Risk Factors for Infections, Antibiotic Therapy, and Its Impact on Cancer Therapy Outcomes for Patients with Solid Tumors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Progress Q40/06
Charles University
PubMed
34947918
PubMed Central
PMC8705721
DOI
10.3390/life11121387
PII: life11121387
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotic therapy, cancer, immunotherapy, infection, risk factors, solid tumors, targeted therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Infections represent a significant cause of morbidity and mortality in cancer patients. Multiple factors related to the patient, tumor, and cancer therapy can affect the risk of infection in patients with solid tumors. A thorough understanding of such factors can aid in the identification of patients with substantial risk of infection, allowing medical practitioners to tailor therapy and apply prophylactic measures to avoid serious complications. The use of novel treatment modalities, including targeted therapy and immunotherapy, brings diagnostic and therapeutic challenges into the management of infections in cancer patients. A growing body of evidence suggests that antibiotic therapy can modulate both toxicity and antitumor response induced by chemotherapy, radiotherapy, and especially immunotherapy. This article provides a comprehensive review of potential risk factors for infections and therapeutic approaches for the most prevalent infections in patients with solid tumors, and discusses the potential effect of antibiotic therapy on toxicity and efficacy of cancer therapy.
Zobrazit více v PubMed
Gudiol C., Aguado J.M., Carratalà J. Bloodstream infections in patients with solid tumors. Virulence. 2016;7:298–308. doi: 10.1080/21505594.2016.1141161. PubMed DOI PMC
Safdar A., Armstrong D. Infectious morbidity in critically ill patients with cancer. Crit. Care Clin. 2001;17:531–570. doi: 10.1016/S0749-0704(05)70198-6. PubMed DOI
Rolston K.V.I. Infections in Cancer Patients with Solid Tumors: A Review. Infect. Dis. Ther. 2017;6:69–83. doi: 10.1007/s40121-017-0146-1. PubMed DOI PMC
Williams M.D., Braun L.A., Cooper L.M., Johnston J., Weiss R.V., Qualy R.L., Linde-Zwirble W. Hospitalized cancer patients with severe sepsis: Analysis of incidence, mortality, and associated costs of care. Crit. Care. 2004;8:R291–R298. doi: 10.1186/cc2893. PubMed DOI PMC
Schelenz S., Nwaka D., Hunter P.R. Longitudinal surveillance of bacteraemia in haematology and oncology patients at a UK cancer centre and the impact of ciprofloxacin use on antimicrobial resistance. J. Antimicrob. Chemother. 2013;68:1431–1438. doi: 10.1093/jac/dkt002. PubMed DOI
Zheng Y., Chen Y., Yu K., Yang Y., Wang X., Yang X., Qian J., Liu Z.-X., Wu B. Fatal Infections among Cancer Patients: A Population-Based Study in the United States. Infect. Dis. Ther. 2021;10:871–895. doi: 10.1007/s40121-021-00433-7. PubMed DOI PMC
National Comprehensive Cancer Network NCCN Clinical Practice Guidelines in Oncology. Prevention and Treatment of Cancer-Related Infections 1. 2021. [(accessed on 21 September 2021)]. Available online: https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf.
Marin M., Gudiol C., Ardanuy C., Garcia-Vidal C., Calvo M., Arnan M., Carratalà J. Bloodstream infections in neutropenic patients with cancer: Differences between patients with haematological malignancies and solid tumours. J. Infect. 2014;69:417–423. doi: 10.1016/j.jinf.2014.05.018. PubMed DOI
Fillatre P., Decaux O., Jouneau S., Revest M., Gacouin A., Robert-Gangneux F., Fresnel A., Guiguen C., Le Tulzo Y., Jégo P., et al. Incidence of Pneumocystis jiroveci Pneumonia among Groups at Risk in HIV-negative Patients. Am. J. Med. 2014;127:1242.e11–1242.e17. doi: 10.1016/j.amjmed.2014.07.010. PubMed DOI
Klastersky J., de Naurois J., Rolston K., Rapoport B., Maschmeyer G., Aapro M., Herrstedt J. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 2016;27:v111–v118. doi: 10.1093/annonc/mdw325. PubMed DOI
Aapro M., Bohlius J., Cameron D., Lago L.D., Donnelly J.P., Kearney N., Lyman G., Pettengell R., Tjan-Heijnen V., Walewski J., et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur. J. Cancer. 2011;47:8–32. doi: 10.1016/j.ejca.2010.10.013. PubMed DOI
De Miguel S.C., Calleja-Hernández M., Menjón-Beltrán S., Vallejo-Rodríguez I. Granulocyte colony-stimulating factors as prophylaxis against febrile neutropenia. Support. Care Cancer. 2015;23:547–559. doi: 10.1007/s00520-014-2459-x. PubMed DOI
Truong L.D., Shen S.S. Immunohistochemical diagnosis of renal neoplasms. Arch. Pathol. Lab. Med. 2011;135:92–109. doi: 10.5858/2010-0478-RAR.1. PubMed DOI
Perez E.A., Geeraerts L., Suman V.J., Adjei A.A., Baron A.T., Hatfield A.K., Maihle N., Michalak J.C., Kuross S.A., Kugler J.W., et al. A randomized phase II study of sequential docetaxel and doxorubicin/cyclophosphamide in patients with metastatic breast cancer. Ann. Oncol. 2002;13:1225–1235. doi: 10.1093/annonc/mdf222. PubMed DOI
von Minckwitz G., Schneeweiss A., Loibl S., Salat C., Denkert C., Rezai M., Blohmer J.U., Jackisch C., Paepke S., Gerber B., et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): A randomised phase 2 trial. Lancet Oncol. 2014;15:747–756. doi: 10.1016/S1470-2045(14)70160-3. PubMed DOI
Kosaka Y., Rai Y., Masuda N., Takano T., Saeki T., Nakamura S., Shimazaki R., Ito Y., Tokuda Y., Tamura K. Phase III placebo-controlled, double-blind, randomized trial of pegfilgrastim to reduce the risk of febrile neutropenia in breast cancer patients receiving docetaxel/cyclophosphamide chemotherapy. Support. Care Cancer. 2015;23:1137–1143. doi: 10.1007/s00520-014-2597-1. PubMed DOI PMC
Gilbar P., McPherson I., Sorour N., Sanmugarajah J. High incidence of febrile neutropenia following adjuvant breast chemotherapy with docetaxel, carboplatin and trastuzumab. Breast Cancer Manag. 2014;3:327–333. doi: 10.2217/bmt.14.22. DOI
Marty M., Cognetti F., Maraninchi D., Snyder R., Mauriac L., Tubiana-Hulin M., Chan S., Grimes D., Antón A., Lluch A., et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2–Positive metastatic breast cancer administered as first-line treatment: The M77001 study group. J. Clin. Oncol. 2005;23:4265–4274. doi: 10.1200/JCO.2005.04.173. PubMed DOI
Sternberg C.N., De Mulder P.H., Schornagel J.H., Théodore C., Fossa S.D., Van Oosterom A.T., Witjes F., Spina M., Van Groeningen C.J., De Balincourt C., et al. Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemo-therapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol no. 30924. J. Clin. Oncol. 2001;19:2638–2646. doi: 10.1200/jco.2001.19.10.2638. PubMed DOI
Rose P.G., Blessing J.A., Gershenson D.M., McGehee R. Paclitaxel and cisplatin as first-line therapy in recurrent or advanced squamous cell carcinoma of the cervix: A gynecologic oncology group study. J. Clin. Oncol. 1999;17:2676–2680. doi: 10.1200/JCO.1999.17.9.2676. PubMed DOI
Long H.J., III, Bundy B.N., Grendys E.C., Jr., Benda J.A., McMeekin D.S., Sorosky J., Miller D., Eaton L.A., Fiorica J.V. Randomized Phase III Trial of Cisplatin with or without Topotecan in Carcinoma of the Uterine Cervix: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2005;23:4626–4633. doi: 10.1200/JCO.2005.10.021. PubMed DOI
