The tropical cookbook: Termite diet and phylogenetics-Over geographical origin-Drive the microbiome and functional genetic structure of nests
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36998409
PubMed Central
PMC10043212
DOI
10.3389/fmicb.2023.1089525
Knihovny.cz E-resources
- Keywords
- metabarcoding, metabolomics, metagenomic sequencing, phylogenetic relatedness, termite diet, termite nest microbiome,
- Publication type
- Journal Article MeSH
Termites are key decomposers of dead plant material involved in the organic matter recycling process in warm terrestrial ecosystems. Due to their prominent role as urban pests of timber, research efforts have been directed toward biocontrol strategies aimed to use pathogens in their nest. However, one of the most fascinating aspects of termites is their defense strategies that prevent the growth of detrimental microbiological strains in their nests. One of the controlling factors is the nest allied microbiome. Understanding how allied microbial strains protect termites from pathogen load could provide us with an enhanced repertoire for fighting antimicrobial-resistant strains or mining for genes for bioremediation purposes. However, a necessary first step is to characterize these microbial communities. To gain a deeper understanding of the termite nest microbiome, we used a multi-omics approach for dissecting the nest microbiome in a wide range of termite species. These cover several feeding habits and three geographical locations on two tropical sides of the Atlantic Ocean known to host hyper-diverse communities. Our experimental approach included untargeted volatile metabolomics, targeted evaluation of volatile naphthalene, a taxonomical profile for bacteria and fungi through amplicon sequencing, and further diving into the genetic repertoire through a metagenomic sequencing approach. Naphthalene was present in species belonging to the genera Nasutitermes and Cubitermes. We investigated the apparent differences in terms of bacterial community structure and discovered that feeding habits and phylogenetic relatedness had a greater influence than geographical location. The phylogenetic relatedness among nests' hosts influences primarily bacterial communities, while diet influences fungi. Finally, our metagenomic analysis revealed that the gene content provided both soil-feeding genera with similar functional profiles, while the wood-feeding genus showed a different one. Our results indicate that the nest functional profile is largely influenced by diet and phylogenetic relatedness, irrespective of geographical location.
See more in PubMed
Aguero C. M., Eyer P. A., Crippen T. L., Vargo E. L. (2021). Reduced environmental microbial diversity on the cuticle and in the galleries of a subterranean termite compared to surrounding soil. Microb. Ecol. 81, 1054–1063. 10.1007/s00248-020-01664-w PubMed DOI
Alcock B. P., Raphenya A. R., Lau T. T. Y., Tsang K. K., Bouchard M., Edalatmand A., et al. . (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucl. Acids Res. 48, D517–D525. 10.1093/nar/gkz935 PubMed DOI PMC
Allingham S. M., Harvey M. (2013). Effects of different fire regimes on amphibian communities in the Nyika National Park. Malawi 32, 1–8. 10.5358/hsj.32.1 DOI
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Arora R., Sharma N. K., Kumar S., Sani R. K. (2019). Lignocellulosic ethanol: Feedstocks and bioprocessing. Bioethanol Prod. 6, 165–185. 10.1016/B978-0-12-813766-6.00009-6 DOI
Auer L., Lazuka A., Sillam-Dussès D., Miambi E., O'Donohue M., Hernandez-Raquet G. (2017). Uncovering the potential of termite gut microbiome for lignocellulose bioconversion in anaerobic batch bioreactors. Front. Microbiol. 8, 2623. 10.3389/fmicb.2017.02623 PubMed DOI PMC
Baker R., Buckland A., Sheaves M. (2014). Fish gut content analysis: Robust measures of diet composition. Fish Fish 15, 170–177. 10.1111/faf.12026 DOI
Bashir Z., Kondapalli V. K., Adlakha N., Sharma A., Bhatnagar R. K., Chandel G., et al. . (2013). Diversity and functional significance of cellulolytic microbes living in termite, pill-bug and stem-borer guts. Sci. Rep. 3, 1–11. 10.1038/srep02558 PubMed DOI PMC
Beeckmans S., Xie J. P. (2015). Glyoxylate cycle. Ref. Modul. Biomed. Sci. 5, 2440. 10.1016/B978-0-12-801238-3.02440-5 DOI
Benjamino J., Graf J. (2016). Characterization of the core and caste-specific microbiota in the Termite, Reticulitermes flavipes. Front. Microbiol. 7, 171. 10.3389/fmicb.2016.00171 PubMed DOI PMC
Bokulich N. A., Kaehler B. D., Rideout J. R., Dillon M., Bolyen E., Knight R., et al. . (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6, 1–17. 10.1186/s40168-018-0470-z PubMed DOI PMC
Bokulich N. A., Subramanian S., Faith J. J., Gevers D., Gordon J. I., Knight R., et al. . (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59. 10.1038/nmeth.2276 PubMed DOI PMC
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bolyen E., Rideout J. R., Dillon M. R., Bokulich N. A., Abnet C. C., Al-Ghalith G. A., et al. . (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. 10.1038/s41587-019-0209-9 PubMed DOI PMC
Bowman J. P. (2011). Protein-based analysis and other new and emerging non-nucleic acid based methods for tracing and investigating foodborne pathogens. Tracing Pathog. Food Chain 2011, 292–341. 10.1533/9780857090508.3.292 DOI
Bray J. R., Curtis J. T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349. 10.2307/1942268 DOI
Brown C. T., Crusoe M. R., Alameldin H. F., Awad S., Boucher E., Caldwell A., et al. . (2015). The khmer software package: Enabling efficient nucleotide sequence analysis. F1000Research 4, 900. 10.12688/f1000research.6924.1 PubMed DOI PMC
Brown C. T., Howe A., Zhang Q., Pyrkosz A. B., Brom T. H. (2012). A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data. Ithaca, NY: Cornell University.
Brown C. T., Scott C., Crusoe M., Sheneman L., Rosenthal J., Howe A. (2013). KHMER-Protocols Documentation. Figshare. Available online at: https://figshare.com/articles/dataset/khmer_protocols_0_8_3_documentation/878460
Brune A. (1998). Termite guts: The world's smallest bioreactors. Trends Biotechnol. 16, 16–21. 10.1016/S0167-7799(97)01151-7 DOI
Buchfink B., Xie C., Huson D. H. (2014). Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. 10.1038/nmeth.3176 PubMed DOI
Cai L., Gong X., Sun X., Li S., Yu X. (2018). Comparison of chemical and microbiological changes during the aerobic composting and vermicomposting of green waste. PLoS ONE 13, e0207494. 10.1371/journal.pone.0207494 PubMed DOI PMC
Callaghan A. V., Wawrik B. (2016). AnHyDeg: A Curated Database of Anaerobic Hydrocarbon Degradation Genes. Available online at: https://github.com/AnaerobesRock/AnHyDeg/tree/v1.0
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. 10.1038/nmeth.3869 PubMed DOI PMC
Cao X. L. (2012). A review recent development on analytical methods for determination of bisphenol a in food and biological samples. J. Liq. Chromatogr. Relat. Technol. 35, 2795–2829. 10.1080/10826076.2012.720325 PubMed DOI
Caspi R., Billington R., Fulcher C. A., Keseler I. M., Kothari A., Krummenacker M., et al. . (2018). The MetaCyc database of metabolic pathways and enzymes. Nucl. Acids Res. 46, D633–D639. 10.1093/nar/gkx935 PubMed DOI PMC
Chen H., Hao D., Wei Z., Wang L., Lin T. (2020). Bacterial communities associated with the pine wilt disease insect vector Monochamus alternatus (Coleoptera: Cerambycidae) during the Larvae and Pupae stages. Insects 11, 376. 10.3390/insects11060376 PubMed DOI PMC
Chen J., Henderson G., Grimm C. C., Lloyd S. W., Laine R. A. (1998a). Naphthalene in formosan subterranean termite carton nests. J. Agric. Food Chem. 46, 2337–2339. 10.1021/jf9709717 DOI
Chen J., Henderson G., Grimm C. C., Lloyd S. W., Laine R. A. (1998b). Termites fumigate their nests with naphthalene. Nature 392, 558–559. 10.1038/33305 DOI
Chong G. G., Huang X. J., Di J. H., Xu D. Z., He Y. C., Pei Y. N., et al. . (2018). Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16. Bioprocess Biosyst. Eng. 41, 501–510. 10.1007/s00449-017-1884-x PubMed DOI
Chouvenc T., Efstathion C. A., Elliott M. L., Su N.-Y. (2013). Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc. R. Soc. B Biol. Sci. 280, 20131885. 10.1098/rspb.2013.1885 PubMed DOI PMC
Chouvenc T., Elliott M. L., Šobotník J., Efstathion C. A., Su N.-Y. (2018). The termite fecal nest: A framework for the opportunistic acquisition of beneficial soil streptomyces (Actinomycetales: Streptomycetaceae). Environ. Entomol. 47, 1431–1439. 10.1093/ee/nvy152 PubMed DOI
Clarholm M. (1981). Protozoan grazing of bacteria in soil—impact and importance. Microb. Ecol. 7, 343–350. 10.1007/BF02341429 PubMed DOI
Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W. (2016). GenBank. Nucl. Acids Res. 44, D67–D72. 10.1093/nar/gkv1276 PubMed DOI PMC
Colas F., Chanudet V., Daufresne M., Buchet L., Vigouroux R., Bonnet A., et al. . (2020). Spatial and temporal variability of diffusive CO2 and CH4 fluxes from the Amazonian Reservoir Petit-Saut (French Guiana) reveals the importance of allochthonous inputs for long-term C emissions. Glob. Biogeochem. Cycles 34, e2020GB006602. 10.1029/2020GB006602 DOI
Cole M. E., Ceja-Navarro J. A., Mikaelyan A. (2021). The power of poop: Defecation behaviors and social hygiene in insects. PLoS Pathog. 17, e1009964. 10.1371/journal.ppat.1009964 PubMed DOI PMC
Colman D. R., Toolson E. C., Takacs-Vesbach C. D. (2012). Do diet and taxonomy influence insect gut bacterial communities? Mol. Ecol. 21, 5124–5137. 10.1111/j.1365-294X.2012.05752.x PubMed DOI
Convention on Biological Diversity (2010). “The strategic plan for biodiversity 2011-2020,” in Tenth Meeting of the Conference of the Parties to the Convention on Biological Diversity, Nagoya.
David L. A., Maurice C. F., Carmody R. N., Gootenberg D. B., Button J. E., Wolfe B. E., et al. . (2013). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563. 10.1038/nature12820 PubMed DOI PMC
De Mello A. P., De Moraes M. M., Da Câmara C. A. G., Vasconcellos A. (2021). Effect of spatial variation on defensive substances of constrictotermes cyphergaster soldiers (Blattaria, Isoptera). J. Chem. Ecol. 47, 544–551. 10.1007/s10886-021-01271-0 PubMed DOI
Dedysh S. N., Kulichevskaya I. S., Beletsky A. V., Ivanova A. A., Rijpstra W. I. C., Damsté J. S. S., et al. . (2020). Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov. Syst. Appl. Microbiol. 43, 126050. 10.1016/j.syapm.2019.126050 PubMed DOI PMC
DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., et al. . (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072. 10.1128/AEM.03006-05 PubMed DOI PMC
Do T. H., Nguyen T. T., Nguyen T. N., Le Q. G., Nguyen C., Kimura K., et al. . (2014). Mining biomass-degrading genes through illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. J. Biosci. Bioeng. 118, 665–671. 10.1016/j.jbiosc.2014.05.010 PubMed DOI
Dolejska M., Literak I. (2019). Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrob. Agents Chemother. 63:e01167-19. 10.1128/AAC.01167-19 PubMed DOI PMC
Dolejšová K., Krasulová J., Kutalová K., Hanus R. (2014). Chemical alarm in the termite Termitogeton planus (Rhinotermitidae). J. Chem. Ecol. 40, 1269–1276. 10.1007/s10886-014-0515-0 PubMed DOI
Duarte M., Jauregui R., Vilchez-Vargas R., Junca H., Pieper D. H. (2014). AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics. Database 2014, bau118. 10.1093/database/bau118 PubMed DOI PMC
Eddy S. R. (2011). Accelerated profile HMM searches. PLoS Comput. Biol. 7, 1002195. 10.1371/journal.pcbi.1002195 PubMed DOI PMC
Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC
El-Naggar N. E.-A. (2021). Streptomyces-based cell factories for production of biomolecules and bioactive metabolites. Microb. Cell Factories Eng. Prod. Biomol. 8, 183–234. 10.1016/B978-0-12-821477-0.00011-8 DOI
Enagbonma B. J., Ajilogba C. F., Babalola O. O. (2020). Metagenomic profiling of bacterial diversity and community structure in termite mounds and surrounding soils. Arch. Microbiol. 202, 2697–2709. 10.1007/s00203-020-01994-w PubMed DOI
Enault F., Briet A., Bouteille L., Roux S., Sullivan M. B., Petit M. A. (2016). Phages rarely encode antibiotic resistance genes: A cautionary tale for virome analyses. ISME J. 11, 237–247. 10.1101/053025 PubMed DOI PMC
Erlacher A., Cernava T., Cardinale M., Soh J., Sensen C. W., Grube M., et al. . (2015). Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front. Microbiol. 6, 53. 10.3389/fmicb.2015.00053 PubMed DOI PMC
Faith D. P. (1992). Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10. 10.1016/0006-3207(92)91201-3 DOI
Fan L., Li F., Chen X., Liping,·Q, Dong X., Hu G., et al. . (2021). Metagenomics analysis reveals the distribution and communication of antibiotic resistance genes within two different red swamp crayfish Procambarus clarkii cultivation ecosystems. Environ. Pollut. 285, 117144. 10.1016/j.envpol.2021.117144 PubMed DOI
Fang H., Lv W., Huang Z., Liu S. J., Yang H. (2015). Gryllotalpicola reticulitermitis sp. nov., isolated from a termite gut. Int. J. Syst. Evol. Microbiol. 65, 85–89. 10.1099/ijs.0.062984-0 PubMed DOI
Finn R. D., Coggill P., Eberhardt R. Y., Eddy S. R., Mistry J., Mitchell A. L., et al. . (2016). The Pfam protein families database: Towards a more sustainable future. Nucl. Acids Res. 44, D279–D285. 10.1093/nar/gkv1344 PubMed DOI PMC
Flint H. J., Duncan S. H., Scott K. P., Louis P. (2015). Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 74, 13–22. 10.1017/S0029665114001463 PubMed DOI
Funnicelli M. I. G., Pinheiro D. G., Gomes-Pepe E. S., de Carvalho L. A. L., Campanharo J. C., Fernandes C. C., et al. . (2021). Metagenome-assembled genome of a Chitinophaga sp. and its potential in plant biomass degradation, as well of affiliated Pandoraea and Labrys species. World J. Microbiol. Biotechnol. 37, 1–17. 10.1007/s11274-021-03128-w PubMed DOI
Gershenzon J., Dudareva N. (2007). The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408–414. 10.1038/nchembio.2007.5 PubMed DOI
Gomes K. M., Duarte R. S., Bastos M. C. F. (2017). Lantibiotics produced by Actinobacteria and their potential applications (A review). Microbiology 163, 109–121. 10.1099/mic.0.000397 PubMed DOI
González-Plaza J. J., Blau K., Milaković M., Jurina T., Smalla K., Udiković-Kolić N. (2019). Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments. Environ. Int. 130, 104735. 10.1016/j.envint.2019.04.007 PubMed DOI
Goodfellow M., Williams S. T. (2003). Ecology of actinomycetes. Annu. Rev. Microbiol. 37, 189–216. 10.1146/annurev.mi.37.100183.001201 PubMed DOI
Griffiths B. S., Bracewell J. M., Robertson G. W., Bignell D. E. (2013). Pyrolysis–mass spectrometry confirms enrichment of lignin in the faeces of a wood-feeding termite, Zootermopsis nevadensis and depletion of peptides in a soil-feeder, Cubitermes ugandensis. Soil Biol. Biochem. 57, 957–959. 10.1016/j.soilbio.2012.08.012 DOI
Hammami R., Zouhir A., Le Lay C., Ben Hamida J., Fliss I. (2010). BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol. 10, 22. 10.1186/1471-2180-10-22 PubMed DOI PMC
Hu H., da Costa R. R., Pilgaard B., Schiøtt M., Lange L., Poulsen M. (2019). Fungiculture in termites is associated with a mycolytic gut bacterial community. mSphere 4, 19. 10.1128/mSphere.00165-19 PubMed DOI PMC
Huerta-Cepas J., Szklarczyk D., Forslund K., Cook H., Heller D., Walter M. C., et al. . (2016). eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucl. Acids Res. 44, D286–D293. 10.1093/nar/gkv1248 PubMed DOI PMC
Hyatt D., Chen G. L., LoCascio P. F., Land M. L., Larimer F. W., Hauser L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformat. 11, 1–11. 10.1186/1471-2105-11-119 PubMed DOI PMC
Jordan C. F., Herrera R. (2015). Tropical rain forests: Are nutrients really critical? Am. Nat. 117, 167–180.
Jose J. J. S., Montes R., Stansly P. A., Bentley B. L. (1989). Environmental factors related to the occurrence of mound-building nasute termites in trachypogon savannas of the orinoco llanos. Biotropica 21, 353. 10.2307/2388286 DOI
Jroundi F., Martinez-Ruiz F., Merroun M. L., Gonzalez-Muñoz M. T. (2020). Exploring bacterial community composition in Mediterranean deep-sea sediments and their role in heavy metal accumulation. Sci. Total Environ. 712, 135660. 10.1016/j.scitotenv.2019.135660 PubMed DOI
Kaehler B. D., Bokulich N. A., McDonald D., Knight R., Caporaso J. G., Huttley G. A. (2019). Species abundance information improves sequence taxonomy classification accuracy. Nat. Commun. 10, 4643. 10.1038/s41467-019-12669-6 PubMed DOI PMC
Kanehisa M., Goto S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28, 27–30. 10.1093/nar/28.1.27 PubMed DOI PMC
Kang D. D., Li F., Kirton E., Thomas A., Egan R., An H., et al. . (2019). MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019, e7359. 10.7717/peerj.7359 PubMed DOI PMC
Katoh K., Misawa K., Kuma K. I., Miyata T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl. Acids Res. 30, 3059–3066. 10.1093/nar/gkf436 PubMed DOI PMC
Ke J., Singh D., Chen S. (2011). Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). Int. Biodeterior. Biodegrad. 65, 16. 10.1016/j.ibiod.2010.12.016 DOI
Kellner K., Ishak H. D., Linksvayer T. A., Mueller U. G. (2015). Bacterial community composition and diversity in an ancestral ant fungus symbiosis. FEMS Microbiol. Ecol. 91, 73. 10.1093/femsec/fiv073 PubMed DOI
Knoben W. J. M., Woods R. A., Freer J. E. (2019). Global bimodal precipitation seasonality: A systematic overview. Int. J. Climatol. 39, 558–567. 10.1002/joc.5786 DOI
Krishanti N. P. R. A., Zulfina D., Wikantyoso B., Zulfitri A., Yusuf S. (2018). Antimicrobial production by an actinomycetes isolated from the termite nest. J. Trop. Life Sci. 8, 279–288. 10.11594/jtls.08.03.10 PubMed DOI
Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Laslett D., Canback B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucl. Acids Res. 32, 11–16. 10.1093/nar/gkh152 PubMed DOI PMC
Legendre P., Gallagher E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280. 10.1007/s004420100716 PubMed DOI
Leite-Mondin M., DiLegge M. J., Manter D. K., Weir T. L., Silva-Filho M. C., Vivanco J. M. (2021). The gut microbiota composition of Trichoplusia ni is altered by diet and may influence its polyphagous behavior. Sci. Rep. 11, 1–16. 10.1038/s41598-021-85057-0 PubMed DOI PMC
Lepleux C., Turpault M. P., Oger P., Frey-Klett P., Uroz S. (2012). Correlation of the abundance of betaproteobacteria on mineral surfaces with mineral weathering in forest soils. Appl. Environ. Microbiol. 78, 7114–7119. 10.1128/AEM.00996-12 PubMed DOI PMC
Li D., Liu C.-M., Luo R., Sadakane K., Lam T.-W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676. 10.1093/bioinformatics/btv033 PubMed DOI
Li L., Guo X. P., Zhao T. N., Liu L., Li T. Y. (2021). Identifying the key environmental factors and bacterial communities in humification and their relationships during green waste composting. Appl. Ecol. Environ. Res. 19, 45–62. 10.15666/aeer/1901_045062 DOI
Lima-Perim J. E., Romagnoli E. M., Dini-Andreote F., Durrer A., Dias A. C. F., Andreote F. D. (2016). Linking the composition of bacterial and archaeal communities to characteristics of soil and flora composition in the atlantic rainforest. PLoS ONE 11, e0146566. 10.1371/journal.pone.0146566 PubMed DOI PMC
Lombard V., Golaconda Ramulu H., Drula E., Coutinho P. M., Henrissat B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucl. Acids Res. 42, D490–D495. 10.1093/nar/gkt1178 PubMed DOI PMC
Long Y. H., Xie L., Liu N., Yan X., Li M. H., Fan M. Z., et al. . (2010). Comparison of gut-associated and nest-associated microbial communities of a fungus-growing termite (Odontotermes yunnanensis). Insect Sci. 17, 265–276. 10.1111/j.1744-7917.2010.01327.x DOI
López-Hernández D. (2001). Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco Llanos (Venezuela). Soil Biol. Biochem. 33, 747–753. 10.1016/S0038-0717(00)00220-0 DOI
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Lozupone C., Knight R. (2005). UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235. 10.1128/AEM.71.12.8228-8235.2005 PubMed DOI PMC
Lozupone C., Lladser M. E., Knights D., Stombaugh J., Knight R. (2011). UniFrac: An effective distance metric for microbial community comparison. ISME J. 5, 169–172. 10.1038/ismej.2010.133 PubMed DOI PMC
Lozupone C. A., Hamady M., Kelley S. T., Knight R. (2007). Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585. 10.1128/AEM.01996-06 PubMed DOI PMC
Magoč T., Salzberg S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. 10.1093/bioinformatics/btr507 PubMed DOI PMC
Mason L. M., Eagar A., Patel P., Blackwood C. B., DeForest J. L. (2021). Potential microbial bioindicators of phosphorus mining in a temperate deciduous forest. J. Appl. Microbiol. 130, 109–122. 10.1111/jam.14761 PubMed DOI
Matsuura K., Matsunaga T. (2015). Antifungal activity of a termite queen pheromone against egg-mimicking termite ball fungi. Ecol. Res. 30, 93–100. 10.1007/s11284-014-1213-7 DOI
McCarthy A. J., Williams S. T. (1992). Actinomycetes as agents of biodegradation in the environment—A review. Gene 115, 189–192. 10.1016/0378-1119(92)90558-7 PubMed DOI
McDonald R. C., Watts J. E. M., Schreier H. J. (2019). Effect of diet on the enteric microbiome of the wood-eating catfish Panaque nigrolineatus. Front. Microbiol. 10, 2687. 10.3389/fmicb.2019.02687 PubMed DOI PMC
McKee L. S., Martínez-Abad A., Ruthes A. C., Vilaplana F., Brumer H. (2019). Focused metabolism of β-glucans by the soil bacteroidetes species chitinophaga pinensis. Appl. Environ. Microbiol. 85, 18. 10.1128/AEM.02231-18 PubMed DOI PMC
Mey C. B. J., Gore M. L. (2021). Biodiversity conservation and carbon sequestration in agroforestry systems of the mbalmayo forest reserve. J. For. Environ. Sci. 37, 91–103. 10.7747/JFES.2021.37.2.91 DOI
Milaković M., Vestergaard G., González-Plaza J. J., Petrić I., Šimatović A., Senta I., et al. . (2019). Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments. Environ. Int. 12, 50. 10.1016/j.envint.2018.12.050 PubMed DOI
Mitaka Y., Mori N., Matsuura K. (2017). Multi-functional roles of a soldier-specific volatile as a worker arrestant, primer pheromone and an antimicrobial agent in a termite. Proc. R. Soc. B Biol. Sci. 284, 1134. 10.1098/rspb.2017.1134 PubMed DOI PMC
Mizumoto N., Gile G. H., Pratt S. C. (2021). Behavioral rules for soil excavation by colony founders and workers in termites. Ann. Entomol. Soc. Am. 114, 654–661. 10.1093/aesa/saaa017 DOI
Moore B. P. (1968). Studies on the chemical composition and function of the cephalic gland secretion in Australian termites. J. Insect Physiol. 14, 33–39. 10.1016/0022-1910(68)90131-5 DOI
Nnadozie C. F., Lin J., Govinden R. (2017). Selective isolation of a Eucalyptus spp. woodchip bacterial community and its taxonomic and metabolic profiling. Bioenergy Res. 10, 9. 10.1007/s12155-017-9816-9 DOI
Ogola H. J. O., Selvarajan R., Tekere M. (2021). Local geomorphological gradients and land use patterns play key role on the soil bacterial community diversity and dynamics in the highly endemic indigenous afrotemperate coastal scarp forest biome. Front. Microbiol. 12, 281. 10.3389/fmicb.2021.592725 PubMed DOI PMC
Ohkuma M. (2003). Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Appl. Microbiol. Biotechnol. 61, 1–9. 10.1007/s00253-002-1189-z PubMed DOI
Ohkuma M., Brune A. (2010). “Diversity, structure, and evolution of the termite gut microbial community,” in Biology of Termites: A Modern Synthesis, eds D. Edward Bignell, Y. Roisin and N. Lo (Springer: Dordrecht; ), 413–438. 10.1007/978-90-481-3977-4_15 DOI
Olano C., Lombó F., Méndez C., Salas J. A. (2008). Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab. Eng. 10, 281–292. 10.1016/j.ymben.2008.07.001 PubMed DOI
Otani S., Zhukova M., Koné N. A., da Costa R. R., Mikaelyan A., Sapountzis P., et al. . (2019). Gut microbial compositions mirror caste-specific diets in a major lineage of social insects. Environ. Microbiol. Rep. 11, 196–205. 10.1111/1758-2229.12728 PubMed DOI PMC
Pal C., Bengtsson-Palme J., Rensing C., Kristiansson E., Larsson D. G. J. (2014). BacMet: Antibacterial biocide and metal resistance genes database. Nucl. Acids Res. 42, D737–D743. 10.1093/nar/gkt1252 PubMed DOI PMC
Pandit P. D., Gulhane M. K., Khardenavis A. A., Purohit H. J. (2016). Mining of hemicellulose and lignin degrading genes from differentially enriched methane producing microbial community. Bioresour. Technol. 216, 923–930. 10.1016/j.biortech.2016.06.021 PubMed DOI
Paredes-Sabja D., Setlow P., Sarker M. R. (2011). Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends Microbiol. 19, 85–94. 10.1016/j.tim.2010.10.004 PubMed DOI
Parthasarathy A., Cross P. J., Dobson R. C. J., Adams L. E., Savka M. A., Hudson A. O. (2018). A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front. Mol. Biosci. 5, 29. 10.3389/fmolb.2018.00029 PubMed DOI PMC
Pearson W. R. (2013). An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinformat. 3, bi0301s42. 10.1002/0471250953.bi0301s42 PubMed DOI PMC
Prestwich G. D. (1979). Defence secretion of the black termite, Grallatotermes africanus (Termitidae, Nasutitermitinae). Insect Biochem. 9, 563–567. 10.1016/0020-1790(79)90093-3 DOI
Prestwich G. D., Jones R. W., Collins M. S. (1981). Terpene biosynthesis by nasute termite soldiers (Isoptera: Nasutitermitinae). Insect Biochem. 11, 331–336. 10.1016/0020-1790(81)90011-1 DOI
Price M. N., Dehal P. S., Arkin A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, 9490. 10.1371/journal.pone.0009490 PubMed DOI PMC
Puente-Sánchez F., García-García N., Tamames J. (2020). SQMtools: Automated processing and visual analysis of 'omics data with R and anvi'o. BMC Bioinformat. 21, 358. 10.1186/s12859-020-03703-2 PubMed DOI PMC
Qiao Q., Wang F., Zhang J., Chen Y., Zhang C., Liu G., et al. . (2017). The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7, 1–10. 10.1038/s41598-017-04213-7 PubMed DOI PMC
Rausch P., Rühlemann M., Hermes B. M., Doms S., Dagan T., Dierking K., et al. . (2019). Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. Microbiome 7, 1–19. 10.1186/s40168-019-0743-1 PubMed DOI PMC
Rieke E. L., Soupir M. L., Moorman T. B., Yang F., Howe A. C. (2018). Temporal dynamics of bacterial communities in soil and leachate water after swine manure application. Front. Microbiol. 9, 3197. 10.3389/fmicb.2018.03197 PubMed DOI PMC
Romero D., Traxler M. F., López D., Kolter R. (2011). Antibiotics as signal molecules. Chem. Rev. 111, 5492. 10.1021/cr2000509 PubMed DOI PMC
Rønn R., McCaig A. E., Griffiths B. S., Prosser J. I. (2002). Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl. Environ. Microbiol. 68, 6094–6105. 10.1128/AEM.68.12.6094-6105.2002 PubMed DOI PMC
RStudio Team (2020). RStudio: Integrated Development for R. Available online at: http://www.rstudio.com/
Scherlach K., Hertweck C. (2020). Chemical mediators at the bacterial-fungal interface. Annu. Rev. Microbiol. 74, 267–290. 10.1146/annurev-micro-012420-081224 PubMed DOI
Schmidt R., Ulanova D., Wick L. Y., Bode H. B., Garbeva P. (2019). Microbe-driven chemical ecology: past, present and future. ISME J. 13, 2656–2663. 10.1038/s41396-019-0469-x PubMed DOI PMC
Schmieder R., Edwards R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864. 10.1093/bioinformatics/btr026 PubMed DOI PMC
Seemann T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. 10.1093/bioinformatics/btu153 PubMed DOI
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., et al. . (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. 10.1186/gb-2011-12-6-r60 PubMed DOI PMC
Seo S. M., Kim J., Kang J., Koh S. H., Ahn Y. J., Kang K. S., et al. . (2014). Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic. Biochem. Physiol. 113, 55–61. 10.1016/j.pestbp.2014.06.001 PubMed DOI
Sieber C. M. K., Probst A. J., Sharrar A., Thomas B. C., Hess M., Tringe S. G., et al. . (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843. 10.1038/s41564-018-0171-1 PubMed DOI PMC
Silva J. P., Ticona A. R. P., Hamann P. R. V., Quirino B. F., Noronha E. F. (2021). Deconstruction of lignin: From enzymes to microorganisms. Molecules 26, 2299. 10.3390/molecules26082299 PubMed DOI PMC
Smibert R. M., Johnson R. C. (1973). Spirochaetales, a review. Crit. Rev. Microbiol. 2, 491–552. 10.3109/10408417309108393 DOI
Sorensen T. A. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 5, 1–34.
Soukup P., Ve?trovský T., Stiblik P., Votýpková K., Chakraborty A., Sillam-Dussès D., et al. . (2021). Termites ARE ASSOCIATED WITH EXTERNAL SPECIES-SPECIfiC BACTERIAL COMMUNITIES. Appl. Environ. Microbiol. 87, 1–13. 10.1128/AEM.02042-20 PubMed DOI PMC
Štursová M., Žifčáková L., Leigh M. B., Burgess R., Baldrian P. (2012). Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 80, 735–746. 10.1111/j.1574-6941.2012.01343.x PubMed DOI
Subashchandrabose S. R., Venkateswarlu K., Krishnan K., Naidu R., Lockington R., Megharaj M. (2018). Rhodococcus wratislaviensis strain 9: An efficient p-nitrophenol degrader with a great potential for bioremediation. J. Hazard. Mater. 347, 176–183. 10.1016/j.jhazmat.2017.12.063 PubMed DOI
Tamames J., Puente-Sánchez F. (2019). SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline. Front. Microbiol. 9, 3349. 10.3389/fmicb.2018.03349 PubMed DOI PMC
Thong-On A., Suzuki K., Noda S., Inoue J. I., Kajiwara S., Ohkuma M. (2012). Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites. Microbes Environ. 27, 1202010349–1202010349. 10.1264/jsme2.ME11325 PubMed DOI PMC
Tokuda G., Mikaelyan A., Fukui C., Matsuura Y., Watanabe H., Fujishima M., et al. . (2018). Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc. Natl. Acad. Sci. U. S. A. 115, E11996–E12004. 10.1073/pnas.1810550115 PubMed DOI PMC
Treangen T. J., Sommer D. D., Angly F. E., Koren S., Pop M. (2011). Next generation sequence assembly with AMOS. Curr. Protoc. Bioinform. 33, 8–18. 10.1002/0471250953.bi1108s33 PubMed DOI PMC
Tsimeli K., Triantis T. M., Dimotikali D., Hiskia A. (2008). Development of a rapid and sensitive method for the simultaneous determination of 1,2-dibromoethane, 1,4-dichlorobenzene and naphthalene residues in honey using HS-SPME coupled with GC–MS. Anal. Chim. Acta 617, 64–71. 10.1016/j.aca.2008.03.049 PubMed DOI
Valterová I., Vašíčková S., Buděšínský M., Vrkoč J. (1986). Constituents of frontal gland secretion of peruvian termites Nasutitermes ephratae. Collect. Czechoslov. Chem. Commun. 51, 2884–2895. 10.1135/cccc19862884 DOI
van der Sande M. T., Arets E. J. M. M., Peña-Claros M., Hoosbeek M. R., Cáceres-Siani Y., van der Hout P., et al. . (2018). Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Funct. Ecol. 32, 461–474. 10.1111/1365-2435.12968 DOI
van Rensburg J. J., Lin H., Gao X., Toh E., Fortney K. R., Ellinger S., et al. . (2015). The human skin microbiome associates with the outcome of and is influenced by bacterial infection. MBio 6, e01315–e01315. 10.1128/mBio.01315-15 PubMed DOI PMC
van Velden J. L., Wilson K., Lindsey P. A., McCallum H., Moyo B. H. Z., Biggs D. (2020). Bushmeat hunting and consumption is a pervasive issue in African savannahs: Insights from four protected areas in Malawi. Biodivers. Conserv. 29, 1443–1464. 10.1007/s10531-020-01944-4 DOI
Waglechner N., McArthur A. G., Wright G. D. (2019). Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance. Nat. Microbiol. 4, 1862–1871. 10.1038/s41564-019-0531-5 PubMed DOI
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. 10.1128/AEM.00062-07 PubMed DOI PMC
Wang Y. X., Cai M., Zhi X. Y., Zhang Y. Q., Tang S. K., Xu L. H., et al. . (2008). Microlunatus aurantiacus sp. nov., a novel actinobacterium isolated from a rhizosphere soil sample. Int. J. Syst. Evol. Microbiol. 58, 1873–1877. 10.1099/ijs.0.65518-0 PubMed DOI
Whitman W. B., Suzuki K. (2015). Solirubrobacterales. Bergey's Man. Syst. Archaea Bact. 25, 1–3. 10.1002/9781118960608.obm00025 DOI
Wilcke W., Amelung W., Martius C., Garcia M. V. B., Zech W. (2000). Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian rain forest. J. Plant Nutr. Soil Sci. 163, 27–30. 10.1002/(SICI)1522-2624(200002)163:1<27::AID-JPLN27>3.0.CO DOI
Wilhelm R. C., Singh R., Eltis L. D., Mohn W. W. (2018). Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 13, 413–429. 10.1038/s41396-018-0279-6 PubMed DOI PMC
Wiltz B. A., Henderson G., Chen J. (1998). Effect of naphthalene, butylated hydroxytoluene, dioctyl phthalate, and adipic dioctyl ester, chemicals found in the nests of the formosan subterranean termite (Isoptera: Rhinotermitidae) on a Saprophytic Mucor sp. (Zygomycetes: Mucorales). Environ. Entomol. 27, 936–940. 10.1093/ee/27.4.936 DOI
Wright M. S., Lax A. R., Henderson G., Chen J. (2000). Growth response of Metarhizium anisopliae to two Formosan subterranean termite nest volatiles, naphthalene and fenchone. Mycologia 92, 42–45. 10.1080/00275514.2000.12061128 DOI
Wu Y. W., Simmons B. A., Singer S. W. (2016). MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607. 10.1093/bioinformatics/btv638 PubMed DOI
Xia Y., Wang Y., Fang H. H. P., Jin T., Zhong H., Zhang T. (2014). Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis. Sci. Rep. 4, 1–9. 10.1038/srep06708 PubMed DOI PMC
Yamaguchi M., Ichida J., Xuan-Xuan Z., Nakamura M., Yoshitake T. (1994). Determination of glyoxal, methylglyoxal, diacethyl, and 2,3-pentanedione in fermented foods by high-performance liquid chromatography with fluorescence detection. J. Liq. Chromatogr. 17, 203–211. 10.1080/10826079408013445 DOI
Yang H., Schmitt-Wagner D., Stingl U., Brune A. (2005). Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ. Microbiol. 7, 916–932. 10.1111/j.1462-2920.2005.00760.x PubMed DOI
Ye Y., Doak T. G. (2009). A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput. Biol. 5, e1000465. 10.1371/journal.pcbi.1000465 PubMed DOI PMC
Zapfack L., Engwald S. (2008). Biodiversity and spatial distribution of vascular epiphytes in two biotopes of the Cameroonian semi-deciduous rain forest. Plant Ecol. 195, 117–130. 10.1007/s11258-007-9308-7 DOI
Zhang C., Yu L., Zhang Y. (2017). Research progress on the genus Microlunatus. Wei Sheng Wu Xue Bao 57, 179–187. PubMed
Zhao S., Ye Z., Stanton R. (2020). Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA 26, 903–909. 10.1261/rna.074922.120 PubMed DOI PMC
Zhong C., Fu J., Jiang T., Zhang C., Cao G. (2018). Polyphosphate metabolic gene expression analyses reveal mechanisms of phosphorus accumulation and release in Microlunatus phosphovorus strain JN459. FEMS Microbiol. Lett. 365, 34. 10.1093/femsle/fny034 PubMed DOI