Termites Are Associated with External Species-Specific Bacterial Communities
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33097518
PubMed Central
PMC7783351
DOI
10.1128/aem.02042-20
PII: AEM.02042-20
Knihovny.cz E-zdroje
- Klíčová slova
- Coptotermes, Heterotermes, Nasutitermes, ectosymbionts, symbiosis,
- MeSH
- Bacteria klasifikace genetika MeSH
- biodiverzita MeSH
- druhová specificita MeSH
- Isoptera mikrobiologie MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
All termites have established a wide range of associations with symbiotic microbes in their guts. Some termite species are also associated with microbes that grow in their nests, but the prevalence of these associations remains largely unknown. Here, we studied the bacterial communities associated with the termites and galleries of three wood-feeding termite species by using 16S rRNA gene amplicon sequencing. We found that the compositions of bacterial communities among termite bodies, termite galleries, and control wood fragments devoid of termite activities differ in a species-specific manner. Termite galleries were enriched in bacterial operational taxonomic units (OTUs) belonging to Rhizobiales and Actinobacteria, which were often shared by several termite species. The abundance of several bacterial OTUs, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus, was reduced in termite galleries. Our results demonstrate that both termite guts and termite galleries harbor unique bacterial communities.IMPORTANCE As is the case for all ecosystem engineers, termites impact their habitat by their activities, potentially affecting bacterial communities. Here, we studied three wood-feeding termite species and found that they influence the composition of the bacterial communities in their surrounding environment. Termite activities have positive effects on Rhizobiales and Actinobacteria abundance and negative effects on the abundance of several ubiquitous genera, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus Our results demonstrate that termite galleries harbor unique bacterial communities.
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Okinawa Institute of Science and Technology Graduate University Okinawa Japan
School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
Zobrazit více v PubMed
Bignell DE. 2011. Morphology, physiology, biochemistry and functional design of the termite gut: an evolutionary wonderland, p 375–412. In Bignell DE, Roisin Y, Lo N (ed), Biology of termites: a modern synthesis. Springer, Dordrecht, Netherlands.
Hongoh Y. 2011. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68:1311–1325. doi:10.1007/s00018-011-0648-z. PubMed DOI PMC
Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. doi:10.1038/nrmicro3182. PubMed DOI
Brune A, Dietrich C. 2015. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166. doi:10.1146/annurev-micro-092412-155715. PubMed DOI
Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA. 2018. Rampant host switching shaped the termite gut microbiome. Curr Biol 28:649–654. doi:10.1016/j.cub.2018.01.035. PubMed DOI
Dietrich C, Köhler T, Brune A. 2014. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol 80:2261–2269. doi:10.1128/AEM.04206-13. PubMed DOI PMC
Otani S, Mikaelyan A, Nobre T, Hansen LH, Koné NA, Sørensen SJ, Aanen DK, Boomsma JJ, Brune A, Poulsen M. 2014. Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol 23:4631–4644. doi:10.1111/mec.12874. PubMed DOI
Mikaelyan A, Köhler T, Lampert N, Rohland J, Boga H, Meuser K, Brune A. 2015. Classifying the bacterial gut microbiota of termites and cockroaches: a curated phylogenetic reference database (DictDb). Syst Appl Microbiol 38:472–482. doi:10.1016/j.syapm.2015.07.004. PubMed DOI
Makonde HM, Mwirichia R, Osiemo Z, Boga HI, Klenk H-P. 2015. 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils. SpringerPlus 4:471. doi:10.1186/s40064-015-1262-6. PubMed DOI PMC
Manjula A, Pushpanathan M, Sathyavathi S, Gunasekaran P, Rajendhran J. 2016. Comparative analysis of microbial diversity in termite gut and termite nest using ion sequencing. Curr Microbiol 72:267–275. doi:10.1007/s00284-015-0947-y. PubMed DOI
Rouland-Lefèvre C. 2000. Symbiosis with fungi, p 289–306. In Abe T, Bignell DE, Higashi M (ed), Termites: evolution, sociality, symbioses, ecology. Springer, Netherlands, Dordrecht.
Krishna K, Grimaldi DA, Krishna V, Engel MS. 2013. Treatise on the Isoptera of the world: introduction. Bull Am Museum Natural History 2013:1–200. doi:10.1206/377.1. DOI
Mossebo D, Essouman EPF, Machouart M, Gueidan C. 2017. Phylogenetic relationships, taxonomic revision and new taxa of Termitomyces (Lyophyllaceae, Basidiomycota) inferred from combined nLSU- and mtSSU-rDNA sequences. Phytotaxa 321:71–102. doi:10.11646/phytotaxa.321.1.3. DOI
Aanen DK, Eggleton P, Rouland-Lefèvre C, Guldberg-Frøslev T, Rosendahl S, Boomsma JJ. 2002. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci U S A 99:14887–14892. doi:10.1073/pnas.222313099. PubMed DOI PMC
Nobre T, Koné NA, Konaté S, Linsenmair KE, Aanen DK. 2011. Dating the fungus-growing termites' mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Mol Ecol 20:2619–2627. doi:10.1111/j.1365-294X.2011.05090.x. PubMed DOI
Garnier-Sillam E, Toutain F, Villemin G, Renoux J. 1989. Études préliminaires des meules originales du termite xylophage Sphaerotermes sphaerothorax (Sjostedt). Ins Soc 36:293–312. doi:10.1007/BF02224882. DOI
Donovan SE, Eggleton P, Bignell DE. 2001. Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366. doi:10.1046/j.1365-2311.2001.00342.x. DOI
Bourguignon T, Šobotník J, Lepoint G, Martin J-M, Hardy OJ, Dejean A, Roisin Y. 2011. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36:261–269. doi:10.1111/j.1365-2311.2011.01265.x. DOI
Rosengaus RB, Traniello JFA, Bulmer MS. 2011. Ecology, behavior and evolution of disease resistance in termites, p 165–191. In Bignell DE, Roisin Y, Lo N (ed), Biology of termites: a modern synthesis. Springer, Netherlands, Dordrecht.
Visser AA, Nobre T, Currie CR, Aanen DK, Poulsen M. 2012. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites. Microb Ecol 63:975–985. doi:10.1007/s00248-011-9987-4. PubMed DOI
Chouvenc T, Efstathion CA, Elliott ML, Su N-Y. 2013. Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc Biol Sci 280:20131885. doi:10.1098/rspb.2013.1885. PubMed DOI PMC
Chouvenc T, Elliott ML, Šobotník J, Efstathion CA, Su N-Y. 2018. The termite fecal nest: a framework for the opportunistic acquisition of beneficial soil Streptomyces (Actinomycetales: Streptomycetaceae). Environ Entomol 47:1431–1439. doi:10.1093/ee/nvy152. PubMed DOI
Bulmer MS, Bachelet I, Raman R, Rosengaus RB, Sasisekharan R. 2009. Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proc Natl Acad Sci U S A 106:12652–12657. doi:10.1073/pnas.0904063106. PubMed DOI PMC
Bulmer MS, Lay F, Hamilton C. 2010. Adaptive evolution in subterranean termite antifungal peptides. Insect Mol Biol 19:669–674. doi:10.1111/j.1365-2583.2010.01023.x. PubMed DOI
Bulmer MS, Denier D, Velenovsky J, Hamilton C. 2012. A common antifungal defense strategy in Cryptocercus woodroaches and termites. Insect Soc 59:469–478. doi:10.1007/s00040-012-0241-y. DOI
Rosengaus RB, Guldin MR, Traniello JFA. 1998. Inhibitory effect of termite fecal pellets on fungal spore germination. J Chem Ecol 24:1697–1706. doi:10.1023/A:1020872729671. DOI
He S, Johnston PR, Kuropka B, Lokatis S, Weise C, Plarre R, Kunte H-J, McMahon DP. 2018. Termite soldiers contribute to social immunity by synthesizing potent oral secretions. Insect Mol Biol 27:564–576. doi:10.1111/imb.12499. PubMed DOI
Noirot C, Darlington JPEC. 2000. Termite nests: architecture, regulation and defence, p 121–139. In Abe T, Bignell DE, Higashi M (ed), Termites: evolution, sociality, symbioses, ecology. Springer, Netherlands, Dordrecht.
Rosengaus RB, Mead K, Du Comb WS, Benson RW, Godoy VG. 2013. Nest sanitation through defecation: antifungal properties of wood cockroach feces. Naturwissenschaften 100:1051–1059. doi:10.1007/s00114-013-1110-x. PubMed DOI
Wood TG, Sands WA. 1978. The role of termites in ecosystems, p 245–292. In Brian MV. (ed), Production ecology of ants and termites. Cambridge University Press, Cambridge, UK.
Ulyshen MD, Wagner TL. 2013. Quantifying arthropod contributions to wood decay. Methods Ecol Evol 4:345–352. doi:10.1111/2041-210x.12012. DOI
Ulyshen MD, Wagner TL, Mulrooney JE. 2014. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5:art47-15. doi:10.1890/ES13-00365.1. DOI
Ulyshen MD. 2016. Wood decomposition as influenced by invertebrates. Biol Rev Camb Philos Soc 91:70–85. doi:10.1111/brv.12158. PubMed DOI
Jouquet P, Ranjard L, Lepage M, Lata JC. 2005. Incidence of fungus-growing termites (Isoptera, Macrotermitinae) on the structure of soil microbial communities. Soil Biol Biochem 37:1852–1859. doi:10.1016/j.soilbio.2005.02.017. DOI
Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D. 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol 47:215–222. doi:10.1016/j.ejsobi.2011.05.005. DOI
Fall S, Nazaret S, Chotte JL, Brauman A. 2004. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds. Microb Ecol 48:191–199. doi:10.1007/s00248-003-1047-2. PubMed DOI
Fall S, Hamelin J, Ndiaye F, Assigbetse K, Aragno M, Chotte JL, Brauman A. 2007. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73:5199–5208. doi:10.1128/AEM.02616-06. PubMed DOI PMC
Kirker GT, Wagner TL, Diehl SV. 2012. Relationship between wood-inhabiting fungi and Reticulitermes spp. in four forest habitats of northeastern Mississippi. Int Biodeterior Biodegrad 72:18–25. doi:10.1016/j.ibiod.2012.04.011. DOI
Otani S, Hansen LH, Sørensen SJ, Poulsen M. 2016. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment. Microb Ecol 71:207–220. doi:10.1007/s00248-015-0692-6. PubMed DOI PMC
Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A. 2015. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24:5284–5295. doi:10.1111/mec.13376. PubMed DOI
Brune A, Kühl M. 1996. pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121–1127. doi:10.1016/S0022-1910(96)00036-4. DOI
Colman DR, Toolson EC, Takacs-Vesbach CD. 2012. Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137. doi:10.1111/j.1365-294X.2012.05752.x. PubMed DOI
Hongoh Y, Sharma V, Prakash T, Noda S, Toh H, Taylor T, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. 2008. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109. doi:10.1126/science.1165578. PubMed DOI
Desai MS, Strassert JFH, Meuser K, Hertel H, Ikeda-Ohtsubo W, Radek R, Brune A. 2010. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol 12:2120–2132. doi:10.1111/j.1462-2920.2009.02080.x. PubMed DOI
Köhler T, Dietrich C, Scheffrahn RH, Brune A. 2012. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701. doi:10.1128/AEM.00683-12. PubMed DOI PMC
Mikaelyan A, Strassert JFH, Tokuda G, Brune A. 2014. The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.). Environ Microbiol 16:2711–2722. doi:10.1111/1462-2920.12425. DOI
Moran NA, Sloan DB. 2015. The hologenome concept: helpful or hollow? PLoS Biol 13:e1002311. doi:10.1371/journal.pbio.1002311. PubMed DOI PMC
Hellemans S, Marynowska M, Drouet T, Lepoint G, Fournier D, Calusinska M, Roisin Y. 2019. Nest composition, stable isotope ratios and microbiota unravel the feeding behaviour of an inquiline termite. Oecologia 191:541–553. doi:10.1007/s00442-019-04514-w. PubMed DOI
van Rhijn P, Vanderleyden J. 1995. The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142. doi:10.1128/MMBR.59.1.124-142.1995. PubMed DOI PMC
Shinzato N, Muramatsu M, Watanabe Y, Matsui T. 2005. Termite-regulated fungal monoculture in fungus combs of a Macrotermitine termite Odontotermes formosanus. Zoolog Sci 22:917–922. doi:10.2108/zsj.22.917. PubMed DOI
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. doi:10.1073/pnas.1000080107. PubMed DOI PMC
Aronesty E. 2011. Command-line tools for processing biological sequencing data. https://github.com/ExpressionAnalysis/ea-utils. Accessed 3 June 2015.
Vetrovský T, Baldrian P, Morais D. 2018. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34:2292–2294. doi:10.1093/bioinformatics/bty071. PubMed DOI PMC
Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi:10.1038/nmeth.2604. PubMed DOI
Thomas D, Vandegrift R, Bailes G, Roy B. 2017. Understanding and mitigating some limitations of Illumina© MiSeq for environmental sequencing of fungi. bioRxiv doi:10.1101/184960. DOI
Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07. PubMed DOI PMC
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. doi:10.1093/nar/gkt1244. PubMed DOI PMC
Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM. 2015. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43:D593–D598. doi:10.1093/nar/gku1201. PubMed DOI PMC
Větrovský T, Baldrian P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8:e57923. doi:10.1371/journal.pone.0057923. PubMed DOI PMC
Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270.
Legendre P, Legendre L. 2012. Numerical ecology. Elsevier Science, Amsterdam, Netherlands.
Chao A, Shen T-J. 2003. Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10:429–443. doi:10.1023/A:1026096204727. DOI
Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer, New York, NY.
Pinheiro JC, Bates DJ, DebRoy S, Sakar D. 2012. The Nlme package: linear and nonlinear mixed effects models, R version 3. CRAN, Vienna, Austria.
Lenth RV. 2016. Least-squares means: the R package lsmeans. J Stat Softw 69:1–33. doi:10.18637/jss.v069.i01. DOI
Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x. DOI
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’hara R, Simpson G, Solymos P, Stevens M, Wagner H. 2013. Community ecology package. R package version 2–0. CRAN, Vienna, Austria.
Legendre P, Gallagher ED. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716. PubMed DOI
Martínez Arbizu P. 2018. pairwiseAdonis: pairwise multilevel comparison using Adonis. https://github.com/pmartinezarbizu/pairwiseAdonis. Accessed 2019.
Molecular Rationale of Insect-Microbes Symbiosis-From Insect Behaviour to Mechanism