Van Cutsem E., Moiseyenko V., Tjulandin S., Majlis A., Constenla M., Boni C., Rodrigues A., Fodor M., Chao Y., Voznyi E., et al. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: A report of the v325 study group. J. Clin. Oncol. 2006;24:4991–4997. doi: 10.1200/JCO.2006.06.8429. PubMed DOI
Roth A.D., Fazio N., Stupp R., Falk S., Bernhard J., Saletti P., Köberle D., Borner M.M., Rufibach K., Maibach R., et al. Docetaxel, cisplatin, and fluorouracil; Docetaxel and cisplatin; and epirubicin, cisplatin, and fluorouracil as systemic treatment for advanced gastric carcinoma: A randomized phase II trial of the swiss group for clinical cancer research. J. Clin. Oncol. 2007;25:3217–3223. doi: 10.1200/JCO.2006.08.0135. PubMed DOI
Cunningham D., Starling N., Rao S., Iveson T., Nicolson M., Coxon F., Middleton G., Daniel F., Oates J., Norman A.R. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N. Engl. J. Med. 2008;358:36–46. doi: 10.1056/NEJMoa073149. PubMed DOI
Fossa S.D., Kaye S.B., Mead G.M., Cullen M., De Wit R., Bodrogi I., Van Groeningen C.J., De Mulder P.H., Stenning S., Lallemand E., et al. Filgrastim during combination chemotherapy of patients with poor-prognosis metastatic germ cell malignancy. J. Clin. Oncol. 1998;16:716–724. doi: 10.1200/JCO.1998.16.2.716. PubMed DOI
Motzer R.J., Sheinfeld J., Mazumdar M., Bajorin D.F., Bosl G.J., Herr H., Lyn P., Vlamis V. Etoposide and cisplatin adjuvant therapy for patients with pathologic stage II germ cell tumors. J. Clin. Oncol. 1995;13:2700–2704. doi: 10.1200/JCO.1995.13.11.2700. PubMed DOI
Fujiwara M., Tanaka H., Yuasa T., Komai Y., Oguchi T., Fujiwara R., Numao N., Yamamoto S., Fujii Y., Fukui I., et al. First-Line combination chemotherapy with etoposide, ifosfamide and cisplatin for the treatment of disseminated germ cell cancer: Efficacy and feasibility in current clinical practice. Int. J. Urol. 2021;28:920–926. doi: 10.1111/iju.14604. PubMed DOI
Miller K.D., Loehrer P.J., Gonin R., Einhorn L.H. Salvage chemotherapy with vinblastine, ifosfamide, and cisplatin in recurrent seminoma. J. Clin. Oncol. 1997;15:1427–1431. doi: 10.1200/JCO.1997.15.4.1427. PubMed DOI
Kondagunta G.V., Bacik J., Donadio A., Bajorin D., Marion S., Sheinfeld J., Bosl G.J., Motzer R.J. Combination of paclitaxel, ifosfamide, and cisplatin is an effective second-line therapy for patients with relapsed testicular germ cell tumors. J. Clin. Oncol. 2005;23:6549–6555. doi: 10.1200/JCO.2005.19.638. PubMed DOI
Pointreau Y., Garaud P., Chapet S., Sire C., Tuchais C., Tortochaux J., Faivre S., Guerrif S., Alfonsi M., Calais G. Randomized trial of induction chemotherapy with cisplatin and 5-fluorouracil with or without docetaxel for larynx preservation. J. Natl. Cancer Inst. 2009;101:498–506. doi: 10.1093/jnci/djp007. PubMed DOI
Schiller J.H., Harrington D., Belani C., Langer C., Sandler A., Krook J., Zhu J., Johnson D.H. Comparison of four chemotherapy regimens for advanced non–small-cell lung cancer. N. Engl. J. Med. 2002;346:92–98. doi: 10.1056/NEJMoa011954. PubMed DOI
Pujol J.-L., Breton J.-L., Gervais R., Rebattu P., Depierre A., Morère J.-F., Milleron B., Debieuvre D., Castéra D., Souquet P.-J., et al. Gemcitabine–Docetaxel versus cisplatin–vinorelbine in advanced or metastatic non-small-cell lung cancer: A phase III study addressing the case for cisplatin. Ann. Oncol. 2005;16:602–610. doi: 10.1093/annonc/mdi126. PubMed DOI
Fossella F., Pereira J.R., Von Pawel J., Pluzanska A., Gorbounova V., Kaukel E., Mattson K.V., Ramlau R., Szczęsna A., Fidias P., et al. Randomized, Multinational, Phase III Study of Docetaxel Plus Platinum Combinations Versus Vinorelbine Plus Cisplatin for Advanced Non–Small-Cell Lung Cancer: The TAX 326 Study Group. J. Clin. Oncol. 2003;21:3016–3024. doi: 10.1200/JCO.2003.12.046. PubMed DOI
Font A., Moyano A.J., Puerto J.M., Tres A., Garcia-Giron C., Barneto I., Anton A., Sanchez J.J., Salvador A., Rosell R. Increasing dose intensity of cisplatin-etoposide in advanced nonsmall cell lung carcinoma. A phase III randomized trial of the spanish lung cancer group. Cancer. 1999;85:855–863. doi: 10.1002/(SICI)1097-0142(19990215)85:4<855::AID-CNCR12>3.0.CO;2-R. PubMed DOI
Cardenal F., López-Cabrerizo M.P., Antón A., Alberola V., Massuti B., Carrato A., Barneto I., Lomas M., García M., Lianes P., et al. Randomized phase III study of gemcitabine-cisplatin versus etoposide-cisplatin in the treatment of locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 1999;17:12. doi: 10.1200/JCO.1999.17.1.12. PubMed DOI
Millward M.J., Boyer M.J., Lehnert M., Clarke S., Rischin D., Goh B.-C., Wong J., McNeil E., Bishop J.F. Docetaxel and carboplatin is an active regimen in advancednon-small-cell lung cancer: A phase II study in Caucasian and Asian patients. Ann. Oncol. 2003;14:449–454. doi: 10.1093/annonc/mdg118. PubMed DOI
Swisher E.M., Mutch D.G., Rader J.S., Elbendary A., Herzog T.J. Topotecan in platinum- and paclitaxel-resistant ovarian cancer. Gynecol. Oncol. 1997;66:480–486. doi: 10.1006/gyno.1997.4787. PubMed DOI
Verschraegen C.F., Sittisomwong T., Kudelka A.P., Guedes E.D.P., Steger M., Nelson-Taylor T., Vincent M., Rogers R., Atkinson E.N., Kavanagh J.J. Docetaxel for Patients With Paclitaxel-Resistant Müllerian Carcinoma. J. Clin. Oncol. 2000;18:2733–2739. doi: 10.1200/JCO.2000.18.14.2733. PubMed DOI
Omura G.A., Brady M.F., Look K.Y., Averette H.E., Delmore J.E., Long H.J., Wadler S., Spiegel G., Arbuck S.G. Phase III trial of paclitaxel at two dose levels, the higher dose accompanied by filgrastim at two dose levels in platinum-pretreated epithelial ovarian cancer: An intergroup study. J. Clin. Oncol. 2003;21:2843–2848. doi: 10.1200/JCO.2003.10.082. PubMed DOI
Hosein P.J., MacIntyre J., Kawamura C., Maldonado J.C., Ernani V., Loaiza-Bonilla A., Narayanan G., Ribeiro A., Portelance L., Merchan J.R., et al. A retrospective study of neoadjuvant FOLFIRINOX in unresectable or borderline-resectable locally advanced pancreatic adenocarcinoma. BMC Cancer. 2012;12:199. doi: 10.1186/1471-2407-12-199. PubMed DOI PMC
Yilmaz U., Anar C., Polat G., Halilcolar H. Carboplatin plus etoposide for extensive stage small-cell lung cancer: An experience with AUC 6 doses of carboplatin. Indian J. Cancer. 2011;48:454–459. doi: 10.4103/0019-509X.92279. PubMed DOI
Von Pawel J., Schiller J.H., Shepherd F.A., Fields S.Z., Kleisbauer J., Chrysson N.G., Stewart D.J., Clark P.I., Palmer M.C., De Pierre A., et al. Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J. Clin. Oncol. 1999;17:658–667. doi: 10.1200/JCO.1999.17.2.658. PubMed DOI
Lorigan P., Woll P., O’Brien M.E.R., Ashcroft L.F., Sampson M.R., Thatcher N. Randomized phase III trial of dose-dense chemotherapy supported by whole-blood hematopoietic progenitors in better-prognosis small-cell lung cancer. J. Natl. Cancer Inst. 2005;97:666–674. doi: 10.1093/jnci/dji114. PubMed DOI
White S.C., Lorigan P., Middleton M.R., Anderson H., Valle J., Summers Y., Burt P.A., Arance A., Stout R., Thatcher N. Randomized phase II study of cyclophosphamide, doxorubicin, and vincristine compared with single-agent carboplatin in patients with poor prognosis small cell lung carcinoma. Cancer. 2001;92:601–608. doi: 10.1002/1097-0142(20010801)92:3<601::AID-CNCR1360>3.0.CO;2-K. PubMed DOI
Bui B.N., Chevallier B., Chevreau C., Krakowski I., Peny A.M., Thyss A., Maugard-Louboutin C., Cupissol D., Fargeot P., Bonichon F. Efficacy of lenograstim on hematologic tolerance to MAID chemotherapy in patients with advanced soft tissue sarcoma and consequences on treatment dose-intensity. J. Clin. Oncol. 1995;13:2629–2636. doi: 10.1200/JCO.1995.13.10.2629. PubMed DOI
Lorigan P., Verweij J., Papai Z., Rodenhuis S., Le Cesne A., Leahy M., Radford J., Van Glabbeke M.M., Kirkpatrick A., Hogendoorn P., et al. Phase III trial of two investigational schedules of ifosfamide compared with standard-dose doxorubicin in advanced or metastatic soft tissue sarcoma: A european organisation for research and treatment of cancer soft tissue and bone sarcoma group study. J. Clin. Oncol. 2007;25:3144–3150. doi: 10.1200/JCO.2006.09.7717. PubMed DOI
Thomson A.W., Turnquist H.R., Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 2009;9:324–337. doi: 10.1038/nri2546. PubMed DOI PMC
Kaymakcalan M., Je Y., Sonpavde G., Galsky M., Nguyen P.L., Heng D.Y.C., Richards C.J., Choueiri T.K. Risk of infections in renal cell carcinoma (RCC) and non-RCC patients treated with mammalian target of rapamycin inhibitors. Br. J. Cancer. 2013;108:2478–2484. doi: 10.1038/bjc.2013.278. PubMed DOI PMC
Alvarez R.H., Bechara R.I., Naughton M.J., Adachi J.A., Reuben J.M. Emerging perspectives on mtor inhibitor-associated pneumonitis in breast cancer. Oncologist. 2018;23:660–669. doi: 10.1634/theoncologist.2017-0343. PubMed DOI PMC
Maschmeyer G., De Greef J., Mellinghoff S.C., Nosari A., Thiebaut-Bertrand A., Bergeron A., Franquet T., Blijlevens N.M.A., Maertens J.A., on behalf of the European Conference on Infections in Leukemia Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections in Leukemia (ECIL) Leukemia. 2019;33:844–862. doi: 10.1038/s41375-019-0388-x. PubMed DOI PMC
Finn R.S., Aleshin A., Slamon D.J. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18:17. doi: 10.1186/s13058-015-0661-5. PubMed DOI PMC
Hu W., Sung T., Jessen B.A., Thibault S., Finkelstein M.B., Khan N.K., Sacaan A.I. Mechanistic Investigation of Bone Marrow Suppression Associated with Palbociclib and its Differentiation from Cytotoxic Chemotherapies. Clin. Cancer Res. 2016;22:2000–2008. doi: 10.1158/1078-0432.CCR-15-1421. PubMed DOI
Gelbert L.M., Cai S., Lin X., Sanchez-Martinez C., Del Prado M., Lallena M.J., Torres R., Ajamie R.T., Wishart G.N., Flack R.S., et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: In-Vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig. N. Drugs. 2014;32:825–837. doi: 10.1007/s10637-014-0120-7. PubMed DOI PMC
Som A., Mandaliya R., Alsaadi D., Farshidpour M., Charabaty A., Malhotra N., Mattar M.C. Immune checkpoint inhibitor-induced colitis: A comprehensive review. World J. Clin. Cases. 2019;7:405–418. doi: 10.12998/wjcc.v7.i4.405. PubMed DOI PMC
Hosmer W., Malin J., Wong M. Development and validation of a prediction model for the risk of developing febrile neutropenia in the first cycle of chemotherapy among elderly patients with breast, lung, colorectal, and prostate cancer. Support. Care Cancer. 2011;19:333–341. doi: 10.1007/s00520-010-0821-1. PubMed DOI PMC
Lyman G.H., Kuderer N.M., Crawford J., Wolff D.A., Culakova E., Poniewierski M.S., Dale D.C. Predicting individual risk of neutropenic complications in patients receiving cancer chemotherapy. Cancer. 2011;117:1917–1927. doi: 10.1002/cncr.25691. PubMed DOI PMC
Aagaard T., Roen A., Reekie J., Daugaard G., Brown P.D.N., Specht L., Sengeløv H., Mocroft A., Lundgren J., Helleberg M. Development and validation of a risk score for febrile neutropenia after chemotherapy in patients with cancer: The FENCE score. JNCI Cancer Spectr. 2018;2:pky053. doi: 10.1093/jncics/pky053. PubMed DOI PMC
Razzaghdoust A., Mofid B., Moghadam M. Development of a simplified multivariable model to predict neutropenic complications in cancer patients undergoing chemotherapy. Support. Care Cancer. 2018;26:3691–3699. doi: 10.1007/s00520-018-4224-z. PubMed DOI
Aagaard T., Reekie J., Roen A., Daugaard G., Specht L., Sengeløv H., Mocroft A., Lundgren J., Helleberg M. Development and validation of a cycle-specific risk score for febrile neutropenia during chemotherapy cycles 2–6 in patients with solid cancers: The CSR FENCE score. Int. J. Cancer. 2020;146:321–328. doi: 10.1002/ijc.32249. PubMed DOI
NCI Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. [(accessed on 22 May 2021)]; Available online: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf.
Bodey G.P., Buckley M., Sathe Y.S., Freireich E.J. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann. Intern. Med. 1966;64:328–340. doi: 10.7326/0003-4819-64-2-328. PubMed DOI
Castagnola E., Mikulska M., Viscoli C. Prophylaxis and Empirical Therapy of Infection in Cancer Patients. In: Bennett J.E., Dolin R., Blaser M.J., editors. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 8th ed. Elsevier; Philadelphia, PA, USA: 2015. pp. 3395–3413.
Nishimura N., Yamada S., Ueda K., Mishima Y., Yokoyama M., Saotome T., Terui Y., Takahashi S., Hatake K., Nishimura M. Incidence and severity of oral mucositis induced by conventional chemotherapy: A comprehensive prospective analysis of 227 cancer patients. J. Clin. Oncol. 2010;28:e19634. doi: 10.1200/jco.2010.28.15_suppl.e19634. DOI
Elting L.S., Chang Y.-C., Parelkar P., Boers-Doets C.B., Michelet M., Hita G., Rouleau T., Cooksley C., Halm J., Vithala M., et al. Risk of oral and gastrointestinal mucosal injury among patients receiving selected targeted agents: A meta-analysis. Support. Care Cancer. 2013;21:3243–3254. doi: 10.1007/s00520-013-1821-8. PubMed DOI
Kwitkowski V.E., Prowell T.M., Ibrahim A., Farrell A.T., Justice R., Mitchell S.S., Sridhara R., Pazdur R. FDA Approval Summary: Temsirolimus as Treatment for Advanced Renal Cell Carcinoma. Oncologist. 2010;15:428–435. doi: 10.1634/theoncologist.2009-0178. PubMed DOI PMC
Peterson D.E., Boers-Doets C., Bensadoun R.J., Herrstedt J. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann. Oncol. 2015;26:v139–v151. doi: 10.1093/annonc/mdv202. PubMed DOI
Böll B., Schalk E., Buchheidt D., Hasenkamp J., Kiehl M., Kiderlen T.R., Kochanek M., Koldehoff M., Kostrewa P., Claßen A.Y., et al. Central venous catheter–related infections in hematology and oncology: 2020 updated guidelines on diagnosis, management, and prevention by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) Ann. Hematol. 2021;100:239–259. doi: 10.1007/s00277-020-04286-x. PubMed DOI PMC
Taxbro K., Hammarskjöld F., Thelin B., Lewin F., Hagman H., Hanberger H., Berg S. Clinical impact of peripherally inserted central catheters vs implanted port catheters in patients with cancer: An open-label, randomised, two-centre trial. Br. J. Anaesth. 2019;122:734–741. doi: 10.1016/j.bja.2019.01.038. PubMed DOI
Pu Y.-L., Li Z.-S., Zhi X.-X., Shi Y.-A., Meng A.-F., Cheng F., Ali A., Li C., Fang H., Wang C. Complications and costs of peripherally inserted central venous catheters compared with implantable port catheters for cancer patients. Cancer Nurs. 2020;43:455–467. doi: 10.1097/NCC.0000000000000742. PubMed DOI
Corti F., Brambilla M., Manglaviti S., Di Vico L., Pisanu M.N., Facchinetti C., Dotti K.F., Lanocita R., Marchianò A., De Braud F., et al. Comparison of outcomes of central venous catheters in patients with solid and hematologic neoplasms: An Italian real-world analysis. Tumori J. 2021;107:17–25. doi: 10.1177/0300891620931172. PubMed DOI
Dezfulian C., Lavelle J., Nallamothu B.K., Kaufman S.R., Saint S. Rates of infection for single-lumen versus multilumen central venous catheters: A meta-analysis. Crit. Care Med. 2003;31:2385–2390. doi: 10.1097/01.CCM.0000084843.31852.01. PubMed DOI
Bouza E., Burillo A., Muñoz P. Catheter-related infections: Diagnosis and intravascular treatment. Clin. Microbiol. Infect. 2002;8:265–274. doi: 10.1046/j.1469-0691.2002.00385.x. PubMed DOI
Wisplinghoff H., Seifert H., Wenzel R.P., Edmond M. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the united states. Clin. Infect. Dis. 2003;36:1103–1110. doi: 10.1086/374339. PubMed DOI
Marcos M., Soriano A., Iñurrieta A., Martínez J.A., Romero A., Cobos N., Hernández C., Almela M., Marco F., Mensa J. Changing epidemiology of central venous catheter-related bloodstream infections: Increasing prevalence of Gram-negative pathogens. J. Antimicrob. Chemother. 2011;66:2119–2125. doi: 10.1093/jac/dkr231. PubMed DOI
Chaftari A.M., Hachem R., Jiang Y., Shah P., Hussain A., Al Hamal Z., Yousif A., Jordan M., Michael M., Raad I. Changing Epidemiology of Catheter-Related Bloodstream Infections in Cancer Patients. Infect. Control. Hosp. Epidemiol. 2018;39:727–729. doi: 10.1017/ice.2018.75. PubMed DOI
Abers M.S., Sandvall B.P., Sampath R., Zuno C., Uy N., Yu V.L., Stager C.E., Musher D.M. Postobstructive pneumonia: An underdescribed syndrome. Clin. Infect. Dis. 2016;62:957–961. doi: 10.1093/cid/civ1212. PubMed DOI PMC
Rolston K.V. Postobstructive pneumonia in cancer patients. Clin. Infect. Dis. 2016;63:707–708. doi: 10.1093/cid/ciw368. PubMed DOI
Kalkat M.S., Bonser R.S. Obstructive pneumonia: An indication for surgery in mega aorta syndrome. Ann. Thorac. Surg. 2003;75:1313–1315. doi: 10.1016/S0003-4975(02)04566-6. PubMed DOI
Rolston K.V.I., Nesher L. Post-Obstructive pneumonia in patients with cancer: A review. Infect. Dis. Ther. 2018;7:29–38. doi: 10.1007/s40121-018-0185-2. PubMed DOI PMC
Seo S.K., Liu C., Dadwal S.S. Infectious disease complications in patients with cancer. Crit. Care Clin. 2021;37:69–84. doi: 10.1016/j.ccc.2020.09.001. PubMed DOI PMC
Battaglia C.C., Hale K. Hospital-Acquired infections in critically III patients with cancer. J. Intensive Care Med. 2018;34:523–536. doi: 10.1177/0885066618788019. PubMed DOI
Bahu R., Chaftari A.-M., Hachem R.Y., Ahrar K., Shomali W., El Zakhem A., Jiang Y., AlShuaibi M., Raad I.I. Nephrostomy tube related pyelonephritis in patients with cancer: Epidemiology, infection rate and risk factors. J. Urol. 2013;189:130–135. doi: 10.1016/j.juro.2012.08.094. PubMed DOI
Pu L.Z.C.T., Singh R., Loong C.K., de Moura E.G.H. Malignant Biliary Obstruction: Evidence for Best Practice. Gastroenterol. Res. Pract. 2016;2016:3296801–3296807. doi: 10.1155/2016/3296801. PubMed DOI PMC
Cassani L., Lee J.H. Management of malignant distal biliary obstruction. Gastrointest. Interv. 2015;4:15–20. doi: 10.1016/j.gii.2015.02.001. DOI
Shi S., Xia W., Guo H., Kong H., Zheng S. Unique characteristics of pyogenic liver abscesses of biliary origin. Surgery. 2016;159:1316–1324. doi: 10.1016/j.surg.2015.11.012. PubMed DOI
Rolston K.V.I., Dholakia N., Rodriguez S., Rubenstein E.B. Nature and outcome of febrile episodes in patients with pancreatic and hepatobiliary cancer. Support. Care Cancer. 1995;3:414–417. doi: 10.1007/BF00364982. PubMed DOI
Xu C., Lv P.-H., Huang X.-E., Wang S.-X., Sun L., Wang F.-A. Analysis of different ways of drainage for obstructive jaundice caused by hilar cholangiocarcinoma. Asian Pac. J. Cancer Prev. 2014;15:5617–5620. doi: 10.7314/APJCP.2014.15.14.5617. PubMed DOI
Aljahdli E.S. Management of distal malignant biliary obstruction. Saudi J. Gastroenterol. 2018;24:71–72. doi: 10.4103/sjg.SJG_611_17. PubMed DOI PMC
Avritscher E.B.C., Cooksley C.D., Rolston K.V., Swint J.M., Delclos G.L., Franzini L., Swisher S.G., Walsh G.L., Mansfield P.F., Elting L.S. Serious postoperative infections following resection of common solid tumors: Outcomes, costs, and impact of hospital surgical volume. Support. Care Cancer. 2014;22:527–535. doi: 10.1007/s00520-013-2006-1. PubMed DOI
Yang K., Zang Z.-Y., Niu K.-F., Sun L.-F., Zhang W.-H., Zhang Y.-X., Chen X.-L., Zhou Z.-G., Hu J.-K. The survival benefit and safety of splenectomy for gastric cancer with total gastrectomy: Updated results. Front. Oncol. 2021;10:2786. doi: 10.3389/fonc.2020.568872. PubMed DOI PMC
Lee S.S., Morgenstern L., Phillips E.H., Hiatt J.R., Margulies D.R. Splenectomy for splenic metastases: A changing clinical spectrum. Am. Surg. 2000;66:837–840. PubMed
Feola A., Niola M., Conti A., Delbon P., Graziano V., Paternoster M., Della Pietra B. Iatrogenic splenic injury: Review of the literature and medico-legal issues. Open Med. 2016;11:307–315. doi: 10.1515/med-2016-0059. PubMed DOI PMC
Di Sabatino A., Carsetti R., Corazza G.R. Post-Splenectomy and hyposplenic states. Lancet. 2011;378:86–97. doi: 10.1016/S0140-6736(10)61493-6. PubMed DOI
Buzelé R., Barbier L., Sauvanet A., Fantin B. Medical complications following splenectomy. J. Visc. Surg. 2016;153:277–286. doi: 10.1016/j.jviscsurg.2016.04.013. PubMed DOI
Pawelec G. Immunosenescence: Impact in the young as well as the old? Mech. Ageing Dev. 1999;108:1–7. doi: 10.1016/s0047-6374(99)00010-x. PubMed DOI
Eşme M., Topeli A., Yavuz B.B.D., Akova M. Infections in the elderly Critically-III patients. Front. Med. 2019;6:118. doi: 10.3389/fmed.2019.00118. PubMed DOI PMC
Tannou T., Koeberle S., Manckoundia P., Aubry R. Multifactorial immunodeficiency in frail elderly patients: Contributing factors and management. Med. Mal. Infect. 2019;49:167–172. doi: 10.1016/j.medmal.2019.01.012. PubMed DOI
Lyman G.H., Abella E., Pettengell R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: A systematic review. Crit. Rev. Oncol. Hematol. 2014;90:190–199. doi: 10.1016/j.critrevonc.2013.12.006. PubMed DOI
Balducci L., Hardy C.L., Lyman G.H. Hemopoiesis and aging. Cancer Treat. Res. 2005;124:109–134. doi: 10.1007/0-387-23962-6_6. PubMed DOI
Gay L., Melenotte C., Lakbar I., Mezouar S., Devaux C., Raoult D., Bendiane M.-K., Leone M., Mège J.-L. Sexual dimorphism and gender in infectious diseases. Front. Immunol. 2021;12:698121. doi: 10.3389/fimmu.2021.698121. PubMed DOI PMC
García-Gómez E., González-Pedrajo B., Camacho-Arroyo I. Role of Sex Steroid Hormones in Bacterial-Host Interactions. BioMed Res. Int. 2013;2013:928290. doi: 10.1155/2013/928290. PubMed DOI PMC
Ahmed S.A., Karpuzoglu E., Khan D. Effects of sex steroids on innate and adaptive immunity. In: Klein S.L., Roberts C.W., editors. Sex Hormones and Immunity to Infection. Springer; Berlin/Heidelberg, Germany: 2010. pp. 19–51.
Fish E.N. The X-files in immunity: Sex-Based differences predispose immune responses. Nat. Rev. Immunol. 2008;8:737–744. doi: 10.1038/nri2394. PubMed DOI PMC
Harrington R.D., Hooton T.M. Urinary tract infection risk factors and gender. J. Gend. Specif. Med. 2000;3:27–34. PubMed
Abdel-Rahman O. Impact of sex on chemotherapy toxicity and efficacy among patients with metastatic colorectal cancer: Pooled analysis of 5 randomized trials. Clin. Color. Cancer. 2019;18:110–115.e2. doi: 10.1016/j.clcc.2018.12.006. PubMed DOI
Fontanella C., Bolzonello S., Lederer B., Aprile G. Management of breast cancer patients with chemotherapy-induced neutropenia or febrile neutropenia. Breast Care. 2014;9:239–245. doi: 10.1159/000366466. PubMed DOI PMC
Özdemir B.C., Csajka C., Dotto G.-P., Wagner A.D. Sex differences in efficacy and toxicity of systemic treatments: An undervalued issue in the era of precision oncology. J. Clin. Oncol. 2018;36:2680–2683. doi: 10.1200/JCO.2018.78.3290. PubMed DOI
Ruzzo A., Graziano F., Galli F., Galli F., Rulli E., Lonardi S., Ronzoni M., Massidda B., Zagonel V., Pella N., et al. Sex-Related Differences in impact on safety of pharmacogenetic profile for colon cancer patients treated with FOLFOX-4 or XELOX adjuvant chemotherapy. Sci. Rep. 2019;9:11527. doi: 10.1038/s41598-019-47627-1. PubMed DOI PMC
Bossi P., Delrio P., Mascheroni A., Zanetti M. The spectrum of malnutrition/cachexia/sarcopenia in oncology according to different cancer types and settings: A narrative review. Nutrients. 2021;13:1980. doi: 10.3390/nu13061980. PubMed DOI PMC
Chandra R.K. Nutrition, immunity and infection: From basic knowledge of dietary manipulation of immune responses to practical application of ameliorating suffering and improving survival. Proc. Natl. Acad. Sci. USA. 1996;93:14304–14307. doi: 10.1073/pnas.93.25.14304. PubMed DOI PMC
Triarico S., Rinninella E., Cintoni M., Capozza M.A., Mastrangelo S., Mele M.C., Ruggiero A. Impact of malnutrition on survival and infections among pediatric patients with cancer: A retrospective study. Eur. Rev. Med. Pharmacol. Sci. 2019;23:1165–1175. PubMed
Falagas M.E., Kompoti M. Obesity and infection. Lancet Infect. Dis. 2006;6:438–446. doi: 10.1016/S1473-3099(06)70523-0. PubMed DOI
Ghilotti F., Bellocco R., Ye W., Adami H.-O., Lagerros Y.T. Obesity and risk of infections: Results from men and women in the Swedish National March Cohort. Int. J. Epidemiol. 2019;48:1783–1794. doi: 10.1093/ije/dyz129. PubMed DOI
Huttunen R., Syrjänen J. Obesity and the risk and outcome of infection. Int. J. Obes. 2013;37:333–340. doi: 10.1038/ijo.2012.62. PubMed DOI
Carey I.M., Critchley J.A., DeWilde S., Harris T., Hosking F.J., Cook D.G. Risk of infection in type 1 and type 2 diabetes compared with the general population: A matched cohort study. Diabetes Care. 2018;41:513–521. doi: 10.2337/dc17-2131. PubMed DOI
Berman S.J., Johnson E.W., Nakatsu C., Alkan M., Chen R., LeDuc J. Burden of infection in patients with end-stage renal disease requiring long-term dialysis. Clin. Infect. Dis. 2004;39:1747–1753. doi: 10.1086/424516. PubMed DOI
Cohen G., Hörl W.H. Immune dysfunction in Uremia—An update. Toxins. 2012;4:962–990. doi: 10.3390/toxins4110962. PubMed DOI PMC
Lange P. Chronic obstructive pulmonary disease and risk of infection. Pneumonol. Alergol. Polska. 2009;77:284–288. PubMed
Fragoulis G.E., Sipsas N.V. When rheumatology and infectious disease come together. Ther. Adv. Musculoskelet. Dis. 2019;11:1–3. doi: 10.1177/1759720X19868901. PubMed DOI PMC
Hsu C.-Y., Ko C.-H., Wang J.-L., Hsu T.-C., Lin C.-Y. Comparing the burdens of opportunistic infections among patients with systemic rheumatic diseases: A nationally representative cohort study. Arthritis Res. 2019;21:211. doi: 10.1186/s13075-019-1997-5. PubMed DOI PMC
McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Fernández J., Gustot T. Management of bacterial infections in cirrhosis. J. Hepatol. 2012;56((Suppl. 1)):S1–S12. doi: 10.1016/S0168-8278(12)60002-6. PubMed DOI
McCusker C., Warrington R. Primary immunodeficiency. Allergy Asthma Clin. Immunol. 2011;7((Suppl. 1)):S11. doi: 10.1186/1710-1492-7-S1-S11. PubMed DOI PMC
Okishiro M., Kim S.J., Tsunashima R., Nakayama T., Shimazu K., Shimomura A., Maruyama N., Tamaki Y., Noguchi S. MDM2 SNP309 and TP53 R72P associated with severe and febrile neutropenia in breast cancer patients treated with 5-FU/epirubicin/cyclophosphamide. Breast Cancer Res. Treat. 2012;132:947–953. doi: 10.1007/s10549-011-1637-5. PubMed DOI
Vulsteke C., Lambrechts D., Dieudonné A., Hatse S., Brouwers B., van Brussel T., Neven P., Belmans A., Schöffski P., Paridaens R., et al. Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) Ann. Oncol. 2013;24:1513–1525. doi: 10.1093/annonc/mdt008. PubMed DOI
McLeod H.L., Sargent D., Marsh S., Green E.M., King C.R., Fuchs C.S., Ramanathan R.K., Williamson S.K., Findlay B.P., Thibodeau S.N., et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: Results from north american gastrointestinal intergroup trial N9741. J. Clin. Oncol. 2010;28:3227–3233. doi: 10.1200/JCO.2009.21.7943. PubMed DOI PMC
Cremolini C., Del Re M., Antoniotti C., Lonardi S., Bergamo F., Loupakis F., Borelli B., Marmorino F., Citi V., Cortesi E., et al. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer. Oncotarget. 2017;9:7859–7866. doi: 10.18632/oncotarget.23559. PubMed DOI PMC
Yamaguchi T., Iwasa S., Shoji H., Honma Y., Takashima A., Kato K., Hamaguchi T., Higuchi K., Boku N. Association between UGT1A1 gene polymorphism and safety and efficacy of irinotecan monotherapy as the third-line treatment for advanced gastric cancer. Gastric Cancer. 2019;22:778–784. doi: 10.1007/s10120-018-00917-5. PubMed DOI
Wood A.J., Pizzo P.A. Management of fever in patients with cancer and treatment-induced neutropenia. N. Engl. J. Med. 1993;328:1323–1332. doi: 10.1056/NEJM199305063281808. PubMed DOI
DiNubile M.J. Fever and neutropenia: Still a challenge. Contemp. Intern. Med. 1995;7:35–41. PubMed
Zell J.A., Chang J.C. Neoplastic fever: A neglected paraneoplastic syndrome. Support. Care Cancer. 2005;13:870–877. doi: 10.1007/s00520-005-0825-4. PubMed DOI
Kasuga I., Makino S., Kiyokawa H., Katoh H., Ebihara Y., Ohyashiki K. Tumor-Related leukocytosis is linked with poor prognosis in patients with lung carcinoma. Cancer. 2001;92:2399–2405. doi: 10.1002/1097-0142(20011101)92:9<2399::AID-CNCR1588>3.0.CO;2-W. PubMed DOI
Hart P.C., Rajab I.M., Alebraheem M., Potempa L.A. C-Reactive protein and cancer—Diagnostic and therapeutic insights. Front. Immunol. 2020;11:595835. doi: 10.3389/fimmu.2020.595835. PubMed DOI PMC
Vincenzi B., Fioroni I., Pantano F., Angeletti S., Dicuonzo G., Zoccoli A., Santini D., Tonini G. Procalcitonin as diagnostic marker of infection in solid tumors patients with fever. Sci. Rep. 2016;6:28090. doi: 10.1038/srep28090. PubMed DOI PMC
Palmore T.N., Parta M., Cuellar-Rodriguez J., Gea-Banacloche J.C. Infections in the Cancer Patient. In: Vincent T.D. Jr., Theodore S.L., Steven A.R., editors. DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 10th ed. Lippincott Williams and Wilkins; Philadelphia, PA, USA: 2011. pp. 1931–1959.
Gao Y., Shang Q., Li W., Guo W., Stojadinovic A., Mannion C., Man Y.-G., Chen T. Antibiotics for cancer treatment: A double-edged sword. J. Cancer. 2020;11:5135–5149. doi: 10.7150/jca.47470. PubMed DOI PMC
Hecker M.T., Aron D.C., Patel N.P., Lehmann M.K., Donskey C.J. Unnecessary use of antimicrobials in hospitalized patients: Current patterns of misuse with an emphasis on the antianaerobic spectrum of activity. Arch. Intern. Med. 2003;163:972–978. doi: 10.1001/archinte.163.8.972. PubMed DOI
Fridkin S., Baggs J., Fagan R., Magill S., Pollack L.A., Malpiedi P., Slayton R., Khader K., Rubin M.A., Jones M., et al. Vital signs: Improving antibiotic use among hospitalized patients. MMWR. Morb. Mortal. Wkly. Rep. 2014;63:194–200. PubMed PMC
Dellit T.H., Owens R.C., McGowan J.E., Jr., Gerding D.N., Weinstein R.A., Burke J.P., Huskins W.C., Paterson D.L., Fishman N.O., Carpenter C.F., et al. Infectious diseases society of america and the society for healthcare epidemiology of america guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis. 2007;44:159–177. doi: 10.1086/510393. PubMed DOI
Islas-Muñoz B., Volkow-Fernández P., Ibanes-Gutiérrez C., Villamar-Ramírez A., Vilar-Compte D., Cornejo-Juárez P. Bloodstream infections in cancer patients. Risk factors associated with mortality. Int. J. Infect. Dis. 2018;71:59–64. doi: 10.1016/j.ijid.2018.03.022. PubMed DOI
Baur D., Gladstone B.P., Burkert F., Carrara E., Foschi F., Döbele S., Tacconelli E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017;17:990–1001. doi: 10.1016/S1473-3099(17)30325-0. PubMed DOI
Nathwani D., Varghese D., Stephens J., Ansari W., Martin S., Charbonneau C. Value of hospital antimicrobial stewardship programs [ASPs]: A systematic review. Antimicrob. Resist. Infect. Control. 2019;8:35. doi: 10.1186/s13756-019-0471-0. PubMed DOI PMC
Ramos-Casals M., Brahmer J.R., Callahan M.K., Flores-Chávez A., Keegan N., Khamashta M.A., Lambotte O., Mariette X., Prat A., Suárez-Almazor M.E. Immune-Related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 2020;6:38. doi: 10.1038/s41572-020-0160-6. PubMed DOI PMC
Del Castillo M., Romero F.A., Argüello E., Kyi C., Postow M.A., Redelman-Sidi G. The spectrum of serious infections among patients receiving immune checkpoint blockade for the treatment of melanoma. Clin. Infect. Dis. 2016;63:1490–1493. doi: 10.1093/cid/ciw539. PubMed DOI PMC
Elkrief A., DeRosa L., Kroemer G., Zitvogel L., Routy B. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: A new independent prognostic factor? Ann. Oncol. 2019;30:1572–1579. doi: 10.1093/annonc/mdz206. PubMed DOI
Freifeld A.G., Bow E.J., Sepkowitz K.A., Boeckh M.J., Ito J.I., Mullen C.A., Raad I.I., Rolston K.V., Young J.-A.H., Wingard J.R. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. 2011;52:e56–e93. doi: 10.1093/cid/cir073. PubMed DOI
Carmona-Bayonas A., Jiménez-Fonseca P., Echaburu J.V., Cánovas M.S., De La Peña F.A. The time has come for new models in febrile neutropenia: A practical demonstration of the inadequacy of the MASCC score. Clin. Transl. Oncol. 2017;19:1084–1090. doi: 10.1007/s12094-017-1644-z. PubMed DOI
Peyrony O., Gerlier C., Barla I., Ellouze S., Legay L., Azoulay E., Chevret S., Fontaine J.-P. Antibiotic prescribing and outcomes in cancer patients with febrile neutropenia in the emergency department. PLoS ONE. 2020;15:e0229828. doi: 10.1371/journal.pone.0229828. PubMed DOI PMC
Elting L.S., Lu C., Escalante C.P., Giordano S.H., Trent J.C., Cooksley C., Avritscher E.B., Shih Y.-C.T., Ensor J., Bekele B.N., et al. Outcomes and cost of outpatient or inpatient management of 712 patients with febrile neutropenia. J. Clin. Oncol. 2008;26:606–611. doi: 10.1200/JCO.2007.13.8222. PubMed DOI
AJMC Guidelines in the Management of Febrile Neutropenia for Clinical Practice. [(accessed on 20 November 2021)]. Available online: https://www.ajmc.com/view/guidelines-in-the-management-of-febrile-neutropenia-for-clinical-practice.
Taplitz R.A., Kennedy E.B., Bow E.J., Crews J., Gleason C., Hawley D.K., Langston A.A., Nastoupil L.J., Rajotte M., Rolston K., et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American society of clinical oncology and infectious diseases society of america clinical practice guideline update. J. Clin. Oncol. 2018;36:1443–1453. doi: 10.1200/JCO.2017.77.6211. PubMed DOI
Anatoliotaki M., Valatas V., Mantadakis E., Apostolakou H., Mavroudis D., Georgoulias V., Rolston K.V., Kontoyiannis D.P., Galanakis E., Samonis G. Bloodstream infections in patients with solid tumors: Associated factors, microbial spectrum and outcome. Infection. 2004;32:65–71. doi: 10.1007/s15010-004-3049-5. PubMed DOI
Marín M., Gudiol C., Garcia-Vidal C., Ardanuy C., Carratala J. Bloodstream Infections in patients with solid tumors: Epidemiology, antibiotic therapy, and outcomes in 528 episodes in a single cancer center. Medicine. 2014;93:143–149. doi: 10.1097/MD.0000000000000026. PubMed DOI PMC
Seifert H., Cornely O., Seggewiss K., Decker M., Stefanik D., Wisplinghoff H., Fätkenheuer G. Bloodstream infection in neutropenic cancer patients related to short-term nontunnelled catheters determined by quantitative blood cultures, differential time to positivity, and molecular epidemiological typing with pulsed-field gel electrophoresis. J. Clin. Microbiol. 2003;41:118–123. doi: 10.1128/JCM.41.1.118-123.2003. PubMed DOI PMC
Mermel L.A., Allon M., Bouza E., Craven D.E., Flynn P., O’Grady N.P., Raad I.I., Rijnders B.J.A., Sherertz R.J., Warren D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the infectious diseases society of america. Clin. Infect. Dis. 2009;49:1–45. doi: 10.1086/599376. PubMed DOI PMC
Cantón-Bulnes M.L., Garnacho-Montero J. Practical approach to the management of catheter-related bloodstream infection. Rev. Esp. Quimioter. 2019;32:38–41. PubMed PMC
Muff S., Tabah A., Que Y.-A., Timsit J.-F., Mermel L., Harbarth S., Buetti N. Short-Course versus long-course systemic antibiotic treatment for uncomplicated intravascular catheter-related bloodstream infections due to gram-negative bacteria, enterococci or coagulase-negative staphylococci: A systematic review. Infect. Dis. Ther. 2021;10:1591–1605. doi: 10.1007/s40121-021-00464-0. PubMed DOI PMC
Chaves F., Garnacho-Montero J., Del Pozo J.L., Bouza E., Capdevila J., de Cueto M., Domínguez M., Esteban J., Fernández-Hidalgo N., Sampedro M.F., et al. Diagnosis and treatment of catheter-related bloodstream infection: Clinical guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology and (SEIMC) and the Spanish Society of Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC) Med. Intensiv. 2018;42:5–36. doi: 10.1016/j.medin.2017.09.012. PubMed DOI
Norris L.B., Kablaoui F., Brilhart M.K., Bookstaver P.B. Systematic review of antimicrobial lock therapy for prevention of central-line-associated bloodstream infections in adult and pediatric cancer patients. Int. J. Antimicrob. Agents. 2017;50:308–317. doi: 10.1016/j.ijantimicag.2017.06.013. PubMed DOI
Pliakos E.E., Andreatos N., Ziakas P., Mylonakis E. The cost-effectiveness of antimicrobial lock solutions for the prevention of central line–associated bloodstream infections. Clin. Infect. Dis. 2019;68:419–425. doi: 10.1093/cid/ciy511. PubMed DOI
Robinson J.L., Tawfik G., Saxinger L., Stang L., Etches W., Lee B. Stability of heparin and physical compatibility of heparin/antibiotic solutions in concentrations appropriate for antibiotic lock therapy. J. Antimicrob. Chemother. 2005;56:951–953. doi: 10.1093/jac/dki311. PubMed DOI
Luther M.K., Mermel L.A., Laplante K.L. Comparison of linezolid and vancomycin lock solutions with and without heparin against biofilm-producing bacteria. Am. J. Health Pharm. 2017;74:e193–e201. doi: 10.2146/ajhp150804. PubMed DOI
Del Pozo J.L. Role of antibiotic lock therapy for the treatment of catheter-related bloodstream infections. Int. J. Artif. Organs. 2009;32:678–688. doi: 10.1177/039139880903200918. PubMed DOI
Bookstaver P.B., Rokas K.E.E., Norris L.B., Edwards J.M., Sherertz R.J. Stability and compatibility of antimicrobial lock solutions. Am. J. Health Syst. Pharm. 2013;70:2185–2198. doi: 10.2146/ajhp120119. PubMed DOI
LaPlante K.L., Mermel L.A. In Vitro activity of daptomycin and vancomycin lock solutions on staphylococcal biofilms in a central venous catheter model. Nephrol. Dial. Transpl. 2007;22:2239–2246. doi: 10.1093/ndt/gfm141. PubMed DOI
Krishnasami Z., Carlton D., Bimbo L., Taylor M.E., Balkovetz D.F., Barker J., Allon M. Management of hemodialysis catheter-related bacteremia with an adjunctive antibiotic lock solution. Kidney Int. 2002;61:1136–1142. doi: 10.1046/j.1523-1755.2002.00201.x. PubMed DOI
Vercaigne L.M., Sitar D.S., Penner S.B., Bernstein K., Wang G.Q., Burczynski F. Antibiotic-Heparin lock: In Vitro antibiotic stability combined with heparin in a central venous catheter. Pharmacotherapy. 2000;20:394–399. doi: 10.1592/phco.20.5.394.35063. PubMed DOI
Justo J.A., Bookstaver P.B. Antibiotic lock therapy: Review of technique and logistical challenges. Infect. Drug Resist. 2014;7:343–363. doi: 10.2147/idr.s51388. PubMed DOI PMC
Rijnders B.J., Van Wijngaerden E., Vandecasteele S.J., Stas M., Peetermans W.E. Treatment of long-term intravascular catheter-related bacteraemia with antibiotic lock: Randomized, placebo-controlled trial. J. Antimicrob. Chemother. 2005;55:90–94. doi: 10.1093/jac/dkh488. PubMed DOI
Lee J.-Y., Ko K.S., Peck K.R., Oh W.S., Song J.-H. In Vitro evaluation of the antibiotic lock technique (ALT) for the treatment of catheter-related infections caused by staphylococci. J. Antimicrob. Chemother. 2006;57:1110–1115. doi: 10.1093/jac/dkl098. PubMed DOI
Droste J.C., Jeraj H.A., Macdonald A., Farrington K. Stability and in vitro efficacy of antibiotic-heparin lock solutions potentially useful for treatment of central venous catheter-related sepsis. J. Antimicrob. Chemother. 2003;51:849–855. doi: 10.1093/jac/dkg179. PubMed DOI
Lee M.Y., Ko K.S., Song J.-H., Peck K.R. In Vitro effectiveness of the antibiotic lock technique (ALT) for the treatment of catheter-related infections by Pseudomonas aeruginosa and Klebsiella pneumoniae. J. Antimicrob. Chemother. 2007;60:782–787. doi: 10.1093/jac/dkm295. PubMed DOI
Onland W., Shin C.E., Fustar S., Rushing T., Wong W.-Y. Ethanol-Lock technique for persistent bacteremia of long-term intravascular devices in pediatric patients. Arch. Pediatr. Adolesc. Med. 2006;160:1049–1053. doi: 10.1001/archpedi.160.10.1049. PubMed DOI
EMC Ampicillin 500 mg powder for solution for injection—Summary of Product Characteristics (SPC) [(accessed on 12 November 2021)]. Available online: https://www.medicines.org.uk/emc/product/12892/smpc#gref.
Vila-Corcoles A., Ochoa-Gondar O., Rodriguez-Blanco T., Raga-Luria X., Gomez-Bertomeu F. Epidemiology of community-acquired pneumonia in older adults: A population-based study. Respir. Med. 2009;103:309–316. doi: 10.1016/j.rmed.2008.08.006. PubMed DOI
Parakh A., Krishnamurthy S., Bhattacharya M. Ertapenem. Kathmandu Univ. Med. J. (KUMJ) 2009;7:454–460. doi: 10.3126/kumj.v7i4.2774. PubMed DOI
Kalil A.C., Metersky M.L., Klompas M., Muscedere J., Sweeney D.A., Palmer L.B., Napolitano L.M., O’Grady N.P., Bartlett J.G., Carratala J., et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of america and the american thoracic society. Clin. Infect. Dis. 2016;63:e61–e111. doi: 10.1093/cid/ciw353. PubMed DOI PMC
Metlay J.P., Waterer G.W., Long A.C., Anzueto A., Brozek J., Crothers K., Cooley L.A., Dean N.C., Fine M.J., Flanders S.A., et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the american thoracic society and infectious diseases society of America. Am. J. Respir. Crit. Care Med. 2019;200:e45–e67. doi: 10.1164/rccm.201908-1581ST. PubMed DOI PMC
Hanson K.E., Azar M.M., Banerjee R., Chou A., Colgrove R.C., Ginocchio C.C., Hayden M.K., Holodiny M., Jain S., Koo S., et al. Molecular testing for acute respiratory tract infections: Clinical and diagnostic recommendations from the IDSA’s diagnostics committee. Clin. Infect. Dis. 2020;71:2744–2751. doi: 10.1093/cid/ciaa508. PubMed DOI PMC
Sartelli M., Chichom-Mefire A., Labricciosa F.M., Hardcastle T., Abu-Zidan F.M., Adesunkanmi A.K., Ansaloni L., Bala M., Balogh Z.J., Beltrán M.A., et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J. Emerg. Surg. 2017;12:29. doi: 10.1186/s13017-017-0141-6. PubMed DOI PMC
Solomkin J.S., Mazuski J.E., Bradley J.S., Rodvold K.A., Goldstein E.J., Baron E.J., O’Neill P.J., Chow A.W., Dellinger E.P., Eachempati S.R., et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the surgical infection society and the infectious diseases society of america. Clin. Infect. Dis. 2010;50:133–164. doi: 10.1086/649554. PubMed DOI
Guevara E.A.Y., Aitken S.L., Olvera A.V., Carlin L., Fernandes K.E., Bhatti M.M., Garey K.W., Adachi J., Okhuysen P.C. Clostridioides difficile infection in cancer and immunocompromised patients: Relevance of a two-step diagnostic algorithm and infecting ribotypes on clinical outcomes. Clin. Infect. Dis. 2020;72:e460–e465. doi: 10.1093/cid/ciaa1184. PubMed DOI
Abughanimeh O., Qasrawi A., Kaddourah O., Al Momani L., Abu Ghanimeh M. Clostridium difficileinfection in oncology patients: Epidemiology, pathophysiology, risk factors, diagnosis, and treatment. Hosp. Pract. 2018;46:266–277. doi: 10.1080/21548331.2018.1533673. PubMed DOI
Johnson S., Lavergne V., Skinner A.M., Gonzales-Luna A.J., Garey K.W., Kelly C.P., Wilcox M.H. Clinical practice guideline by the infectious diseases society of america (idsa) and society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of clostridioides difficile infection in adults. Clin. Infect. Dis. 2021;73:e1029–e1044. doi: 10.1093/cid/ciab549. PubMed DOI
Kirkpatrick I.D.C., Greenberg H.M. Gastrointestinal complications in the neutropenic patient: Characterization and differentiation with abdominal CT. Radiology. 2003;226:668–674. doi: 10.1148/radiol.2263011932. PubMed DOI
Song H.K., Kreisel D., Canter R., Krupnick A.S., Stadtmauer E.A., Buzby G. Changing presentation and management of neutropenic enterocolitis. Arch. Surg. 1998;133:979–982. doi: 10.1001/archsurg.133.9.979. PubMed DOI
Tigabu A., Ferede W., Belay G., Gelaw B. Prevalence of asymptomatic bacteriuria and antibiotic susceptibility patterns of bacterial isolates among cancer patients and healthy blood donors at the University of Gondar Specialized Hospital. Int. J. Microbiol. 2020;2020:3091564. doi: 10.1155/2020/3091564. PubMed DOI PMC
Shrestha G., Wei X., Hann K., Soe K., Satyanarayana S., Siwakoti B., Bastakoti S., Mulmi R., Rana K., Lamichhane N. Bacterial profile and antibiotic resistance among cancer patients with urinary tract infection in a national tertiary cancer hospital of Nepal. Trop. Med. Infect. Dis. 2021;6:49. doi: 10.3390/tropicalmed6020049. PubMed DOI PMC
Parikh P., Bhat V. Urinary tract infection in cancer patients in a tertiary cancer setting in India: Microbial spectrum and antibiotic susceptibility pattern. Antimicrob. Resist. Infect. Control. 2015;4:221. doi: 10.1186/2047-2994-4-S1-P221. DOI
Khaparkuntikar M., Siddiqui N., Bhirud P. Urinary tract infection in cancer patients at Government Cancer Hospital Aurangabad, India. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:2259–2263. doi: 10.20546/ijcmas.2017.605.251. DOI
Bonkat G., Bartoletti R., Bruyère F., Cai T., Geerlings S.E., Köves B., Schubert S., Wagenlehner F. EAU Guidelines on Urological Infections. EAU Guidelines Office; Arnhem, The Netherlands: 2020.
Nicolle L. Complicated urinary tract infection in adults. Can. J. Infect. Dis. Med. Microbiol. 2005;16:349–360. doi: 10.1155/2005/385768. PubMed DOI PMC
Lopes M.S.M., Machado L.M., Silva P.A.I.A., Uchiyama A.A.T., Yen C.T., Ricardo E.D., Mutao T.S., Pimenta J.R., Shimba D.S., Hanriot R.M., et al. Antibiotics, cancer risk and oncologic treatment efficacy: A practical review of the literature. Ecancermedicalscience. 2020;14:1106. PubMed PMC
Shui L., Yang X., Li J., Yi C., Sun Q., Zhu H. Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front. Immunol. 2020;10:2989. doi: 10.3389/fimmu.2019.02989. PubMed DOI PMC
Ma W., Mao Q., Xia W., Dong G., Yu C., Jiang F. Gut microbiota shapes the efficiency of cancer therapy. Front. Microbiol. 2019;10:1050. doi: 10.3389/fmicb.2019.01050. PubMed DOI PMC
Reed J.P., Devkota S., Figlin R.A. Gut microbiome, antibiotic use, and immunotherapy responsiveness in cancer. Ann. Transl. Med. 2019;7:S309. doi: 10.21037/atm.2019.10.27. PubMed DOI PMC
Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C., et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103. doi: 10.1126/science.aan4236. PubMed DOI PMC
Matson V., Fessler J., Bao R., Chongsuwat T., Zha Y., Alegre M.-L., Luke J.J., Gajewski T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–108. doi: 10.1126/science.aao3290. PubMed DOI PMC
Routy B., Le Chatelier E., DeRosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359:91–97. doi: 10.1126/science.aan3706. PubMed DOI
Vétizou M., Pitt J.M., Daillère R., Lepage P., Waldschmitt N., Flament C., Rusakiewicz S., Routy B., Roberti M.P., Duong C.P.M., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–1084. doi: 10.1126/science.aad1329. PubMed DOI PMC
Sivan A., Corrales L., Hubert N., Williams J.B., Aquino-Michaels K., Earley Z.M., Benyamin F.W., Lei Y.M., Jabri B., Alegre M.-L., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–1089. doi: 10.1126/science.aac4255. PubMed DOI PMC
Chaput N., Lepage P., Coutzac C., Soularue E., Le Roux K., Monot C., Boselli L., Routier E., Cassard L., Collins M., et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 2017;28:1368–1379. doi: 10.1093/annonc/mdx108. PubMed DOI
Tinsley N., Zhou C., Tan G., Rack S., Lorigan P., Blackhall F., Krebs M., Carter L., Thistlethwaite F., Graham D., et al. Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. Oncologist. 2020;25:55–63. doi: 10.1634/theoncologist.2019-0160. PubMed DOI PMC
Mohiuddin J.J., Chu B., Facciabene A., Poirier K., Wang X., Doucette A., Zheng C., Xu W., Anstadt E.J., Amaravadi R.K., et al. Association of antibiotic exposure with survival and toxicity in patients with melanoma receiving immunotherapy. J. Natl. Cancer Inst. 2020;113:162–170. doi: 10.1093/jnci/djaa057. PubMed DOI PMC
Derosa L., Hellmann M., Spaziano M., Halpenny D., Fidelle M., Rizvi H., Long N., Plodkowski A., Arbour K., Chaft J., et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 2018;29:1437–1444. doi: 10.1093/annonc/mdy103. PubMed DOI PMC
Rubio X.M., Chara L., Sotelo-Lezama M., Castro R.L., Rubio-Martínez J., Velastegui A., Olier-Garate C., Falagan S., Gómez-Barreda I., Bautista-Sanz P., et al. MA10.01 antibiotic use and PD-1 inhibitors: Shorter survival in lung cancer, especially when given intravenously. Type of infection also matters. J. Thorac. Oncol. 2018;13:S389. doi: 10.1016/j.jtho.2018.08.395. DOI
Galli G., Triulzi T., Proto C., Signorelli D., Imbimbo M., Poggi M., Fucà G., Ganzinelli M., Vitali M., Palmieri D., et al. Association between antibiotic-immunotherapy exposure ratio and outcome in metastatic non small cell lung cancer. Lung Cancer. 2019;132:72–78. doi: 10.1016/j.lungcan.2019.04.008. PubMed DOI
Geum M., Kim C., Kang J., Choi J., Kim J., Son E., Lim S., Rhie S. Broad-Spectrum antibiotic regimen affects survival in patients receiving nivolumab for non-small cell lung cancer. Pharmaceuticals. 2021;14:445. doi: 10.3390/ph14050445. PubMed DOI PMC
Lalani A.-K.A., Xie W., Braun D.A., Kaymakcalan M., Bossé D., Steinharter J.A., Martini D., Simantov R., Lin X., Wei X.X., et al. Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur. Urol. Oncol. 2020;3:372–381. doi: 10.1016/j.euo.2019.09.001. PubMed DOI PMC
Huang X.-Z., Gao P., Song Y.-X., Xu Y., Sun J.-X., Chen X.-W., Zhao J.-H., Wang Z.-N. Antibiotic use and the efficacy of immune checkpoint inhibitors in cancer patients: A pooled analysis of 2740 cancer patients. OncoImmunology. 2019;8:e1665973. doi: 10.1080/2162402X.2019.1665973. PubMed DOI PMC
Lurienne L., Cervesi J., Duhalde L., de Gunzburg J., Andremont A., Zalcman G., Buffet R., Bandinelli P.-A. NSCLC immunotherapy efficacy and antibiotic use: A systematic review and meta-analysis. J. Thorac. Oncol. 2020;15:1147–1159. doi: 10.1016/j.jtho.2020.03.002. PubMed DOI
Wilson B.E., Routy B., Nagrial A., Chin V.T. The effect of antibiotics on clinical outcomes in immune-checkpoint blockade: A systematic review and meta-analysis of observational studies. Cancer Immunol. Immunother. 2020;69:343–354. doi: 10.1007/s00262-019-02453-2. PubMed DOI PMC
Uribe-Herranz M., Rafail S., Beghi S., Gil-De-Gómez L., Verginadis I., Bittinger K., Pustylnikov S., Pierini S., Perales-Linares R., Blair I.A., et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Investig. 2020;130:466–479. doi: 10.1172/JCI124332. PubMed DOI PMC
Yang K., Hou Y., Zhang Y., Liang H., Sharma A., Zheng W., Wang L., Torres R., Tatebe K., Chmura S.J., et al. Suppression of local type I interferon by gut microbiota–derived butyrate impairs antitumor effects of ionizing radiation. J. Exp. Med. 2021;218 doi: 10.1084/jem.20201915. PubMed DOI PMC
Nenclares P., Bhide S.A., Sandoval-Insausti H., Pialat P., Gunn L., Melcher A., Newbold K., Nutting C.M., Harrington K.J. Impact of antibiotic use during curative treatment of locally advanced head and neck cancers with chemotherapy and radiotherapy. Eur. J. Cancer. 2020;131:9–15. doi: 10.1016/j.ejca.2020.02.047. PubMed DOI
Corty R.W., Langworthy B.W., Fine J.P., Buse J.B., Sanoff H.K., Lund J.L. Antibacterial Use Is Associated with an Increased Risk of Hematologic and Gastrointestinal Adverse Events in Patients Treated with Gemcitabine for Stage IV Pancreatic Cancer. Oncologist. 2020;25:579–584. doi: 10.1634/theoncologist.2019-0570. PubMed DOI PMC
Lee N., Kim W.-U. Microbiota in T-cell homeostasis and inflammatory diseases. Exp. Mol. Med. 2017;49:e340. doi: 10.1038/emm.2017.36. PubMed DOI PMC