Risk Factors for Infections, Antibiotic Therapy, and Its Impact on Cancer Therapy Outcomes for Patients with Solid Tumors

. 2021 Dec 11 ; 11 (12) : . [epub] 20211211

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947918

Grantová podpora
Progress Q40/06 Charles University

Infections represent a significant cause of morbidity and mortality in cancer patients. Multiple factors related to the patient, tumor, and cancer therapy can affect the risk of infection in patients with solid tumors. A thorough understanding of such factors can aid in the identification of patients with substantial risk of infection, allowing medical practitioners to tailor therapy and apply prophylactic measures to avoid serious complications. The use of novel treatment modalities, including targeted therapy and immunotherapy, brings diagnostic and therapeutic challenges into the management of infections in cancer patients. A growing body of evidence suggests that antibiotic therapy can modulate both toxicity and antitumor response induced by chemotherapy, radiotherapy, and especially immunotherapy. This article provides a comprehensive review of potential risk factors for infections and therapeutic approaches for the most prevalent infections in patients with solid tumors, and discusses the potential effect of antibiotic therapy on toxicity and efficacy of cancer therapy.

Zobrazit více v PubMed

Gudiol C., Aguado J.M., Carratalà J. Bloodstream infections in patients with solid tumors. Virulence. 2016;7:298–308. doi: 10.1080/21505594.2016.1141161. PubMed DOI PMC

Safdar A., Armstrong D. Infectious morbidity in critically ill patients with cancer. Crit. Care Clin. 2001;17:531–570. doi: 10.1016/S0749-0704(05)70198-6. PubMed DOI

Rolston K.V.I. Infections in Cancer Patients with Solid Tumors: A Review. Infect. Dis. Ther. 2017;6:69–83. doi: 10.1007/s40121-017-0146-1. PubMed DOI PMC

Williams M.D., Braun L.A., Cooper L.M., Johnston J., Weiss R.V., Qualy R.L., Linde-Zwirble W. Hospitalized cancer patients with severe sepsis: Analysis of incidence, mortality, and associated costs of care. Crit. Care. 2004;8:R291–R298. doi: 10.1186/cc2893. PubMed DOI PMC

Schelenz S., Nwaka D., Hunter P.R. Longitudinal surveillance of bacteraemia in haematology and oncology patients at a UK cancer centre and the impact of ciprofloxacin use on antimicrobial resistance. J. Antimicrob. Chemother. 2013;68:1431–1438. doi: 10.1093/jac/dkt002. PubMed DOI

Zheng Y., Chen Y., Yu K., Yang Y., Wang X., Yang X., Qian J., Liu Z.-X., Wu B. Fatal Infections among Cancer Patients: A Population-Based Study in the United States. Infect. Dis. Ther. 2021;10:871–895. doi: 10.1007/s40121-021-00433-7. PubMed DOI PMC

National Comprehensive Cancer Network NCCN Clinical Practice Guidelines in Oncology. Prevention and Treatment of Cancer-Related Infections 1. 2021. [(accessed on 21 September 2021)]. Available online: https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf.

Marin M., Gudiol C., Ardanuy C., Garcia-Vidal C., Calvo M., Arnan M., Carratalà J. Bloodstream infections in neutropenic patients with cancer: Differences between patients with haematological malignancies and solid tumours. J. Infect. 2014;69:417–423. doi: 10.1016/j.jinf.2014.05.018. PubMed DOI

Fillatre P., Decaux O., Jouneau S., Revest M., Gacouin A., Robert-Gangneux F., Fresnel A., Guiguen C., Le Tulzo Y., Jégo P., et al. Incidence of Pneumocystis jiroveci Pneumonia among Groups at Risk in HIV-negative Patients. Am. J. Med. 2014;127:1242.e11–1242.e17. doi: 10.1016/j.amjmed.2014.07.010. PubMed DOI

Klastersky J., de Naurois J., Rolston K., Rapoport B., Maschmeyer G., Aapro M., Herrstedt J. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 2016;27:v111–v118. doi: 10.1093/annonc/mdw325. PubMed DOI

Aapro M., Bohlius J., Cameron D., Lago L.D., Donnelly J.P., Kearney N., Lyman G., Pettengell R., Tjan-Heijnen V., Walewski J., et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur. J. Cancer. 2011;47:8–32. doi: 10.1016/j.ejca.2010.10.013. PubMed DOI

De Miguel S.C., Calleja-Hernández M., Menjón-Beltrán S., Vallejo-Rodríguez I. Granulocyte colony-stimulating factors as prophylaxis against febrile neutropenia. Support. Care Cancer. 2015;23:547–559. doi: 10.1007/s00520-014-2459-x. PubMed DOI

Truong L.D., Shen S.S. Immunohistochemical diagnosis of renal neoplasms. Arch. Pathol. Lab. Med. 2011;135:92–109. doi: 10.5858/2010-0478-RAR.1. PubMed DOI

Perez E.A., Geeraerts L., Suman V.J., Adjei A.A., Baron A.T., Hatfield A.K., Maihle N., Michalak J.C., Kuross S.A., Kugler J.W., et al. A randomized phase II study of sequential docetaxel and doxorubicin/cyclophosphamide in patients with metastatic breast cancer. Ann. Oncol. 2002;13:1225–1235. doi: 10.1093/annonc/mdf222. PubMed DOI

von Minckwitz G., Schneeweiss A., Loibl S., Salat C., Denkert C., Rezai M., Blohmer J.U., Jackisch C., Paepke S., Gerber B., et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): A randomised phase 2 trial. Lancet Oncol. 2014;15:747–756. doi: 10.1016/S1470-2045(14)70160-3. PubMed DOI

Kosaka Y., Rai Y., Masuda N., Takano T., Saeki T., Nakamura S., Shimazaki R., Ito Y., Tokuda Y., Tamura K. Phase III placebo-controlled, double-blind, randomized trial of pegfilgrastim to reduce the risk of febrile neutropenia in breast cancer patients receiving docetaxel/cyclophosphamide chemotherapy. Support. Care Cancer. 2015;23:1137–1143. doi: 10.1007/s00520-014-2597-1. PubMed DOI PMC

Gilbar P., McPherson I., Sorour N., Sanmugarajah J. High incidence of febrile neutropenia following adjuvant breast chemotherapy with docetaxel, carboplatin and trastuzumab. Breast Cancer Manag. 2014;3:327–333. doi: 10.2217/bmt.14.22. DOI

Marty M., Cognetti F., Maraninchi D., Snyder R., Mauriac L., Tubiana-Hulin M., Chan S., Grimes D., Antón A., Lluch A., et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2–Positive metastatic breast cancer administered as first-line treatment: The M77001 study group. J. Clin. Oncol. 2005;23:4265–4274. doi: 10.1200/JCO.2005.04.173. PubMed DOI

Sternberg C.N., De Mulder P.H., Schornagel J.H., Théodore C., Fossa S.D., Van Oosterom A.T., Witjes F., Spina M., Van Groeningen C.J., De Balincourt C., et al. Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemo-therapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol no. 30924. J. Clin. Oncol. 2001;19:2638–2646. doi: 10.1200/jco.2001.19.10.2638. PubMed DOI

Rose P.G., Blessing J.A., Gershenson D.M., McGehee R. Paclitaxel and cisplatin as first-line therapy in recurrent or advanced squamous cell carcinoma of the cervix: A gynecologic oncology group study. J. Clin. Oncol. 1999;17:2676–2680. doi: 10.1200/JCO.1999.17.9.2676. PubMed DOI

Long H.J., III, Bundy B.N., Grendys E.C., Jr., Benda J.A., McMeekin D.S., Sorosky J., Miller D., Eaton L.A., Fiorica J.V. Randomized Phase III Trial of Cisplatin with or without Topotecan in Carcinoma of the Uterine Cervix: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2005;23:4626–4633. doi: 10.1200/JCO.2005.10.021. PubMed DOI

Van Cutsem E., Moiseyenko V., Tjulandin S., Majlis A., Constenla M., Boni C., Rodrigues A., Fodor M., Chao Y., Voznyi E., et al. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: A report of the v325 study group. J. Clin. Oncol. 2006;24:4991–4997. doi: 10.1200/JCO.2006.06.8429. PubMed DOI

Roth A.D., Fazio N., Stupp R., Falk S., Bernhard J., Saletti P., Köberle D., Borner M.M., Rufibach K., Maibach R., et al. Docetaxel, cisplatin, and fluorouracil; Docetaxel and cisplatin; and epirubicin, cisplatin, and fluorouracil as systemic treatment for advanced gastric carcinoma: A randomized phase II trial of the swiss group for clinical cancer research. J. Clin. Oncol. 2007;25:3217–3223. doi: 10.1200/JCO.2006.08.0135. PubMed DOI

Cunningham D., Starling N., Rao S., Iveson T., Nicolson M., Coxon F., Middleton G., Daniel F., Oates J., Norman A.R. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N. Engl. J. Med. 2008;358:36–46. doi: 10.1056/NEJMoa073149. PubMed DOI

Fossa S.D., Kaye S.B., Mead G.M., Cullen M., De Wit R., Bodrogi I., Van Groeningen C.J., De Mulder P.H., Stenning S., Lallemand E., et al. Filgrastim during combination chemotherapy of patients with poor-prognosis metastatic germ cell malignancy. J. Clin. Oncol. 1998;16:716–724. doi: 10.1200/JCO.1998.16.2.716. PubMed DOI

Motzer R.J., Sheinfeld J., Mazumdar M., Bajorin D.F., Bosl G.J., Herr H., Lyn P., Vlamis V. Etoposide and cisplatin adjuvant therapy for patients with pathologic stage II germ cell tumors. J. Clin. Oncol. 1995;13:2700–2704. doi: 10.1200/JCO.1995.13.11.2700. PubMed DOI

Fujiwara M., Tanaka H., Yuasa T., Komai Y., Oguchi T., Fujiwara R., Numao N., Yamamoto S., Fujii Y., Fukui I., et al. First-Line combination chemotherapy with etoposide, ifosfamide and cisplatin for the treatment of disseminated germ cell cancer: Efficacy and feasibility in current clinical practice. Int. J. Urol. 2021;28:920–926. doi: 10.1111/iju.14604. PubMed DOI

Miller K.D., Loehrer P.J., Gonin R., Einhorn L.H. Salvage chemotherapy with vinblastine, ifosfamide, and cisplatin in recurrent seminoma. J. Clin. Oncol. 1997;15:1427–1431. doi: 10.1200/JCO.1997.15.4.1427. PubMed DOI

Kondagunta G.V., Bacik J., Donadio A., Bajorin D., Marion S., Sheinfeld J., Bosl G.J., Motzer R.J. Combination of paclitaxel, ifosfamide, and cisplatin is an effective second-line therapy for patients with relapsed testicular germ cell tumors. J. Clin. Oncol. 2005;23:6549–6555. doi: 10.1200/JCO.2005.19.638. PubMed DOI

Pointreau Y., Garaud P., Chapet S., Sire C., Tuchais C., Tortochaux J., Faivre S., Guerrif S., Alfonsi M., Calais G. Randomized trial of induction chemotherapy with cisplatin and 5-fluorouracil with or without docetaxel for larynx preservation. J. Natl. Cancer Inst. 2009;101:498–506. doi: 10.1093/jnci/djp007. PubMed DOI

Schiller J.H., Harrington D., Belani C., Langer C., Sandler A., Krook J., Zhu J., Johnson D.H. Comparison of four chemotherapy regimens for advanced non–small-cell lung cancer. N. Engl. J. Med. 2002;346:92–98. doi: 10.1056/NEJMoa011954. PubMed DOI

Pujol J.-L., Breton J.-L., Gervais R., Rebattu P., Depierre A., Morère J.-F., Milleron B., Debieuvre D., Castéra D., Souquet P.-J., et al. Gemcitabine–Docetaxel versus cisplatin–vinorelbine in advanced or metastatic non-small-cell lung cancer: A phase III study addressing the case for cisplatin. Ann. Oncol. 2005;16:602–610. doi: 10.1093/annonc/mdi126. PubMed DOI

Fossella F., Pereira J.R., Von Pawel J., Pluzanska A., Gorbounova V., Kaukel E., Mattson K.V., Ramlau R., Szczęsna A., Fidias P., et al. Randomized, Multinational, Phase III Study of Docetaxel Plus Platinum Combinations Versus Vinorelbine Plus Cisplatin for Advanced Non–Small-Cell Lung Cancer: The TAX 326 Study Group. J. Clin. Oncol. 2003;21:3016–3024. doi: 10.1200/JCO.2003.12.046. PubMed DOI

Font A., Moyano A.J., Puerto J.M., Tres A., Garcia-Giron C., Barneto I., Anton A., Sanchez J.J., Salvador A., Rosell R. Increasing dose intensity of cisplatin-etoposide in advanced nonsmall cell lung carcinoma. A phase III randomized trial of the spanish lung cancer group. Cancer. 1999;85:855–863. doi: 10.1002/(SICI)1097-0142(19990215)85:4<855::AID-CNCR12>3.0.CO;2-R. PubMed DOI

Cardenal F., López-Cabrerizo M.P., Antón A., Alberola V., Massuti B., Carrato A., Barneto I., Lomas M., García M., Lianes P., et al. Randomized phase III study of gemcitabine-cisplatin versus etoposide-cisplatin in the treatment of locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 1999;17:12. doi: 10.1200/JCO.1999.17.1.12. PubMed DOI

Millward M.J., Boyer M.J., Lehnert M., Clarke S., Rischin D., Goh B.-C., Wong J., McNeil E., Bishop J.F. Docetaxel and carboplatin is an active regimen in advancednon-small-cell lung cancer: A phase II study in Caucasian and Asian patients. Ann. Oncol. 2003;14:449–454. doi: 10.1093/annonc/mdg118. PubMed DOI

Swisher E.M., Mutch D.G., Rader J.S., Elbendary A., Herzog T.J. Topotecan in platinum- and paclitaxel-resistant ovarian cancer. Gynecol. Oncol. 1997;66:480–486. doi: 10.1006/gyno.1997.4787. PubMed DOI

Verschraegen C.F., Sittisomwong T., Kudelka A.P., Guedes E.D.P., Steger M., Nelson-Taylor T., Vincent M., Rogers R., Atkinson E.N., Kavanagh J.J. Docetaxel for Patients With Paclitaxel-Resistant Müllerian Carcinoma. J. Clin. Oncol. 2000;18:2733–2739. doi: 10.1200/JCO.2000.18.14.2733. PubMed DOI

Omura G.A., Brady M.F., Look K.Y., Averette H.E., Delmore J.E., Long H.J., Wadler S., Spiegel G., Arbuck S.G. Phase III trial of paclitaxel at two dose levels, the higher dose accompanied by filgrastim at two dose levels in platinum-pretreated epithelial ovarian cancer: An intergroup study. J. Clin. Oncol. 2003;21:2843–2848. doi: 10.1200/JCO.2003.10.082. PubMed DOI

Hosein P.J., MacIntyre J., Kawamura C., Maldonado J.C., Ernani V., Loaiza-Bonilla A., Narayanan G., Ribeiro A., Portelance L., Merchan J.R., et al. A retrospective study of neoadjuvant FOLFIRINOX in unresectable or borderline-resectable locally advanced pancreatic adenocarcinoma. BMC Cancer. 2012;12:199. doi: 10.1186/1471-2407-12-199. PubMed DOI PMC

Yilmaz U., Anar C., Polat G., Halilcolar H. Carboplatin plus etoposide for extensive stage small-cell lung cancer: An experience with AUC 6 doses of carboplatin. Indian J. Cancer. 2011;48:454–459. doi: 10.4103/0019-509X.92279. PubMed DOI

Von Pawel J., Schiller J.H., Shepherd F.A., Fields S.Z., Kleisbauer J., Chrysson N.G., Stewart D.J., Clark P.I., Palmer M.C., De Pierre A., et al. Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J. Clin. Oncol. 1999;17:658–667. doi: 10.1200/JCO.1999.17.2.658. PubMed DOI

Lorigan P., Woll P., O’Brien M.E.R., Ashcroft L.F., Sampson M.R., Thatcher N. Randomized phase III trial of dose-dense chemotherapy supported by whole-blood hematopoietic progenitors in better-prognosis small-cell lung cancer. J. Natl. Cancer Inst. 2005;97:666–674. doi: 10.1093/jnci/dji114. PubMed DOI

White S.C., Lorigan P., Middleton M.R., Anderson H., Valle J., Summers Y., Burt P.A., Arance A., Stout R., Thatcher N. Randomized phase II study of cyclophosphamide, doxorubicin, and vincristine compared with single-agent carboplatin in patients with poor prognosis small cell lung carcinoma. Cancer. 2001;92:601–608. doi: 10.1002/1097-0142(20010801)92:3<601::AID-CNCR1360>3.0.CO;2-K. PubMed DOI

Bui B.N., Chevallier B., Chevreau C., Krakowski I., Peny A.M., Thyss A., Maugard-Louboutin C., Cupissol D., Fargeot P., Bonichon F. Efficacy of lenograstim on hematologic tolerance to MAID chemotherapy in patients with advanced soft tissue sarcoma and consequences on treatment dose-intensity. J. Clin. Oncol. 1995;13:2629–2636. doi: 10.1200/JCO.1995.13.10.2629. PubMed DOI

Lorigan P., Verweij J., Papai Z., Rodenhuis S., Le Cesne A., Leahy M., Radford J., Van Glabbeke M.M., Kirkpatrick A., Hogendoorn P., et al. Phase III trial of two investigational schedules of ifosfamide compared with standard-dose doxorubicin in advanced or metastatic soft tissue sarcoma: A european organisation for research and treatment of cancer soft tissue and bone sarcoma group study. J. Clin. Oncol. 2007;25:3144–3150. doi: 10.1200/JCO.2006.09.7717. PubMed DOI

Thomson A.W., Turnquist H.R., Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 2009;9:324–337. doi: 10.1038/nri2546. PubMed DOI PMC

Kaymakcalan M., Je Y., Sonpavde G., Galsky M., Nguyen P.L., Heng D.Y.C., Richards C.J., Choueiri T.K. Risk of infections in renal cell carcinoma (RCC) and non-RCC patients treated with mammalian target of rapamycin inhibitors. Br. J. Cancer. 2013;108:2478–2484. doi: 10.1038/bjc.2013.278. PubMed DOI PMC

Alvarez R.H., Bechara R.I., Naughton M.J., Adachi J.A., Reuben J.M. Emerging perspectives on mtor inhibitor-associated pneumonitis in breast cancer. Oncologist. 2018;23:660–669. doi: 10.1634/theoncologist.2017-0343. PubMed DOI PMC

Maschmeyer G., De Greef J., Mellinghoff S.C., Nosari A., Thiebaut-Bertrand A., Bergeron A., Franquet T., Blijlevens N.M.A., Maertens J.A., on behalf of the European Conference on Infections in Leukemia Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections in Leukemia (ECIL) Leukemia. 2019;33:844–862. doi: 10.1038/s41375-019-0388-x. PubMed DOI PMC

Finn R.S., Aleshin A., Slamon D.J. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18:17. doi: 10.1186/s13058-015-0661-5. PubMed DOI PMC

Hu W., Sung T., Jessen B.A., Thibault S., Finkelstein M.B., Khan N.K., Sacaan A.I. Mechanistic Investigation of Bone Marrow Suppression Associated with Palbociclib and its Differentiation from Cytotoxic Chemotherapies. Clin. Cancer Res. 2016;22:2000–2008. doi: 10.1158/1078-0432.CCR-15-1421. PubMed DOI

Gelbert L.M., Cai S., Lin X., Sanchez-Martinez C., Del Prado M., Lallena M.J., Torres R., Ajamie R.T., Wishart G.N., Flack R.S., et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: In-Vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig. N. Drugs. 2014;32:825–837. doi: 10.1007/s10637-014-0120-7. PubMed DOI PMC

Som A., Mandaliya R., Alsaadi D., Farshidpour M., Charabaty A., Malhotra N., Mattar M.C. Immune checkpoint inhibitor-induced colitis: A comprehensive review. World J. Clin. Cases. 2019;7:405–418. doi: 10.12998/wjcc.v7.i4.405. PubMed DOI PMC

Hosmer W., Malin J., Wong M. Development and validation of a prediction model for the risk of developing febrile neutropenia in the first cycle of chemotherapy among elderly patients with breast, lung, colorectal, and prostate cancer. Support. Care Cancer. 2011;19:333–341. doi: 10.1007/s00520-010-0821-1. PubMed DOI PMC

Lyman G.H., Kuderer N.M., Crawford J., Wolff D.A., Culakova E., Poniewierski M.S., Dale D.C. Predicting individual risk of neutropenic complications in patients receiving cancer chemotherapy. Cancer. 2011;117:1917–1927. doi: 10.1002/cncr.25691. PubMed DOI PMC

Aagaard T., Roen A., Reekie J., Daugaard G., Brown P.D.N., Specht L., Sengeløv H., Mocroft A., Lundgren J., Helleberg M. Development and validation of a risk score for febrile neutropenia after chemotherapy in patients with cancer: The FENCE score. JNCI Cancer Spectr. 2018;2:pky053. doi: 10.1093/jncics/pky053. PubMed DOI PMC

Razzaghdoust A., Mofid B., Moghadam M. Development of a simplified multivariable model to predict neutropenic complications in cancer patients undergoing chemotherapy. Support. Care Cancer. 2018;26:3691–3699. doi: 10.1007/s00520-018-4224-z. PubMed DOI

Aagaard T., Reekie J., Roen A., Daugaard G., Specht L., Sengeløv H., Mocroft A., Lundgren J., Helleberg M. Development and validation of a cycle-specific risk score for febrile neutropenia during chemotherapy cycles 2–6 in patients with solid cancers: The CSR FENCE score. Int. J. Cancer. 2020;146:321–328. doi: 10.1002/ijc.32249. PubMed DOI

NCI Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. [(accessed on 22 May 2021)]; Available online: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf.

Bodey G.P., Buckley M., Sathe Y.S., Freireich E.J. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann. Intern. Med. 1966;64:328–340. doi: 10.7326/0003-4819-64-2-328. PubMed DOI

Castagnola E., Mikulska M., Viscoli C. Prophylaxis and Empirical Therapy of Infection in Cancer Patients. In: Bennett J.E., Dolin R., Blaser M.J., editors. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 8th ed. Elsevier; Philadelphia, PA, USA: 2015. pp. 3395–3413.

Nishimura N., Yamada S., Ueda K., Mishima Y., Yokoyama M., Saotome T., Terui Y., Takahashi S., Hatake K., Nishimura M. Incidence and severity of oral mucositis induced by conventional chemotherapy: A comprehensive prospective analysis of 227 cancer patients. J. Clin. Oncol. 2010;28:e19634. doi: 10.1200/jco.2010.28.15_suppl.e19634. DOI

Elting L.S., Chang Y.-C., Parelkar P., Boers-Doets C.B., Michelet M., Hita G., Rouleau T., Cooksley C., Halm J., Vithala M., et al. Risk of oral and gastrointestinal mucosal injury among patients receiving selected targeted agents: A meta-analysis. Support. Care Cancer. 2013;21:3243–3254. doi: 10.1007/s00520-013-1821-8. PubMed DOI

Kwitkowski V.E., Prowell T.M., Ibrahim A., Farrell A.T., Justice R., Mitchell S.S., Sridhara R., Pazdur R. FDA Approval Summary: Temsirolimus as Treatment for Advanced Renal Cell Carcinoma. Oncologist. 2010;15:428–435. doi: 10.1634/theoncologist.2009-0178. PubMed DOI PMC

Peterson D.E., Boers-Doets C., Bensadoun R.J., Herrstedt J. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann. Oncol. 2015;26:v139–v151. doi: 10.1093/annonc/mdv202. PubMed DOI

Böll B., Schalk E., Buchheidt D., Hasenkamp J., Kiehl M., Kiderlen T.R., Kochanek M., Koldehoff M., Kostrewa P., Claßen A.Y., et al. Central venous catheter–related infections in hematology and oncology: 2020 updated guidelines on diagnosis, management, and prevention by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) Ann. Hematol. 2021;100:239–259. doi: 10.1007/s00277-020-04286-x. PubMed DOI PMC

Taxbro K., Hammarskjöld F., Thelin B., Lewin F., Hagman H., Hanberger H., Berg S. Clinical impact of peripherally inserted central catheters vs implanted port catheters in patients with cancer: An open-label, randomised, two-centre trial. Br. J. Anaesth. 2019;122:734–741. doi: 10.1016/j.bja.2019.01.038. PubMed DOI

Pu Y.-L., Li Z.-S., Zhi X.-X., Shi Y.-A., Meng A.-F., Cheng F., Ali A., Li C., Fang H., Wang C. Complications and costs of peripherally inserted central venous catheters compared with implantable port catheters for cancer patients. Cancer Nurs. 2020;43:455–467. doi: 10.1097/NCC.0000000000000742. PubMed DOI

Corti F., Brambilla M., Manglaviti S., Di Vico L., Pisanu M.N., Facchinetti C., Dotti K.F., Lanocita R., Marchianò A., De Braud F., et al. Comparison of outcomes of central venous catheters in patients with solid and hematologic neoplasms: An Italian real-world analysis. Tumori J. 2021;107:17–25. doi: 10.1177/0300891620931172. PubMed DOI

Dezfulian C., Lavelle J., Nallamothu B.K., Kaufman S.R., Saint S. Rates of infection for single-lumen versus multilumen central venous catheters: A meta-analysis. Crit. Care Med. 2003;31:2385–2390. doi: 10.1097/01.CCM.0000084843.31852.01. PubMed DOI

Bouza E., Burillo A., Muñoz P. Catheter-related infections: Diagnosis and intravascular treatment. Clin. Microbiol. Infect. 2002;8:265–274. doi: 10.1046/j.1469-0691.2002.00385.x. PubMed DOI

Wisplinghoff H., Seifert H., Wenzel R.P., Edmond M. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the united states. Clin. Infect. Dis. 2003;36:1103–1110. doi: 10.1086/374339. PubMed DOI

Marcos M., Soriano A., Iñurrieta A., Martínez J.A., Romero A., Cobos N., Hernández C., Almela M., Marco F., Mensa J. Changing epidemiology of central venous catheter-related bloodstream infections: Increasing prevalence of Gram-negative pathogens. J. Antimicrob. Chemother. 2011;66:2119–2125. doi: 10.1093/jac/dkr231. PubMed DOI

Chaftari A.M., Hachem R., Jiang Y., Shah P., Hussain A., Al Hamal Z., Yousif A., Jordan M., Michael M., Raad I. Changing Epidemiology of Catheter-Related Bloodstream Infections in Cancer Patients. Infect. Control. Hosp. Epidemiol. 2018;39:727–729. doi: 10.1017/ice.2018.75. PubMed DOI

Abers M.S., Sandvall B.P., Sampath R., Zuno C., Uy N., Yu V.L., Stager C.E., Musher D.M. Postobstructive pneumonia: An underdescribed syndrome. Clin. Infect. Dis. 2016;62:957–961. doi: 10.1093/cid/civ1212. PubMed DOI PMC

Rolston K.V. Postobstructive pneumonia in cancer patients. Clin. Infect. Dis. 2016;63:707–708. doi: 10.1093/cid/ciw368. PubMed DOI

Kalkat M.S., Bonser R.S. Obstructive pneumonia: An indication for surgery in mega aorta syndrome. Ann. Thorac. Surg. 2003;75:1313–1315. doi: 10.1016/S0003-4975(02)04566-6. PubMed DOI

Rolston K.V.I., Nesher L. Post-Obstructive pneumonia in patients with cancer: A review. Infect. Dis. Ther. 2018;7:29–38. doi: 10.1007/s40121-018-0185-2. PubMed DOI PMC

Seo S.K., Liu C., Dadwal S.S. Infectious disease complications in patients with cancer. Crit. Care Clin. 2021;37:69–84. doi: 10.1016/j.ccc.2020.09.001. PubMed DOI PMC

Battaglia C.C., Hale K. Hospital-Acquired infections in critically III patients with cancer. J. Intensive Care Med. 2018;34:523–536. doi: 10.1177/0885066618788019. PubMed DOI

Bahu R., Chaftari A.-M., Hachem R.Y., Ahrar K., Shomali W., El Zakhem A., Jiang Y., AlShuaibi M., Raad I.I. Nephrostomy tube related pyelonephritis in patients with cancer: Epidemiology, infection rate and risk factors. J. Urol. 2013;189:130–135. doi: 10.1016/j.juro.2012.08.094. PubMed DOI

Pu L.Z.C.T., Singh R., Loong C.K., de Moura E.G.H. Malignant Biliary Obstruction: Evidence for Best Practice. Gastroenterol. Res. Pract. 2016;2016:3296801–3296807. doi: 10.1155/2016/3296801. PubMed DOI PMC

Cassani L., Lee J.H. Management of malignant distal biliary obstruction. Gastrointest. Interv. 2015;4:15–20. doi: 10.1016/j.gii.2015.02.001. DOI

Shi S., Xia W., Guo H., Kong H., Zheng S. Unique characteristics of pyogenic liver abscesses of biliary origin. Surgery. 2016;159:1316–1324. doi: 10.1016/j.surg.2015.11.012. PubMed DOI

Rolston K.V.I., Dholakia N., Rodriguez S., Rubenstein E.B. Nature and outcome of febrile episodes in patients with pancreatic and hepatobiliary cancer. Support. Care Cancer. 1995;3:414–417. doi: 10.1007/BF00364982. PubMed DOI

Xu C., Lv P.-H., Huang X.-E., Wang S.-X., Sun L., Wang F.-A. Analysis of different ways of drainage for obstructive jaundice caused by hilar cholangiocarcinoma. Asian Pac. J. Cancer Prev. 2014;15:5617–5620. doi: 10.7314/APJCP.2014.15.14.5617. PubMed DOI

Aljahdli E.S. Management of distal malignant biliary obstruction. Saudi J. Gastroenterol. 2018;24:71–72. doi: 10.4103/sjg.SJG_611_17. PubMed DOI PMC

Avritscher E.B.C., Cooksley C.D., Rolston K.V., Swint J.M., Delclos G.L., Franzini L., Swisher S.G., Walsh G.L., Mansfield P.F., Elting L.S. Serious postoperative infections following resection of common solid tumors: Outcomes, costs, and impact of hospital surgical volume. Support. Care Cancer. 2014;22:527–535. doi: 10.1007/s00520-013-2006-1. PubMed DOI

Yang K., Zang Z.-Y., Niu K.-F., Sun L.-F., Zhang W.-H., Zhang Y.-X., Chen X.-L., Zhou Z.-G., Hu J.-K. The survival benefit and safety of splenectomy for gastric cancer with total gastrectomy: Updated results. Front. Oncol. 2021;10:2786. doi: 10.3389/fonc.2020.568872. PubMed DOI PMC

Lee S.S., Morgenstern L., Phillips E.H., Hiatt J.R., Margulies D.R. Splenectomy for splenic metastases: A changing clinical spectrum. Am. Surg. 2000;66:837–840. PubMed

Feola A., Niola M., Conti A., Delbon P., Graziano V., Paternoster M., Della Pietra B. Iatrogenic splenic injury: Review of the literature and medico-legal issues. Open Med. 2016;11:307–315. doi: 10.1515/med-2016-0059. PubMed DOI PMC

Di Sabatino A., Carsetti R., Corazza G.R. Post-Splenectomy and hyposplenic states. Lancet. 2011;378:86–97. doi: 10.1016/S0140-6736(10)61493-6. PubMed DOI

Buzelé R., Barbier L., Sauvanet A., Fantin B. Medical complications following splenectomy. J. Visc. Surg. 2016;153:277–286. doi: 10.1016/j.jviscsurg.2016.04.013. PubMed DOI

Pawelec G. Immunosenescence: Impact in the young as well as the old? Mech. Ageing Dev. 1999;108:1–7. doi: 10.1016/s0047-6374(99)00010-x. PubMed DOI

Eşme M., Topeli A., Yavuz B.B.D., Akova M. Infections in the elderly Critically-III patients. Front. Med. 2019;6:118. doi: 10.3389/fmed.2019.00118. PubMed DOI PMC

Tannou T., Koeberle S., Manckoundia P., Aubry R. Multifactorial immunodeficiency in frail elderly patients: Contributing factors and management. Med. Mal. Infect. 2019;49:167–172. doi: 10.1016/j.medmal.2019.01.012. PubMed DOI

Lyman G.H., Abella E., Pettengell R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: A systematic review. Crit. Rev. Oncol. Hematol. 2014;90:190–199. doi: 10.1016/j.critrevonc.2013.12.006. PubMed DOI

Balducci L., Hardy C.L., Lyman G.H. Hemopoiesis and aging. Cancer Treat. Res. 2005;124:109–134. doi: 10.1007/0-387-23962-6_6. PubMed DOI

Gay L., Melenotte C., Lakbar I., Mezouar S., Devaux C., Raoult D., Bendiane M.-K., Leone M., Mège J.-L. Sexual dimorphism and gender in infectious diseases. Front. Immunol. 2021;12:698121. doi: 10.3389/fimmu.2021.698121. PubMed DOI PMC

García-Gómez E., González-Pedrajo B., Camacho-Arroyo I. Role of Sex Steroid Hormones in Bacterial-Host Interactions. BioMed Res. Int. 2013;2013:928290. doi: 10.1155/2013/928290. PubMed DOI PMC

Ahmed S.A., Karpuzoglu E., Khan D. Effects of sex steroids on innate and adaptive immunity. In: Klein S.L., Roberts C.W., editors. Sex Hormones and Immunity to Infection. Springer; Berlin/Heidelberg, Germany: 2010. pp. 19–51.

Fish E.N. The X-files in immunity: Sex-Based differences predispose immune responses. Nat. Rev. Immunol. 2008;8:737–744. doi: 10.1038/nri2394. PubMed DOI PMC

Harrington R.D., Hooton T.M. Urinary tract infection risk factors and gender. J. Gend. Specif. Med. 2000;3:27–34. PubMed

Abdel-Rahman O. Impact of sex on chemotherapy toxicity and efficacy among patients with metastatic colorectal cancer: Pooled analysis of 5 randomized trials. Clin. Color. Cancer. 2019;18:110–115.e2. doi: 10.1016/j.clcc.2018.12.006. PubMed DOI

Fontanella C., Bolzonello S., Lederer B., Aprile G. Management of breast cancer patients with chemotherapy-induced neutropenia or febrile neutropenia. Breast Care. 2014;9:239–245. doi: 10.1159/000366466. PubMed DOI PMC

Özdemir B.C., Csajka C., Dotto G.-P., Wagner A.D. Sex differences in efficacy and toxicity of systemic treatments: An undervalued issue in the era of precision oncology. J. Clin. Oncol. 2018;36:2680–2683. doi: 10.1200/JCO.2018.78.3290. PubMed DOI

Ruzzo A., Graziano F., Galli F., Galli F., Rulli E., Lonardi S., Ronzoni M., Massidda B., Zagonel V., Pella N., et al. Sex-Related Differences in impact on safety of pharmacogenetic profile for colon cancer patients treated with FOLFOX-4 or XELOX adjuvant chemotherapy. Sci. Rep. 2019;9:11527. doi: 10.1038/s41598-019-47627-1. PubMed DOI PMC

Bossi P., Delrio P., Mascheroni A., Zanetti M. The spectrum of malnutrition/cachexia/sarcopenia in oncology according to different cancer types and settings: A narrative review. Nutrients. 2021;13:1980. doi: 10.3390/nu13061980. PubMed DOI PMC

Chandra R.K. Nutrition, immunity and infection: From basic knowledge of dietary manipulation of immune responses to practical application of ameliorating suffering and improving survival. Proc. Natl. Acad. Sci. USA. 1996;93:14304–14307. doi: 10.1073/pnas.93.25.14304. PubMed DOI PMC

Triarico S., Rinninella E., Cintoni M., Capozza M.A., Mastrangelo S., Mele M.C., Ruggiero A. Impact of malnutrition on survival and infections among pediatric patients with cancer: A retrospective study. Eur. Rev. Med. Pharmacol. Sci. 2019;23:1165–1175. PubMed

Falagas M.E., Kompoti M. Obesity and infection. Lancet Infect. Dis. 2006;6:438–446. doi: 10.1016/S1473-3099(06)70523-0. PubMed DOI

Ghilotti F., Bellocco R., Ye W., Adami H.-O., Lagerros Y.T. Obesity and risk of infections: Results from men and women in the Swedish National March Cohort. Int. J. Epidemiol. 2019;48:1783–1794. doi: 10.1093/ije/dyz129. PubMed DOI

Huttunen R., Syrjänen J. Obesity and the risk and outcome of infection. Int. J. Obes. 2013;37:333–340. doi: 10.1038/ijo.2012.62. PubMed DOI

Carey I.M., Critchley J.A., DeWilde S., Harris T., Hosking F.J., Cook D.G. Risk of infection in type 1 and type 2 diabetes compared with the general population: A matched cohort study. Diabetes Care. 2018;41:513–521. doi: 10.2337/dc17-2131. PubMed DOI

Berman S.J., Johnson E.W., Nakatsu C., Alkan M., Chen R., LeDuc J. Burden of infection in patients with end-stage renal disease requiring long-term dialysis. Clin. Infect. Dis. 2004;39:1747–1753. doi: 10.1086/424516. PubMed DOI

Cohen G., Hörl W.H. Immune dysfunction in Uremia—An update. Toxins. 2012;4:962–990. doi: 10.3390/toxins4110962. PubMed DOI PMC

Lange P. Chronic obstructive pulmonary disease and risk of infection. Pneumonol. Alergol. Polska. 2009;77:284–288. PubMed

Fragoulis G.E., Sipsas N.V. When rheumatology and infectious disease come together. Ther. Adv. Musculoskelet. Dis. 2019;11:1–3. doi: 10.1177/1759720X19868901. PubMed DOI PMC

Hsu C.-Y., Ko C.-H., Wang J.-L., Hsu T.-C., Lin C.-Y. Comparing the burdens of opportunistic infections among patients with systemic rheumatic diseases: A nationally representative cohort study. Arthritis Res. 2019;21:211. doi: 10.1186/s13075-019-1997-5. PubMed DOI PMC

McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI

Fernández J., Gustot T. Management of bacterial infections in cirrhosis. J. Hepatol. 2012;56((Suppl. 1)):S1–S12. doi: 10.1016/S0168-8278(12)60002-6. PubMed DOI

McCusker C., Warrington R. Primary immunodeficiency. Allergy Asthma Clin. Immunol. 2011;7((Suppl. 1)):S11. doi: 10.1186/1710-1492-7-S1-S11. PubMed DOI PMC

Okishiro M., Kim S.J., Tsunashima R., Nakayama T., Shimazu K., Shimomura A., Maruyama N., Tamaki Y., Noguchi S. MDM2 SNP309 and TP53 R72P associated with severe and febrile neutropenia in breast cancer patients treated with 5-FU/epirubicin/cyclophosphamide. Breast Cancer Res. Treat. 2012;132:947–953. doi: 10.1007/s10549-011-1637-5. PubMed DOI

Vulsteke C., Lambrechts D., Dieudonné A., Hatse S., Brouwers B., van Brussel T., Neven P., