Wildlife Is Overlooked in the Epidemiology of Medically Important Antibiotic-Resistant Bacteria

. 2019 Aug ; 63 (8) : . [epub] 20190725

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31209001

Wild animals foraging in the human-influenced environment are colonized by bacteria with clinically important antibiotic resistance. The occurrence of such bacteria in wildlife is influenced by various biological, ecological, and geographical factors which have not yet been fully understood. More research focusing on the human-animal-environmental interface and using novel approaches is required to understand the role of wild animals in the transmission of antibiotic resistance and to assess potential risks for the public health.

Komentář

https://doi.org/10.1128/AAC.00758-19 PubMed

Zobrazit více v PubMed

Koeck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, Schwarz S, Jurke A. 2018. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect 24:1241–1250. doi:10.1016/j.cmi.2018.04.004. PubMed DOI

Dolejska M, Papagiannitsis CC. 2018. Plasmid-mediated resistance is going wild. Plasmid 99:99–111. doi:10.1016/j.plasmid.2018.09.010. PubMed DOI

Ahlstron CA, Ramey AM, Woksepp H, Bonnedahl J. 2019. Repeated detection of carbapenemase-producing Escherichia coli in gulls inhabiting Alaska. Antimicrob Agents Chemother 63:e00758-19. doi:10.1128/AAC.00758-19. PubMed DOI PMC

Schaufler K, Semmler T, Wieler LH, Woehrmann M, Baddam R, Ahmed N, Mueller K, Kola A, Fruth A, Ewers C, Guenther S. 2016. Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410-another successful pandemic clone? FEMS Microbiol Ecol 92:fix155. doi:10.1093/femsec/fiv155. PubMed DOI

Guenther S, Semmler T, Stubbe A, Stubbe M, Wieler LH, Schaufler K. 2017. Chromosomally encoded ESBL genes in Escherichia coli of ST38 from Mongolian wild birds. J Antimicrob Chemother 72:1310–1313. doi:10.1093/jac/dkx006. PubMed DOI

Ahlstrom CA, Bonnedahl J, Woksepp H, Hernandez J, Olsen B, Ramey AM. 2018. Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis. Sci Rep 8:7361. doi:10.1038/s41598-018-25474-w. PubMed DOI PMC

Ahlstrom CA, Bonnedahl J, Woksepp H, Hernandez J, Reed JA, Tibbitts L, Olsen B, Douglas DC, Ramey AM. 2019. Satellite tracking of gulls and genomic characterization of faecal bacteria reveals environmentally mediated acquisition and dispersal of antimicrobial-resistant Escherichia coli on the Kenai Peninsula, Alaska. Mol Ecol doi:10.1111/mec.15101. PubMed DOI

Guenther S, Ewers C, Wieler LH. 2011. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol 2:246. doi:10.3389/fmicb.2011.00246. PubMed DOI PMC

Dolejska M, Masarikova M, Dobiasova H, Jamborova I, Karpiskova R, Havlicek M, Carlile N, Priddel D, Cizek A, Literak I. 2016. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J Antimicrob Chemother 71:63–70. doi:10.1093/jac/dkv306. PubMed DOI PMC

Atterby C, Borjesson S, Ny S, Jarhult JD, Byfors S, Bonnedahl J. 2017. ESBL-producing Escherichia coli in Swedish gulls—a case of environmental pollution from humans? PLoS One 12:e0190380. doi:10.1371/journal.pone.0190380. PubMed DOI PMC

Literak I, Dolejska M, Rybarikova J, Cizek A, Strejckova P, Vyskocilova M, Friedman M, Klimes J. 2009. Highly variable patterns of antimicrobial resistance in commensal Escherichia coli isolates from pigs, sympatric rodents, and flies. Microb Drug Resist 15:229–237. doi:10.1089/mdr.2009.0913. PubMed DOI

Wang Y, Zhang R, Li J, Wu Z, Yin W, Schwarz S, Tyrrell JM, Zheng Y, Wang S, Shen Z, Liu Z, Liu J, Lei L, Li M, Zhang Q, Wu C, Zhang Q, Wu Y, Walsh TR, Shen J. 2017. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol 2:16260. doi:10.1038/nmicrobiol.2016.260. PubMed DOI

Nelson M, Jones SH, Edwards C, Ellis JC. 2008. Characterization of Escherichia coli populations from gulls, landfill trash, and wastewater using ribotyping. Dis Aquat Organ 81:53–63. doi:10.3354/dao01937. PubMed DOI

Vittecoq M, Laurens C, Brazier L, Durand P, Elguero E, Arnal A, Thomas F, Aberkane S, Renaud N, Prugnolle F, Solassol J, Jean-Pierre H, Godreuil S, Renaud F. 2017. VIM-1 carbapenemase-producing Escherichia coli in gulls from southern France. Ecol Evol 7:1224–1232. doi:10.1002/ece3.2707. PubMed DOI PMC

Walsh TR, Weeks J, Livermore DM, Toleman MA. 2011. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362. doi:10.1016/S1473-3099(11)70059-7. PubMed DOI

Guenther S, Aschenbrenner K, Stamm I, Bethe A, Semmler T, Stubbe A, Stubbe M, Batsajkhan N, Glupczynski Y, Wieler LH, Ewers C. 2012. Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS One 7:e53039. doi:10.1371/journal.pone.0053039. PubMed DOI PMC

Bonnedahl J, Stedt J, Waldenstrom J, Svensson L, Drobni M, Olsen B. 2015. Comparison of extended-spectrum beta-lactamase (ESBL) CTX-M genotypes in Franklin gulls from Canada and Chile. PLoS One 10:e0141315. doi:10.1371/journal.pone.0141315. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace