Changes in Aquaporin 1, 5 and 9 Gene Expression in the Porcine Oviduct According to Estrous Cycle and Early Pregnancy

. 2020 Apr 16 ; 21 (8) : . [epub] 20200416

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32316329

Aquaporins (AQPs) are a group of small, integral membrane proteins which play an important role in fluid homeostasis in the reproductive system. In our previous study, we demonstrated AQP1, 5 and 9 protein expression and localization in the porcine oviduct. The presence of these isoforms could suggest their role in the transport of the ovum to the uterus by influencing the epithelial cells' production of oviductal fluid. The aim of this study was to evaluate the expression of AQP1, AQP5 and AQP9 in the infundibulum, ampulla and isthmus in the porcine oviduct during the estrous cycle (early luteal phase, days 2-4, medium luteal phase, days 10-12, late luteal phase days 14-16, follicular phase days 18-20) and pregnancy (period before implantation, days 14-16 and after the implantation, days 30-32) using the Real-Time PCR technique. As clearly demonstrated for the first time, AQP1, 5, and 9 gene expression is influenced by the estrus cycle and pregnancy. Furthermore, expression of AQPs in the porcine oviduct may provide the physiological medium that sustains and enhances fertilization and early cleavage-stage embryonic development. Overall, our study provides a characterization of oviduct AQPs, increasing our understanding of fluid homeostasis in the porcine oviduct to successfully establish and maintain pregnancy.

Zobrazit více v PubMed

Pauerstein C.J., Eddy C.A. The role of the oviduct in reproduction; our knowledge and our ignorance. Reproduction. 1979;55:223–229. doi: 10.1530/jrf.0.0550223. PubMed DOI

Black D.L., Davis J.T. A blocking mechanism in the cow oviduct. J. Reprod. Fertil. 1962;4:21–26. doi: 10.1530/jrf.0.0040021. PubMed DOI

Johns A., Buchanan J.D., Coons L.W. Effect of ovulation on the ionic and water content of rabbit oviduct. Biol. Reprod. 1982;26:367–377. doi: 10.1095/biolreprod26.3.367. PubMed DOI

Verco C.J. Fallopian tube anatomy, microanatomy, microcirculation and counter-current exchange. In: Grudzinskas J.G., Chapman M.G., Chard T., editors. The Fallopian Tube. Springer; London, UK: 1994. pp. 3–15. Clinical and Surgical Aspects.

Buhi W.C., Alvarez I.M., Kouba A.J. Oviductal regulation of fertilization and early embryonic development. J. Reprod. Fertil. Suppl. 1997;52:285–300. PubMed

Brussow K.P., Ratky J., Rodriguez-Martinez H. Fertilization and early embryonic development in the porcine fallopian tube. Reprod. Domest. Anim. Suppl. 2008;2:245–251. doi: 10.1111/j.1439-0531.2008.01169.x. PubMed DOI

Leese H., Tay J., Reischl J., Downing S. Formation of Fallopian tubal fluid: Role of a neglected epithelium. Reproduction. 2001;121:339–346. doi: 10.1530/rep.0.1210339. PubMed DOI

Skowronski M.T., Kwon T.H., Nielsen S. Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. J. Histochem. Cytochem. 2009;57:61–67. doi: 10.1369/jhc.2008.952499. PubMed DOI PMC

Skowronski M.T., Skowronska A., Nielsen S. Fluctuation of aquaporin 1, 5, and 9 expression in the pig oviduct during the estrous cycle and early pregnancy. J. Histochem. Cytochem. 2011;59:419–427. doi: 10.1369/0022155411400874. PubMed DOI PMC

Gannon B.J., Warnes G.M., Carati C.J., Verco C.J. Aquaporin-1 expression in visceral smooth muscle cells of female rat reproductive tract. J. Smooth Muscle Res. 2000;36:155–167. doi: 10.1540/jsmr.36.155. PubMed DOI

Branes M.C., Morales B., Rios M., Villalon M.J. Regulation of the immunoexpression of aquaporin 9 by ovarian hormones in the rat oviductal epithelium. Am. J. Physiol. Cell Physiol. 2005;288:1048–1057. doi: 10.1152/ajpcell.00420.2003. PubMed DOI

Nah W.H., Oh Y.S., Hwang J.H., Gye M.C. Changes in aquaporin 5 in the non-ciliated cells of mouse oviduct according to sexual maturation and oestrous cycle. Reprod. Fertil. Dev. 2015;29:336–344. doi: 10.1071/RD15186. PubMed DOI

Arrighi S., Bosi G., Frattini S., Coizet B., Groppetti D., Pecile A. Morphology and aquaporin immunohistochemistry of the uterine tube of Saanen goats (Capra hircus): Comparison throughout the reproductive cycle. Reprod. Domest. Anim. 2016;51:360–369. doi: 10.1111/rda.12687. PubMed DOI

Zaniboni L., Bakst M.R. Localization of Aquaporins in the Sperm Storage Tubules in the Turkey Oviduct. Poult. Sci. 2004;83:1209–1212. PubMed

Socha J.K., Saito N., Wolak D., Sechman A., Hrabia A. Expression of aquaporin 4 in the chicken oviduct following tamoxifen treatment. Reprod. Domest. Anim. 2018;53:1339–1346. doi: 10.1111/rda.13248. PubMed DOI

Ji Y.F., Chen L.Y., Xu K.H., Yao J.F., Shi Y.F., Shanguan X.J. Reduced expression of aquaporin 9 in tubal ectopic pregnancy. J. Mol. Hist. 2013;44:167–173. doi: 10.1007/s10735-012-9471-6. PubMed DOI

Smolinska N., Kiezun M., Dobrzyn K., Rytelewska E., Kisielewska K., Gudelska M., Zaobidna E., Bogus-Nowakowska K., Wyrebek J., Bors K., et al. Expression of Chemerin and Its Receptors in the Porcine Hypothalamus and Plasma Chemerin Levels during the Oestrous Cycle and Early Pregnancy. Int. J. Mol. Sci. 2019;20:3887. doi: 10.3390/ijms20163887. PubMed DOI PMC

Li X.J., Yu H.M., Koide S.S. Regulation of water channel gene (AQP-CHIP) expression by estradiol and anordiol in rat uterus. Yao Xue Xue Bao. 1997;32:586–592. (In Chinese) PubMed

Huang H.F., He R.H., Sun C.C., Zhang Y., Meng Q.X., Ma Y.Y. Function of aquaporins in female and male reproductive systems. Hum. Reprod. Update. 2006;12:785–795. doi: 10.1093/humupd/dml035. PubMed DOI

Skowronska A., Mlotkowska P., Eliszewski M., Nielsen S., Skowronski M.T. Expression of aquaporin 1, 5 and 9 in the ovarian follicles of cycling and early pregnant pigs. Physiol. Res. 2015;64:237–245. doi: 10.33549/physiolres.932825. PubMed DOI

Skowronski M.T. Distribution and quantitative changes in amounts of aquaporin 1, 5 and 9 in the pig uterus during the estrous cycle and early pregnancy. Reprod. Biol. Endocrinol. 2010;8:109. doi: 10.1186/1477-7827-8-109. PubMed DOI PMC

Li S., Winuthayanon W. Oviduct: Roles in fertilization and early embryo development. J. Endocrinol. 2017;232:R1–R26. doi: 10.1530/JOE-16-0302. PubMed DOI

Skowronski M.T., Mlotkowska P., Tanski D., Lepiarczyk E., Kempisty B., Jaskiewicz L., Pareek C.S., Skowronska A. Pituitary Hormones (FSH, LH, PRL, and GH) Differentially Regulate AQP5 Expression in Porcine Ovarian Follicular Cells. Int. J. Mol. Sci. 2019;20:4914. doi: 10.3390/ijms20194914. PubMed DOI PMC

Skowronski M.T., Mlotkowska P., Tanski D., Lepiarczyk E., Oklinski M.K., Nielsen S., Skowronska A. Pituitary Gonadotropins, Prolactin and Growth Hormone Differentially Regulate AQP1 Expression in the Porcine Ovarian Follicular Cells. Int. J. Mol. Sci. 2017;19:5. doi: 10.3390/ijms19010005. PubMed DOI PMC

Verkman A.S., Hara-Chikuma M., Papadopoulos M.C. Aquaporins-new players in cancer biology. J. Mol. Med. 2008;86:523–529. doi: 10.1007/s00109-008-0303-9. PubMed DOI PMC

Steffl M., Schweiger M., Amselgruber W.M. Immunophenotype of porcine oviduct epithelial cells during the oestrous cycle: A double-labelling immunohistochemical study. Histochem. Cell Biol. 2004;121:239–244. doi: 10.1007/s00418-004-0632-x. PubMed DOI

Wollenhaupt K., Kettler A., Brussow K.P., Schneider F., Kanitz W., Einspanier R. Regulation of the expression and bioactivation of the epidermal growth factor receptor system by estradiol in pig oviduct and endometrium. Reprod. Fertil. Dev. 2001;13:167–176. doi: 10.1071/RD01017. PubMed DOI

Wollenhaupt K., Welter H., Einspanier R., Manabe N., Brussow K.P. Expression of epidermal growth factor receptor (EGF-R), vascular endothelial growth factor receptor (VEGF-R) and fibroblast growth factor receptor (FGF-R) systems in porcine oviduct and endometrium during the time of implantation. J. Reprod. Dev. 2004;50:269–278. doi: 10.1262/jrd.50.269. PubMed DOI

Helguera G., Eghbali M., Sforza D., Minosyan T.Y., Toro L., Stefani E. Changes in global gene expression in rat myometrium in transition from late pregnancy to parturition. Physiol. Genom. 2009;36:89–97. doi: 10.1152/physiolgenomics.00290.2007. PubMed DOI PMC

Girotti M., Zingg H.H. Gene expression profiling of rat uterus at different stages of parturition. Endocrinology. 2003;144:2254–2265. doi: 10.1210/en.2002-0196. PubMed DOI

Wanggren K., Stavreus-Evers A., Olsson C., Andersson E., Gemsell-Danielsson K. Regulation of muscular contractions in the human fallopian tube through prostaglandins and progestagens. Hum. Reprod. 2008;23:2359–2368. doi: 10.1093/humrep/den260. PubMed DOI

Antosik P., Kempisty B., Jackowska M., Bukowska D., Wozna M., Lianeri M., Brussow K.P., Jaskowski J.M. Assessment of transcripts and protein contents contributing to cell cycle control and gap junction connections in morphologically variable groups of porcine cumulus-oocyte complexes. Vet. Med. 2010;55:512–521. doi: 10.17221/2941-VETMED. DOI

Kempisty B., Ziolkowska A., Piotrowska H., Ciesiolka S., Antosik P., Bukowska D., Zawierucha P., Wozna M., Jaskowski J.M., Brussow K.P., et al. Short-term cultivation of porcine cumulus cells influences the cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) protein expression -a real-time cell proliferation approach. J. Reprod. Dev. 2013;59:339–345. doi: 10.1262/jrd.2012-162. PubMed DOI PMC

Kempisty B., Ziolkowska A., Piotrowska H., Zawierucha P., Antosik P., Bukowska D., Ciesiolka S., Jaskowski J.M., Brussow K.P., Nowicki M., et al. Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43. Theriogenology. 2013;80:411–420. doi: 10.1016/j.theriogenology.2013.05.016. PubMed DOI

Młotkowska P., Tanski D., Eliszewski M., Skowronska A., Nielsen S., Skowronski M.T. The expression profile of AQP1, AQP5 and AQP9 in granulosa and theca cells of porcine ovarian follicles during oestrous cycle and early pregnancy. J. Anim. Feed Sci. 2018;27:26–35. doi: 10.22358/jafs/83596/2018. DOI

Shimada M., Maeda T., Terada T. Dynamic changes of connexin-43, Gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes. Biol. Reprod. 2001;64:1255–1263. doi: 10.1095/biolreprod64.4.1255. PubMed DOI

Ackert C.L., Gittens J.E.I., O’Brien M.J., Eppig J.J., Kidder G.M. Intercellular Communication via Connexin43 Gap Junin the Mousections Is Required for Ovarian Folliculogenesis. Dev. Biol. 2001;233:258–270. doi: 10.1006/dbio.2001.0216. PubMed DOI

Gittens J.E.I., Kidder G.M. Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries. J. Cell Sci. 2005;118:5071–5078. doi: 10.1242/jcs.02624. PubMed DOI

Vozzi C., Formenton A., Chanson A., Senn A., Sahli R., Shaw P., Nicod P., Germond M.J., Haefliger J.A. Involvement of connexin 43 in meiotic maturation of bovine oocytem. Reproduction. 2001;122:619–628. doi: 10.1530/rep.0.1220619. PubMed DOI

McConnell N.A., Yunus R.S., Gross S.A., Bost K.L., Clemens M.G., Hughes F.M., Jr. Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology. 2002;8:2905–2912. doi: 10.1210/endo.143.8.8953. PubMed DOI

Edashige K., Sakamoto M., Kasai M. Expression of mRNAs of the aquaporin family in mouse oocytes and embryos. Cryobiology. 2000;40:171–175. doi: 10.1006/cryo.1999.2228. PubMed DOI

Meng Q.X., Gao H.J., Xu C.M., Dong M.Y., Sheng X., Sheng J.Z., Huang H.F. Reduced expression and function of aquaporin-3 in mouse metaphase-II oocytes induced by controlled ovarian hyperstimulation were associated with subsequent low fertilization rate. Cell Physiol. Biochem. 2005;21:123–128. doi: 10.1159/000113754. PubMed DOI

Kolle S., Dubielzig S., Reese S., Wehrend A., Konig P., Kummer W. Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: Ex vivo analyses using a new digital videomicroscopic system in the cow. Biol. Reprod. 2009;81:267–274. doi: 10.1095/biolreprod.108.073874. PubMed DOI

Maillo V., Sanchez-Calabuig M.J., Lopera-Vasquez R., Hamdi M., Gutierrez-Adan A., Lonergan P., Rizos D. Oviductal response to gametes and early embryos in mammals. Reproduction. 2016;152:R127–R141. doi: 10.1530/REP-16-0120. PubMed DOI

Budna-Tukan J., Swiatly-Blaszkiewicz A., Celichowski P., Kaluzna S., Konwerska A., Sujka-Kordowska P., Jankowski M., Kulus M., Jeseta M., Piotrowska-Kempisty H., et al. “Biological Adhesion” is a Significantly Regulated Molecular Process during Long-Term Primary In Vitro Culture of Oviductal Epithelial Cells (Oecs): A Transcriptomic and Proteomic Study. Int. J. Mol. Sci. 2019;20:3387. doi: 10.3390/ijms20143387. PubMed DOI PMC

Akins E.L., Morrissette M.C. Gross ovarian changes during estrous cycle of swine. Am. J. Vet. Res. 1968;29:1953–1957. PubMed

Dobrzyn K., Smolinska N., Kiezun M., Szeszko K., Rytelewska E., Kisielewska K., Gudelska M., Kaminski T. The in vitro effect of progesterone on the orexin system in porcine uterine tissues during early pregnancy. Acta. Vet. Scand. 2018;60:76. doi: 10.1186/s13028-018-0430-4. PubMed DOI PMC

Lord E., Ledoux S., Murphy B.D., Beaudry D., Palin M.F. Expression of adiponectin and its receptors in swine. J. Anim. Sci. 2005;83:565–578. doi: 10.2527/2005.833565x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...