"Biological Adhesion" is a Significantly Regulated Molecular Process during Long-Term Primary In Vitro Culture of Oviductal Epithelial Cells (Oecs): A Transcriptomic and Proteomic Study

. 2019 Jul 10 ; 20 (14) : . [epub] 20190710

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31295879

Grantová podpora
UMO-2016/21/B/NZ9/03535 Narodowe Centrum Nauki

Oviductal epithelial cells (OECs) actively produce stimulating and protecting factors, favoring survival and viability of gametes and early embryos. The oviduct participates in the initial reproductive events, which strongly depends on adhesion. The analysis of differential gene expression in OECs, during long-term in vitro culture, enables recognition of new molecular markers regulating several processes, including "biological adhesion". Porcine oviducts were stained with hematoxylin and eosin, as well as with antibodies against epithelial markers. Then, OECs were long-term in vitro cultured and after 24 h, 7, 15, and 30 days of culture were subjected to transcriptomic and proteomic assays. Microarrays were employed to evaluate gene expression, with Matrix-assisted laser desorption/ionization-time of light (MALDI-TOF) mass spectrometry applied to determine the proteome. The results revealed proper morphology of the oviducts and typical epithelial structure of OECs during the culture. From the set of differentially expressed genes (DEGs), we have selected the 130 that encoded proteins detected by MALDI-TOF MS analysis. From this gene pool, 18 significantly enriched gene ontology biological processes (GO BP) terms were extracted. Among them we focused on genes belonging to "biological adhesion" GO BP. It is suggested that increased expression of studied genes can be attributed to the process of intensive secretion of substances that exhibit favorable influence on oviductal environment, which prime gametes adhesion and viability, fertilization, and early embryo journey.

Zobrazit více v PubMed

Abe H. The mammalian oviductal epithelium: Regional variations in cytological and functional aspects of the oviductal secretory cells. Histol. Histopathol. 1996;11:743–768. PubMed

Buhi W.C., Alvarez I.M., Kouba A.J. Secreted proteins of the oviduct. Cells Tissues Organs. 2000;166:165–179. doi: 10.1159/000016731. PubMed DOI

Lyons R.A., Saridogan E., Djahanbakhch O. The reproductive significance of human Fallopian tube cilia. Hum. Reprod. Update. 2006;12:363–372. doi: 10.1093/humupd/dml012. PubMed DOI

Cal S., Freije J.M.P., López J.M., Takada Y., López-Otín C. ADAM 23/MDC3, a Human disintegrin That promotes cell adhesion via interaction with the αvβ3 Integrin through an RGD-independent Mechanism. Mol. Biol. Cell. 2000;11:1457–1469. doi: 10.1091/mbc.11.4.1457. PubMed DOI PMC

Tsanou E., Peschos D., Batistatou A., Charalabopoulos A., Charalabopoulos K. The E-cadherin adhesion molecule and colorectal cancer. A global literature approach. Anticancer Res. 2008;28:3815–3826. PubMed

Wang X., Tully O., Ngo B., Zitin M., Mullin J.M. Epithelial tight junctional changes in colorectal cancer tissues. Sci. World J. 2011;11:826–841. doi: 10.1100/tsw.2011.86. PubMed DOI PMC

Kempisty B., Ziółkowska A., Ciesiółka S., Piotrowska H., Antosik P., Bukowska D., Nowicki M., Brussow K.P., Zabel M. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J. Biol. Regul. Homeost. Agents. 2014;28:625–635. PubMed

Kölle S., Dubielzig S., Reese S., Wehrend A., König P., Kummer W. Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: Ex vivo analyses using a new digital videomicroscopic system in the cow. Biol. Reprod. 2009;81:267–274. doi: 10.1095/biolreprod.108.073874. PubMed DOI

Coy P., García-Vázquez F.A., Visconti P.E., Avilés M. Roles of the oviduct in mammalian fertilization. Reproduction. 2012;144:649–660. doi: 10.1530/REP-12-0279. PubMed DOI PMC

Maillo V., Sánchez-Calabuig M.J., Lopera-Vasquez R., Hamdi M., Gutierrez-Adan A., Lonergan P., Rizos D. Oviductal response to gametes and early embryos in mammals. Reproduction. 2016;152:R127–R141. doi: 10.1530/REP-16-0120. PubMed DOI

Tokuhiro K., Ikawa M., Benham A.M., Okabe M. Protein disulfide isomerase homolog PDILT is required for quality control of sperm membrane protein ADAM3 and male fertility [corrected] Proc. Natl. Acad. Sci. USA. 2012;109:3850–3855. doi: 10.1073/pnas.1117963109. PubMed DOI PMC

Caballero J.N., Gervasi M.G., Veiga M.F., Dalvit G.C., Perez-Martínez S., Cetica P.D., Vazquez-Levin M.H. Epithelial cadherin is present in bovine oviduct epithelial cells and gametes, and is involved in fertilization-related events. Theriogenology. 2014;81:1189–1206. doi: 10.1016/j.theriogenology.2014.01.028. PubMed DOI

Gonella-Diaza A.M., Andrade S.C.d.S., Sponchiado M., Pugliesi G., Mesquita F.S., Van Hoeck V., de Francisco R.S., Gasparin G.R., Coutinho L.L., Binelli M. Size of the ovulatory follicle dictates spatial differences in the oviductal transcriptome in cattle. PLoS ONE. 2015;10:e0145321. doi: 10.1371/journal.pone.0145321. PubMed DOI PMC

Weber J.A., Freeman D.A., Vanderwall D.K., Woods G.L. Prostaglandin E2 secretion by oviductal transport-stage equine embryos. Biol. Reprod. 1991;45:540–543. doi: 10.1095/biolreprod45.4.540. PubMed DOI

Smits K., De Coninck D.I.M., Van Nieuwerburgh F., Govaere J., Van Poucke M., Peelman L., Deforce D., Van Soom A. The equine embryo influences immune-related gene expression in the oviduct. Biol. Reprod. 2016;94:36. doi: 10.1095/biolreprod.115.136432. PubMed DOI

Hugentobler S.A., Diskin M.G., Leese H.J., Humpherson P.G., Watson T., Sreenan J.M., Morris D.G. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 2007;74:445–454. doi: 10.1002/mrd.20607. PubMed DOI

Hugentobler S.A., Morris D.G., Sreenan J.M., Diskin M.G. Ion concentrations in oviduct and uterine fluid and blood serum during the estrous cycle in the bovine. Theriogenology. 2007;68:538–548. doi: 10.1016/j.theriogenology.2007.04.049. PubMed DOI

Hugentobler S.A., Humpherson P.G., Leese H.J., Sreenan J.M., Morris D.G. Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Mol. Reprod. Dev. 2008;75:496–503. doi: 10.1002/mrd.20760. PubMed DOI

Lee S.H., Oh H.J., Kim M.J., Kim G.A., Choi Y.B., Jo Y.K., Nugraha S.M.E., Lee C.B. Oocyte maturation-related gene expression in the canine oviduct, cumulus cells, and oocytes and effect of co-culture with oviduct cells on in vitro maturation of oocytes. J. Assist. Reprod. Genet. 2017;34:929–938. doi: 10.1007/s10815-017-0910-x. PubMed DOI PMC

Lee S.H., Oh H.J., Kim M.J., Setyawan E., Maha N., Lee B.C. Interaction of the EGFR signaling pathway with porcine cumulus oocyte complexes and oviduct cells in a coculture system. J. Cell Physiol. 2018;234:4030–4043. doi: 10.1002/jcp.27170. PubMed DOI

Kervancioglu M.E., Saridogan E., Atasü T., Camlibel T., Demircan A., Sarikamis B., Djahanbakhch O. Human Fallopian tube epithelial cell co-culture increases fertilization rates in male factor infertility but not in tubal or unexplained infertility. Hum. Reprod. 1997;12:1253–1258. doi: 10.1093/humrep/12.6.1253. PubMed DOI

Bauersachs S., Rehfeld S., Ulbrich S.E., Mallok S., Prelle K., Wenigerkind H., Einspanier R., Blum H., Wolf E. Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle. J. Mol. Endocrinol. 2004;32:449–466. doi: 10.1677/jme.0.0320449. PubMed DOI

Cerny K.L., Garrett E., Walton A.J., Anderson L.H., Bridges P.J. A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod. Biol. Endocrinol. 2015;13:84. doi: 10.1186/s12958-015-0077-1. PubMed DOI PMC

Maillo V., de Frutos C., O’Gaora P., Forde N., Burns G.W., Spencer T.E., Gutierez A.A., Lonergan P., Rizos D. Spatial differences in gene expression in the bovine oviduct. Reproduction. 2016;152:37–46. doi: 10.1530/REP-16-0074. PubMed DOI

Gandolfi F. Functions of proteins secreted by oviduct epithelial cells. Microsc. Res. Tech. 1995;32:1–12. doi: 10.1002/jemt.1070320102. PubMed DOI

Miller D.J. Regulation of sperm function by oviduct fluid and the epithelium: Insight into the role of glycans. Reprod. Domest. Anim. 2015;50(Suppl. 2):31–39. doi: 10.1111/rda.12570. PubMed DOI

Reeve L., Ledger W.L., Pacey A.A. Does the Arg-Gly-Asp (RGD) adhesion sequence play a role in mediating sperm interaction with the human endosalpinx? Hum. Reprod. 2003;18:1461–1468. doi: 10.1093/humrep/deg296. PubMed DOI

Li H.W.R., Liao S.B., Chiu P.C.N., Tam W.W., Ho J.C., Ng E.H.Y., Ho P.C., Yeung W.S.B., Tang F., Sum O.W. Expression of adrenomedullin in human oviduct, its regulation by the hormonal cycle and contact with spermatozoa, and its effect on ciliary beat frequency of the oviductal epithelium. J. Clin. Endocrinol. Metab. 2010;95:E18–E25. doi: 10.1210/jc.2010-0273. PubMed DOI

Fazeli A., Affara N.A., Hubank M., Holt W.V. Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice. Biol. Reprod. 2004;71:60–65. doi: 10.1095/biolreprod.103.026815. PubMed DOI

López-Úbeda R., García-Vázquez F.A., Romar R., Gadea J., Muñoz M., Hunter R.H.F., Coy P. Oviductal transcriptome is modified after insemination during spontaneous ovulation in the sow. PLoS ONE. 2015;10:e0130128. doi: 10.1371/journal.pone.0130128. PubMed DOI PMC

Georgiou A.S., Snijders A.P.L., Sostaric E., Aflatoonian R., Vazquez J.L., Vazquez J.M., Roca J., Martinez E.A., Wright P.C., Fazeli A. Modulation of the oviductal environment by gametes. J. Proteome Res. 2007;6:4656–4666. doi: 10.1021/pr070349m. PubMed DOI

Dadashpour Davachi N., Zare Shahneh A., Kohram H., Zhandi M., Shamsi H., Hajiyavand A.M., Saadat M. Differential influence of ampullary and isthmic derived epithelial cells on zona pellucida hardening and in vitro fertilization in ovine. Reprod. Biol. 2016;16:61–69. doi: 10.1016/j.repbio.2015.11.002. PubMed DOI

Nishimura R., Kato K., Fujiwara S., Ohashi K., Mizuno K. Solo and keratin filaments regulate epithelial tubule morphology. Cell Struct. Funct. 2018;43:95–105. doi: 10.1247/csf.18010. PubMed DOI

Roxas J.L., Vedantam G., Viswanathan V.K. Epithelial maturity influences EPEC-induced desmosomal alterations. Gut Microb. 2018;10:1–5. doi: 10.1080/19490976.2018.1506669. PubMed DOI PMC

Schlegel N., Meir M., Heupel W.-M., Holthöfer B., Leube R.E., Waschke J. Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;298:G774–G783. doi: 10.1152/ajpgi.00239.2009. PubMed DOI

Jansen R.P. Endocrine response in the fallopian tube. Endocr. Rev. 1984;5:525–551. doi: 10.1210/edrv-5-4-525. PubMed DOI

Kim J., Lee J.E., Heynen-Genel S., Suyama E., Ono K., Lee K., Ideker T., Blanc P.A., Gleeson G.K. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature. 2010;464:1048–1051. doi: 10.1038/nature08895. PubMed DOI PMC

Ulbrich S.E., Zitta K., Hiendleder S., Wolf E. In vitro systems for intercepting early embryo-maternal cross-talk in the bovine oviduct. Theriogenology. 2010;73:802–816. doi: 10.1016/j.theriogenology.2009.09.036. PubMed DOI

Almiñana C., Tsikis G., Labas V., Uzbekov R., da Silveira J.C., Bauersachs S., Mermillod P. Deciphering the oviductal extracellular vesicles content across the estrous cycle: Implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genom. 2018;19:622. doi: 10.1186/s12864-018-4982-5. PubMed DOI PMC

Jalali B.M., Likszo P., Andronowska A., Skarzynski D.J. Alterations in the distribution of actin and its binding proteins in the porcine endometrium during early pregnancy: Possible role in epithelial remodeling and embryo adhesion. Theriogenology. 2018;116:17–27. doi: 10.1016/j.theriogenology.2018.05.004. PubMed DOI

Schwartz M.A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2010;2:a005066. doi: 10.1101/cshperspect.a005066. PubMed DOI PMC

Johansson S., Svineng G., Wennerberg K., Armulik A., Lohikangas L. Fibronectin-integrin interactions. Front. Biosci. 1997;2:d126–d146. doi: 10.2741/A178. PubMed DOI

Bronson R.A., Fusi F.M. Integrins and human reproduction. Mol. Hum. Reprod. 1996;2:153–168. doi: 10.1093/molehr/2.3.153. PubMed DOI

Wang J., Armant D.R. Integrin-mediated adhesion and signaling during blastocyst implantation. Cells Tissues Organs. 2002;172:190–201. doi: 10.1159/000066970. PubMed DOI

Sreenivas D., Kaladhar D.S., Samy A.P., Kumar R.S. Understanding mechanism of in vitro maturation, fertilization and culture of sheep embryoes through in silico analysis. Bioinformation. 2012;8:1030–1034. doi: 10.6026/97320630081030. PubMed DOI PMC

Goossens K., Van Soom A., Van Zeveren A., Favoreel H., Peelman L.J. Quantification of fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. BMC Dev. Biol. 2009;9:1. doi: 10.1186/1471-213X-9-1. PubMed DOI PMC

Lee K.-F., Yao Y.-Q., Kwok K.-L., Xu J.-S., Yeung W.S.B. Early developing embryos affect the gene expression patterns in the mouse oviduct. Biochem. Biophys. Res. Commun. 2002;292:564–570. doi: 10.1006/bbrc.2002.6676. PubMed DOI

Chang H.-S., Cheng W.T.K., Wu H.-K., Choo K.-B. Identification of genes expressed in the epithelium of porcine oviduct containing early embryos at various stages of development. Mol. Reprod. Dev. 2000;56:331–335. doi: 10.1002/1098-2795(200007)56:3<331::AID-MRD1>3.0.CO;2-K. PubMed DOI

Almiñana C., Heath P.R., Wilkinson S., Sanchez-Osorio J., Cuello C., Parrilla I., Gil M.A., Vazquez J.L., Vazquez J.M., Roca J., et al. Early developing pig embryos mediate their own environment in the maternal tract. PLoS ONE. 2012;7:e33625. doi: 10.1371/journal.pone.0033625. PubMed DOI PMC

Lee K.-F., Yeung W.S.B. Gamete/embryo—Oviduct interactions: Implications on in vitro culture. Hum. Fertil. 2006;9:137–143. doi: 10.1080/14647270600636467. PubMed DOI

Szóstek-Mioduchowska A.Z., Lukasik K., Skarzynski D.J., Okuda K. Effect of transforming growth factor -β1 on α-smooth muscle actin and collagen expression in equine endometrial fibroblasts. Theriogenology. 2019;124:9–17. doi: 10.1016/j.theriogenology.2018.10.005. PubMed DOI

Arai K.Y., Nishiyama T. Developmental changes in extracellular matrix messenger RNAs in the mouse placenta during the second half of pregnancy: Possible factors involved in the regulation of placental extracellular matrix expression. Biol. Reprod. 2007;77:923–933. doi: 10.1095/biolreprod.107.061382. PubMed DOI

Kitasaka H., Kawai T., Hoque S.A.M., Umehara T., Fujita Y., Shimada M. Inductions of granulosa cell luteinization and cumulus expansion are dependent on the fibronectin-integrin pathway during ovulation process in mice. PLoS ONE. 2018;13:e0192458. doi: 10.1371/journal.pone.0192458. PubMed DOI PMC

Chan D., Thomas C.J., Taylor V.J., Burke R.D. Integrins on eggs: focal adhesion kinase is activated at fertilization, forms a complex with integrins, and is necessary for cortex formation and cell cycle initiation. Mol. Biol. Cell. 2013;24:3472–3481. doi: 10.1091/mbc.e13-03-0148. PubMed DOI PMC

Kaczynski P., Baryla M., Goryszewska E., Bauersachs S., Waclawik A. Prostaglandin F2α promotes embryo implantation and development in the pig. Reproduction. 2018;156:405–419. doi: 10.1530/REP-18-0225. PubMed DOI

Critchley D.R., Gingras A.R. Talin at a glance. J. Cell Sci. 2008;121:1345–1347. doi: 10.1242/jcs.018085. PubMed DOI

Kawashima I., Liu Z., Mullany L.K., Mihara T., Richards J.S., Shimada M. EGF-like factors induce expansion of the cumulus cell-oocyte complexes by activating calpain-mediated cell movement. Endocrinology. 2012;153:3949–3959. doi: 10.1210/en.2012-1059. PubMed DOI PMC

De Nadai C., Fenichel P., Donzeau M., Epel D., Ciapa B. Characterisation and role of integrins during gametic interaction and egg activation. Zygote. 1996;4:31–40. doi: 10.1017/S0967199400002860. PubMed DOI

Priddle H., Hemmings L., Monkley S., Woods A., Patel B., Sutton D., Dunn G.A., Zicha D., Critchley D.R. Disruption of the talin gene compromises focal adhesion assembly in undifferentiated but not differentiated embryonic stem cells. J. Cell Biol. 1998;142:1121–1133. doi: 10.1083/jcb.142.4.1121. PubMed DOI PMC

Zhang S., Yu L., Qu T., Hu Y., Yuan D., Zhang S., Xu Q., Zhao Y.-B., Zhang J.-H., Yue L.-M. The changes of cytoskeletal proteins induced by the fast effect of estrogen in mouse blastocysts and its roles in implantation. Reprod. Sci. 2017;24:1639–1646. doi: 10.1177/1933719117697126. PubMed DOI

Semich R., Robenek H. Organization of the cytoskeleton and the focal contacts of bovine aortic endothelial cells cultured on type I and III collagen. J. Histochem. Cytochem. 1990;38:59–67. doi: 10.1177/38.1.1688450. PubMed DOI

Bacáková L., Mares V., Lisá V., Svorcík V. Molecular mechanisms of improved adhesion and growth of an endothelial cell line cultured on polystyrene implanted with fluorine ions. Biomaterials. 2000;21:1173–1179. doi: 10.1016/S0142-9612(00)00009-0. PubMed DOI

Bi J., Zhu Y., Chen X., Yu M., Zhang Y., Li B., Sun J., Shen H., Kong C. The role of fascin in migration and invasion of urothelial carcinoma of the bladder. Urol. Int. 2013;91:227–235. doi: 10.1159/000346559. PubMed DOI

Shen T.-Y., Mei L.-L., Qiu Y.-T., Shi Z.-Z. Identification of candidate target genes of genomic aberrations in esophageal squamous cell carcinoma. Oncol. Lett. 2016;12:2956–2961. doi: 10.3892/ol.2016.4947. PubMed DOI PMC

Adams J.C. Fascin-1 as a biomarker and prospective therapeutic target in colorectal cancer. Expert Rev. Mol. Diagn. 2015;15:41–48. doi: 10.1586/14737159.2015.976557. PubMed DOI

Wang C., Huang B., Wu Z., Sun X., Zeng Y., Wang Y. Expression of Fascin-1 protein in breast cancer and its clinicopathologic correlation. Zhonghua Bing Li Xue Za Zhi. 2014;43:451–454. PubMed

Stewart C.J.R., Crook M., Loi S. Fascin expression in endocervical neoplasia: Correlation with tumour morphology and growth pattern. J. Clin. Pathol. 2012;65:213–217. doi: 10.1136/jclinpath-2011-200425. PubMed DOI

Park I., Han C., Jin S., Lee B., Choi H., Kwon J.T., Kim D., Kim J., Lifirsu E., Park J.W., et al. Myosin regulatory light chains are required to maintain the stability of myosin II and cellular integrity. Biochem. J. 2011;434:171–180. doi: 10.1042/BJ20101473. PubMed DOI

Cuomo M.E., Knebel A., Platt G., Morrice N., Cohen P., Mittnacht S. Regulation of microfilament organization by kaposi sarcoma-associated herpes virus-cyclin·CDK6 phosphorylation of caldesmon. J. Biol. Chem. 2005;280:35844–35858. doi: 10.1074/jbc.M503877200. PubMed DOI

Cao A., Galanello R. Beta-thalassemia. Genet. Med. 2010;12:61–76. doi: 10.1097/GIM.0b013e3181cd68ed. PubMed DOI

Chermuła B., Brązert M., Jeseta M., Ożegowska K., Sujka-Kordowska P., Konwerska A., Bryja A., Kranc W., Jankowski M., Nawrocki M.J., et al. The unique mechanisms of cellular proliferation, migration and apoptosis are regulated through oocyte maturational development—A complete transcriptomic and histochemical study. Int. J. Mol. Sci. 2018;20:84. doi: 10.3390/ijms20010084. PubMed DOI PMC

Aldarmahi A. Establishment and characterization of female reproductive tract epithelial cell culture. J. Microsc. Ultrastruct. 2017;5:105–110. doi: 10.1016/j.jmau.2016.07.004. PubMed DOI PMC

Kidson A., Schoevers E., Langendijk P., Verheijden J., Colenbrander B., Bevers M. The effect of oviductal epithelial cell co-culture during in vitro maturation on sow oocyte morphology, fertilization and embryo development. Theriogenology. 2003;59:1889–1903. doi: 10.1016/S0093-691X(02)01291-8. PubMed DOI

Kranc W., Jankowski M., Budna J., Celichowski P., Khozmi R., Bryja A., Borys S., Dyszkiewicz-Konwinska M., Jeseta M., Magas M., et al. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro—A signaling pathways activation approach. Med. J. Cell. Biol. 2018;6:18–26. doi: 10.2478/acb-2018-0004. DOI

Kranc W., Brązert M., Ożegowska K., Budna-Tukan J., Celichowski P., Jankowski M., Bryja A., Nawrocki M.J., Popis M., Jeseta M., et al. Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes. Med. J. Cell. Biol. 2018;6:91–100. doi: 10.2478/acb-2018-0015. DOI

Matysiak J., Hajduk J., Mayer F., Hebeler R., Kokot Z.J. Hyphenated LC–MALDI–ToF/ToF and LC–ESI–QToF approach in proteomic characterization of honeybee venom. J. Pharm. Biomed. Anal. 2016;121:69–76. doi: 10.1016/j.jpba.2016.01.009. PubMed DOI

Bryja A., Dyszkiewicz-Konwińska M., Jankowski M., Celichowski P., Stefańska K., Chamier-Gliszczyńska A., Popis M., Mehr K., Bukowska D., Antosik P., et al. Ion homeostasis and transport are regulated by genes differentially expressed in porcine buccal pouch mucosal cells during long-term culture in vitro-a microarray approach. Bryja Al Med. J. Cell. Biol. 2018 doi: 10.2478/acb-2018-0013. DOI

Huang D.W., Sherman B.T., Tan Q., Collins J.R., Alvord W.G., Roayaei J., Stephens R., Baseler W.M., Clifford H.L., Lempicki R.A. The DAVID Gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8:R183. doi: 10.1186/gb-2007-8-9-r183. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...