Genomic Analysis of an I1 Plasmid Hosting a sul3-Class 1 Integron and blaSHV-12 within an Unusual Escherichia coli ST297 from Urban Wildlife

. 2022 Jul 10 ; 10 (7) : . [epub] 20220710

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35889108

Grantová podpora
Australian Centre for Genomic Epidemiological Microbiology
MRFF75873 Medical Research Future Fund Frontier Health and Medical Research Program

Odkazy

PubMed 35889108
PubMed Central PMC9319951
DOI 10.3390/microorganisms10071387
PII: microorganisms10071387
Knihovny.cz E-zdroje

Wild birds, particularly silver gulls (Chroicocephalus novaehollandiae) that nest near anthropogenic sites, often harbour bacteria resistant to multiple antibiotics, including those considered of clinical importance. Here, we describe the whole genome sequence of Escherichia coli isolate CE1867 from a silver gull chick sampled in 2012 that hosted an I1 pST25 plasmid with blaSHV-12, a β-lactamase gene that encodes the ability to hydrolyze oxyimino β-lactams, and other antibiotic resistance genes. Isolate CE1867 is an ST297 isolate, a phylogroup B1 lineage, and clustered with a large ST297 O130:H11 clade, which carry Shiga toxin genes. The I1 plasmid belongs to plasmid sequence type 25 and is notable for its carriage of an atypical sul3-class 1 integron with mefB∆260, a structure most frequently reported in Australia from swine. This integron is a typical example of a Tn21-derived element that captured sul3 in place of the standard sul1 structure. Interestingly, the mercury resistance (mer) module of Tn21 is missing and has been replaced with Tn2-blaTEM-1 and a blaSHV-12 encoding module flanked by direct copies of IS26. Comparisons to similar plasmids, however, demonstrate a closely related family of ARG-carrying plasmids that all host variants of the sul3-associated integron with conserved Tn21 insertion points and a variable presence of both mer and mefB truncations, but predominantly mefB∆260.

Zobrazit více v PubMed

Koch N., Islam N.F., Sonowal S., Prasad R., Sarma H. Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. Curr. Res. Microb. Sci. 2021;2:100027. doi: 10.1016/j.crmicr.2021.100027. PubMed DOI PMC

Yao L., Wang Y., Tong L., Deng Y., Li Y., Gan Y., Guo W., Dong C., Duan Y., Zhao K. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China. Ecotoxicol. Environ. Saf. 2017;135:236–242. doi: 10.1016/j.ecoenv.2016.10.006. PubMed DOI

Baralla E., Demontis M.P., Dessì F., Varoni M.V. An Overview of Antibiotics as Emerging Contaminants: Occurrence in Bivalves as Biomonitoring Organisms. Animals. 2021;11:3239. doi: 10.3390/ani11113239. PubMed DOI PMC

Chow L.K.M., Ghaly T.M., Gillings M.R. A survey of sub-inhibitory concentrations of antibiotics in the environment. J. Environ. Sci. 2021;99:21–27. doi: 10.1016/j.jes.2020.05.030. PubMed DOI

van Miert A.S. The sulfonamide-diaminopyrimidine story. J. Vet. Pharmacol. Ther. 1994;17:309–316. doi: 10.1111/j.1365-2885.1994.tb00251.x. PubMed DOI

Partridge S.R., Tsafnat G., Coiera E., Iredell J.R. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol. Rev. 2009;33:757–784. doi: 10.1111/j.1574-6976.2009.00175.x. PubMed DOI

Lacotte Y., Ploy M.-C., Raherison S. Class 1 integrons are low-cost structures in Escherichia coli. ISME J. 2017;11:1535–1544. doi: 10.1038/ismej.2017.38. PubMed DOI PMC

Dawes F.E., Kuzevski A., Bettelheim K.A., Hornitzky M.A., Djordjevic S.P., Walker M.J. Distribution of class 1 integrons with IS26-mediated deletions in their 3′-conserved segments in Escherichia coli of human and animal origin. PLoS ONE. 2010;5:e12754. doi: 10.1371/journal.pone.0012754. PubMed DOI PMC

