LW. 2014. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin Microbiol Infect 20:380–390. doi:10.1111/1469-0691.12646 PubMed DOI
Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M. 2019. Application of next-generation sequencing for characterization of surveillance and clinical trial isolates: analysis of the distribution of beta-lactamase resistance genes and lineage background in the United States. Open Forum Infect Dis 6:S69–S78. doi:10.1093/ofid/ofz004 PubMed DOI PMC
Cameron A, Mangat R, Mostafa HH, Taffner S, Wang J, Dumyati G, Stanton RA, Daniels JB, Campbell D, Lutgring JD, Pecora ND. 2021. Detection of CTX-M-27 beta-lactamase genes on two distinct plasmid types in ST38 Escherichia coli from three U.S States. Antimicrob Agents Chemother 65:e0082521. doi:10.1128/AAC.00825-21 PubMed DOI PMC
Bonnet R, Recule C, Baraduc R, Chanal C, Sirot D, De Champs C, Sirot J. 2003. Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother 52:29–35. doi:10.1093/jac/dkg256 PubMed DOI
Brodrick HJ, Raven KE, Kallonen T, Jamrozy D, Blane B, Brown NM, Martin V, Török ME, Parkhill J, Peacock SJ. 2017. Longitudinal genomic surveillance of multidrug-resistant Escherichia coli carriage in a long-term care facility in the United Kingdom. Genome Med 9:70. doi:10.1186/s13073-017-0457-6 PubMed DOI PMC
Flament-Simon S-C, García V, Duprilot M, Mayer N, Alonso MP, García-Meniño I, Blanco JE, Blanco M, Nicolas-Chanoine M-H, Blanco J. 2020. High prevalence of ST131 subclades C2-H30RX and C1-M27 among extended-spectrum beta-Lactamase-producing Escherichia coli causing human extraintestinal infections in patients from two hospitals of Spain and France during 2015. Front Cell Infect Microbiol 10:125. doi:10.3389/fcimb.2020.00125 PubMed DOI PMC
Kim J, Bae IK, Jeong SH, Chang CL, Lee CH, Lee K. 2011. Characterization of IncF plasmids carrying the blaCTX-M-14 gene in clinical isolates of Escherichia coli from Korea. J Antimicrob Chemother 66:1263–1268. doi:10.1093/jac/dkr106 PubMed DOI
Mshana SE, Gerwing L, Minde M, Hain T, Domann E, Lyamuya E, Chakraborty T, Imirzalioglu C. 2011. Outbreak of a novel Enterobacter sp. carrying blaCTX-M-15 in a neonatal unit of a tertiary care hospital in Tanzania. Int J Antimicrob Agents 38:265–269. doi:10.1016/j.ijantimicag.2011.05.009 PubMed DOI
Peirano G, van der Bij AK, Gregson DB, Pitout JDD. 2012. Molecular epidemiology over an 11-year period (2000 to 2010) of extended-spectrum beta-lactamase-producing Escherichia coli causing bacteremia in a centralized Canadian region. J Clin Microbiol 50:294–299. doi:10.1128/JCM.06025-11 PubMed DOI PMC
Yasir M, Farman M, Shah MW, Jiman-Fatani AA, Othman NA, Almasaudi SB, Alawi M, Shakil S, Al-Abdullah N, Ismaeel NA, Azhar EI. 2020. Genomic and antimicrobial resistance genes diversity in multidrug-resistant CTX-M-positive isolates of Escherichia coli at a health care facility in Jeddah. J Infect Public Health 13:94–100. doi:10.1016/j.jiph.2019.06.011 PubMed DOI
Shaik S, Ranjan A, Tiwari SK, Hussain A, Nandanwar N, Kumar N, Jadhav S, Semmler T, Baddam R, Islam MA, Alam M, Wieler LH, Watanabe H, Ahmed N, Rappuoli R, Bhunia A, Fadl A. 2017. Comparative genomic analysis of globally dominant ST131 clone with other epidemiologically successful extraintestinal pathogenic Escherichia coli (ExPEC) lineages. mBio 8:e01596-17. doi:10.1128/mBio.01596-17 PubMed DOI PMC
Santos A de M, Santos FF, Silva RM, Gomes TAT. 2020. Diversity of hybrid- and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Front Cell Infect Microbiol 10:339. doi:10.3389/fcimb.2020.00339 PubMed DOI PMC
Toval F, Köhler C-D, Vogel U, Wagenlehner F, Mellmann A, Fruth A, Schmidt MA, Karch H, Bielaszewska M, Dobrindt U. 2014. Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. J Clin Microbiol 52:407–418. doi:10.1128/JCM.02069-13 PubMed DOI PMC
Lima IFN, Boisen N, Silva J da Q, Havt A, de Carvalho EB, Soares AM, Lima NL, Mota RMS, Nataro JP, Guerrant RL, Lima AÂM. 2013. Prevalence of enteroaggregative Escherichia coli and its virulence-related genes in a case-control study among children from North-Eastern Brazil. J Med Microbiol 62:683–693. doi:10.1099/jmm.0.054262-0 PubMed DOI PMC
Servin AL. 2014. Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 27:823–869. doi:10.1128/CMR.00036-14 PubMed DOI PMC