McKinnon J., Roy Chowdhury P., Djordjevic S.P. Molecular Analysis of an IncF ColV-Like Plasmid Lineage That Carries a Complex Resistance Locus with a Trackable Genetic Signature. Microb. Drug Resist. 2020;26:787–793. doi: 10.1089/mdr.2019.0277. PubMed DOI

Poole T.L., Callaway T.R., Norman K.N., Scott H.M., Loneragan G.H., Ison S.A., Beier R.C., Harhay D.M., Norby B., Nisbet D.J. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E. coli and Salmonella Newport recipients. J. Glob. Antimicrob Resist. 2017;11:123–132. doi: 10.1016/j.jgar.2017.08.001. PubMed DOI

Li D., Wyrsch E.R., Elankumaran P., Dolejska M., Marenda M.S., Browning G.F., Bushell R.N., McKinnon J., Chowdhury P.R., Hitchick N., et al. Genomic comparisons of Escherichia coli ST131 from Australia. Microb. Genom. 2021;7:000721. doi: 10.1099/mgen.0.000721. PubMed DOI PMC

Peng S., Zheng H., Herrero-Fresno A., Olsen J.E., Dalsgaard A., Ding Z. Co-occurrence of antimicrobial and metal resistance genes in pig feces and agricultural fields fertilized with slurry. Sci. Total Environ. 2021;792:148259. doi: 10.1016/j.scitotenv.2021.148259. PubMed DOI

Ahlstrom C.A., Bonnedahl J., Woksepp H., Hernandez J., Olsen B., Ramey A.M. Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis. Sci. Rep. 2018;8:7361. doi: 10.1038/s41598-018-25474-w. PubMed DOI PMC

Nguyen A.Q., Vu H.P., Nguyen L.N., Wang Q., Djordjevic S.P., Donner E., Yin H., Nghiem L.D. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. Sci. Total Environ. 2021;783:146964. doi: 10.1016/j.scitotenv.2021.146964. PubMed DOI

Chen J., Gong Y., Wang S., Guan B., Balkovic J., Kraxner F. To burn or retain crop residues on croplands? An integrated analysis of crop residue management in China. Sci. Total Environ. 2019;662:141–150. doi: 10.1016/j.scitotenv.2019.01.150. PubMed DOI

Venturini C., Beatson S.A., Djordjevic S.P., Walker M.J. Multiple antibiotic resistance gene recruitment onto the enterohemorrhagic Escherichia coli virulence plasmid. FASEB J. 2010;24:1160–1166. doi: 10.1096/fj.09-144972. PubMed DOI

Venturini C., Hassan K.A., Roy Chowdhury P., Paulsen I.T., Walker M.J., Djordjevic S.P. Sequences of Two Related Multiple Antibiotic Resistance Virulence Plasmids Sharing a Unique IS26-Related Molecular Signature Isolated from Different Escherichia coli Pathotypes from Different Hosts. PLoS ONE. 2013;8:e78862. doi: 10.1371/journal.pone.0078862. PubMed DOI PMC

McKinnon J., Roy Chowdhury P., Djordjevic S.P. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int. J. Antimicrob. Agents. 2018;52:430–435. doi: 10.1016/j.ijantimicag.2018.06.017. PubMed DOI

Wyrsch E.R., Hawkey J., Judd L.M., Haites R., Holt K.E., Djordjevic S.P., Billman-Jacobe H. Z/I1 Hybrid Virulence Plasmids Carrying Antimicrobial Resistance genes in S. Typhimurium from Australian Food Animal Production. Microorganisms. 2019;7:299. doi: 10.3390/microorganisms7090299. PubMed DOI PMC

Cummins M.L., Reid C.J., Roy Chowdhury P., Bushell R.N., Esbert N., Tivendale K.A., Noormohammadi A.H., Islam S., Marenda M.S., Browning G.F., et al. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb. Genom. 2019;5:e000250. doi: 10.1099/mgen.0.000250. PubMed DOI PMC

Abraham S., Jordan D., Wong H.S., Johnson J.R., Toleman M.A., Wakeham D.L., Gordon D.M., Turnidge J.D., Mollinger J.L., Gibson J.S., et al. First detection of extended-spectrum cephalosporin- and fluoroquinolone-resistant Escherichia coli in Australian food-producing animals. J. Glob. Antimicrob. Resist. 2015;3:273–277. doi: 10.1016/j.jgar.2015.08.002. PubMed DOI

Wyrsch E.R., Reid C.J., DeMaere M.Z., Liu M.Y., Chapman T.A., Roy Chowdhury P., Djordjevic S.P. Complete Sequences of Multiple-Drug Resistant IncHI2 ST3 Plasmids in Escherichia coli of Porcine Origin in Australia. Front. Sustain. Food Syst. 2019;3:18. doi: 10.3389/fsufs.2019.00018. DOI

Reid C.J., Wyrsch E.R., Roy Chowdhury P., Zingali T., Liu M., Darling A.E., Chapman T.A., Djordjevic S.P. Porcine commensal Escherichia coli: A reservoir for class 1 integrons associated with IS26. Microb. Genom. 2017;3:e000143. doi: 10.1099/mgen.0.000143. PubMed DOI PMC

Wyrsch E., Roy Chowdhury P., Abraham S., Santos J., Darling A.E., Charles I.G., Chapman T.A., Djordjevic S.P. Comparative genomic analysis of a multiple antimicrobial resistant enterotoxigenic E. coli O157 lineage from Australian pigs. BMC Genom. 2015;16:165. doi: 10.1186/s12864-015-1382-y. PubMed DOI PMC

Zingali T., Chapman T.A., Webster J., Roy Chowdhury P., Djordjevic S.P. Genomic Characterisation of a Multiple Drug Resistant IncHI2 ST4 Plasmid in Escherichia coli ST744 in Australia. Microorganisms. 2020;8:896. doi: 10.3390/microorganisms8060896. PubMed DOI PMC

Carroll A.C., Wong A. Plasmid persistence: Costs, benefits, and the plasmid paradox. Can. J. Microbiol. 2018;64:293–304. doi: 10.1139/cjm-2017-0609. PubMed DOI

Dolejska M., Masarikova M., Dobiasova H., Jamborova I., Karpiskova R., Havlicek M., Carlile N., Priddel D., Cizek A., Literak I. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J. Antimicrob. Chemother. 2016;71:63–70. doi: 10.1093/jac/dkv306. PubMed DOI PMC

Nesporova K., Wyrsch E.R., Valcek A., Bitar I., Chaw K., Harris P., Hrabak J., Literak I., Djordjevic S.P., Dolejska M. Escherichia coli Sequence Type 457 Is an Emerging Extended-Spectrum-β-Lactam-Resistant Lineage with Reservoirs in Wildlife and Food-Producing Animals. Antimicrob. Agents Chemother. 2020;65:e01118-20. doi: 10.1128/AAC.01118-20. PubMed DOI PMC

Tarabai H., Wyrsch E.R., Bitar I., Dolejska M., Djordjevic S.P. Epidemic HI2 Plasmids Mobilising the Carbapenemase Gene bla(IMP-4) in Australian Clinical Samples Identified in Multiple Sublineages of Escherichia coli ST216 Colonising Silver Gulls. Microorganisms. 2021;9:567. doi: 10.3390/microorganisms9030567. PubMed DOI PMC

Mukerji S., Stegger M., Truswell A.V., Laird T., Jordan D., Abraham R.J., Harb A., Barton M., O’Dea M., Abraham S. Resistance to critically important antimicrobials in Australian silver gulls (Chroicocephalus novaehollandiae) and evidence of anthropogenic origins. J. Antimicrob. Chemother. 2019;74:2566–2574. doi: 10.1093/jac/dkz242. PubMed DOI

Cummins M.L., Sanderson-Smith M., Newton P., Carlile N., Phalen D.N., Maute K., Monahan L.G., Hoye B.J., Djordjevic S.P. Whole-Genome Sequence Analysis of an Extensively Drug-Resistant Salmonella enterica Serovar Agona Isolate from an Australian Silver Gull (Chroicocephalus novaehollandiae) Reveals the Acquisition of Multidrug Resistance Plasmids. mSphere. 2020;5:e00743-20. doi: 10.1128/mSphere.00743-20. PubMed DOI PMC

Mukerji S., Gunasekera S., Dunlop J.N., Stegger M., Jordan D., Laird T., Abraham R.J., Barton M., O’Dea M., Abraham S. Implications of Foraging and Interspecies Interactions of Birds for Carriage of Escherichia coli Strains Resistant to Critically Important Antimicrobials. Appl. Environ. Microbiol. 2020;86:e01610-20. doi: 10.1128/AEM.01610-20. PubMed DOI PMC

McDougall F.K., Boardman W.S.J., Power M.L. Characterization of beta-lactam-resistant Escherichia coli from Australian fruit bats indicates anthropogenic origins. Microb. Genom. 2021;7:000571. doi: 10.1099/mgen.0.000571. PubMed DOI PMC

Curiao T., Canton R., Garcillan-Barcia M.P., de la Cruz F., Baquero F., Coque T.M. Association of composite IS26-sul3 elements with highly transmissible IncI1 plasmids in extended-spectrum-beta-lactamase-producing Escherichia coli clones from humans. Antimicrob. Agents Chemother. 2011;55:2451–2457. doi: 10.1128/AAC.01448-10. PubMed DOI PMC

Cummins M.L., Reid C.J., Djordjevic S.P., Yildirim S. F Plasmid Lineages in Escherichia coli ST95: Implications for Host Range, Antibiotic Resistance, and Zoonoses. mSystems. 2022;7:e01212221. doi: 10.1128/msystems.01212-21. PubMed DOI PMC

Manges A.R., Geum H.M., Guo A., Edens T.J., Fibke C.D., Pitout J.D.D. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin. Microbiol. Rev. 2019;32:e00135-18. doi: 10.1128/CMR.00135-18. PubMed DOI PMC

Moran R.A., Holt K.E., Hall R.M. pCERC3 from a commensal ST95 Escherichia coli: A ColV virulence-multiresistance plasmid carrying a sul3-associated class 1 integron. Plasmid. 2016;84–85:11–19. doi: 10.1016/j.plasmid.2016.02.002. PubMed DOI

Bailey J.K., Pinyon J.L., Anantham S., Hall R.M. Commensal Escherichia coli of healthy humans: A reservoir for antibiotic-resistance determinants. J. Med. Microbiol. 2010;59:1331–1339. doi: 10.1099/jmm.0.022475-0. PubMed DOI

Perreten V., Boerlin P. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob. Agents Chemother. 2003;47:1169–1172. doi: 10.1128/AAC.47.3.1169-1172.2003. PubMed DOI PMC

Wyrsch E.R., Roy Chowdhury P., Chapman T.A., Charles I.G., Hammond J.M., Djordjevic S.P. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis. Front. Microbiol. 2016;7:843. doi: 10.3389/fmicb.2016.00843. PubMed DOI PMC

Rawat N., Anjali, Jamwal R., Devi P.P., Yadav K., Kumar N., Rajagopal R. Detection of unprecedented level of antibiotic resistance and identification of antibiotic resistance factors, including QRDR mutations in Escherichia coli isolated from commercial chickens from North India. J. Appl. Microbiol. 2022;132:268–278. doi: 10.1111/jam.15209. PubMed DOI

Zhou Q., Wang M., Zhong X., Liu P., Xie X., Wangxiao J., Sun Y. Dissemination of resistance genes in duck/fish polyculture ponds in Guangdong Province: Correlations between Cu and Zn and antibiotic resistance genes. Environ. Sci. Pollut. Res. Int. 2019;26:8182–8193. doi: 10.1007/s11356-018-04065-2. PubMed DOI

Ben Yahia H., Chairat S., Gharsa H., Alonso C.A., Ben Sallem R., Porres-Osante N., Hamdi N., Torres C., Ben Slama K. First Report of KPC-2 and KPC-3-Producing Enterobacteriaceae in Wild Birds in Africa. Microb. Ecol. 2020;79:30–37. doi: 10.1007/s00248-019-01375-x. PubMed DOI

Aeksiri N., Toanan W., Sawikan S., Suwannarit R., Pungpomin P., Khieokhajonkhet A., Niumsup P.R. First Detection and Genomic Insight into mcr-1 Encoding Plasmid-Mediated Colistin-Resistance Gene in Escherichia coli ST101 Isolated from the Migratory Bird Species Hirundo rustica in Thailand. Microb. Drug Resist. 2019;25:1437–1442. doi: 10.1089/mdr.2019.0020. PubMed DOI

Wyrsch E.R., Nesporova K., Tarabai H., Jamborova I., Bitar I., Literak I., Dolejska M., Djordjevic S.P. Urban Wildlife Crisis: Australian Silver Gull Is a Bystander Host to Widespread Clinical Antibiotic Resistance. mSystems. 2022;7:e00158-22. doi: 10.1128/msystems.00158-22. PubMed DOI PMC

Zhou Z., Alikhan N.F., Mohamed K., Fan Y., Achtman M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020;30:138–152. doi: 10.1101/gr.251678.119. PubMed DOI PMC

Galata V., Fehlmann T., Backes C., Keller A. PLSDB: A resource of complete bacterial plasmids. Nucleic Acids Res. 2019;47:D195–D202. doi: 10.1093/nar/gky1050. PubMed DOI PMC

Carattoli A., Zankari E., Garcia-Fernandez A., Voldby Larsen M., Lund O., Villa L., Moller Aarestrup F., Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC

Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–D36. doi: 10.1093/nar/gkj014. PubMed DOI PMC

García-Fernández A., Chiaretto G., Bertini A., Villa L., Fortini D., Ricci A., Carattoli A. Multilocus sequence typing of IncI1 plasmids carrying extended-spectrum beta-lactamases in Escherichia coli and Salmonella of human and animal origin. J. Antimicrob. Chemother. 2008;61:1229–1233. doi: 10.1093/jac/dkn131. PubMed DOI

Treangen T.J., Ondov B.D., Koren S., Phillippy A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15:524. doi: 10.1186/s13059-014-0524-x. PubMed DOI PMC

Letunic I., Bork P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019;47:W256–W259. doi: 10.1093/nar/gkz239. PubMed DOI PMC

Sullivan M.J., Petty N.K., Beatson S.A. Easyfig: A genome comparison visualizer. Bioinformatics. 2011;27:1009–1010. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC

Alikhan N.F., Petty N.K., Ben Zakour N.L., Beatson S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011;12:402. doi: 10.1186/1471-2164-12-402. PubMed DOI PMC

Jamborova I., Dolejska M., Vojtech J., Guenther S., Uricariu R., Drozdowska J., Papousek I., Pasekova K., Meissner W., Hordowski J., et al. Plasmid-mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe. Appl. Environ. Microbiol. 2015;81:648–657. doi: 10.1128/AEM.02459-14. PubMed DOI PMC

Dolejska M., Literak I. Wildlife is overlooked in the Epidemiology of Medically Important Antibiotic-Resistant Bacteria. Antimicrob. Agents Chemother. 2019;63:e01167-19. doi: 10.1128/AAC.01167-19. PubMed DOI PMC

Skarżyńska M., Zaja C.M., Bomba A., Bocian Ł., Kozdruń W., Polak M., Wia Cek J., Wasyl D. Antimicrobial Resistance Glides in the Sky-Free-Living Birds as a Reservoir of Resistant Escherichia coli With Zoonotic Potential. Front. Microbiol. 2021;12:656223. doi: 10.3389/fmicb.2021.656223. PubMed DOI PMC

Jinnerot T., Tomaselli A.T.P., Johannessen G.S., Söderlund R., Urdahl A.M., Aspán A., Sekse C. The prevalence and genomic context of Shiga toxin 2a genes in E. coli found in cattle. PLoS ONE. 2020;15:e0232305. doi: 10.1371/journal.pone.0232305. PubMed DOI PMC

Peng Z., Liang W., Hu Z., Li X., Guo R., Hua L., Tang X., Tan C., Chen H., Wang X., et al. O-serogroups, virulence genes, antimicrobial susceptibility, and MLST genotypes of Shiga toxin-producing Escherichia coli from swine and cattle in Central China. BMC Vet. Res. 2019;15:427. doi: 10.1186/s12917-019-2177-1. PubMed DOI PMC

Kindle P., Zurfluh K., Nüesch-Inderbinen M., von Ah S., Sidler X., Stephan R., Kümmerlen D. Phenotypic and genotypic characteristics of Escherichia coli with non-susceptibility to quinolones isolated from environmental samples on pig farms. Porc. Health Manag. 2019;5:9. doi: 10.1186/s40813-019-0116-y. PubMed DOI PMC

Ribeiro S., Mourão J., Novais Â., Campos J., Peixe L., Antunes P. From farm to fork: Colistin voluntary withdrawal in Portuguese farms reflected in decreasing occurrence of mcr-1-carrying Enterobacteriaceae from chicken meat. Environ. Microbiol. 2021;23:7563–7577. doi: 10.1111/1462-2920.15689. PubMed DOI

Roedel A., Vincze S., Projahn M., Roesler U., Robé C., Hammerl J.A., Noll M., Al Dahouk S., Dieckmann R. Genetic but No Phenotypic Associations between Biocide Tolerance and Antibiotic Resistance in Escherichia coli from German Broiler Fattening Farms. Microorganisms. 2021;9:651. doi: 10.3390/microorganisms9030651. PubMed DOI PMC

Araújo S., Silva I.A., Tacão M., Patinha C., Alves A., Henriques I. Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms. Int. J. Food Microbiol. 2017;257:192–200. doi: 10.1016/j.ijfoodmicro.2017.06.020. PubMed DOI

Sánchez F., Fuenzalida V., Ramos R., Escobar B., Neira V., Borie C., Lapierre L., López P., Venegas L., Dettleff P., et al. Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health. 2021;68:226–238. doi: 10.1111/zph.12818. PubMed DOI

Johnson T.J., Shepard S.M., Rivet B., Danzeisen J.L., Carattoli A. Comparative genomics and phylogeny of the IncI1 plasmids: A common plasmid type among porcine enterotoxigenic Escherichia coli. Plasmid. 2011;66:144–151. doi: 10.1016/j.plasmid.2011.07.003. PubMed DOI

Alonso C.A., Michael G.B., Li J., Somalo S., Simón C., Wang Y., Kaspar H., Kadlec K., Torres C., Schwarz S. Analysis of blaSHV-12-carrying Escherichia coli clones and plasmids from human, animal and food sources. J. Antimicrob. Chemother. 2017;72:1589–1596. doi: 10.1093/jac/dkx024. PubMed DOI

Darphorn T.S., Bel K., Koenders-van Sint Anneland B.B., Brul S., Ter Kuile B.H. Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates from meat. Sci. Rep. 2021;11:2136. doi: 10.1038/s41598-021-81683-w. PubMed DOI PMC

Lambrecht E., Van Meervenne E., Boon N., Van de Wiele T., Wattiau P., Herman L., Heyndrickx M., Van Coillie E. Characterization of Cefotaxime- and Ciprofloxacin-Resistant Commensal Escherichia coli Originating from Belgian Farm Animals Indicates High Antibiotic Resistance Transfer Rates. Microb. Drug Resist. 2018;24:707–717. doi: 10.1089/mdr.2017.0226. PubMed DOI

Reid C.J., McKinnon J., Djordjevic S.P. Clonal ST131-H22 Escherichia coli strains from a healthy pig and a human urinary tract infection carry highly similar resistance and virulence plasmids. Microb. Genom. 2019;5:e000295. doi: 10.1099/mgen.0.000295. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace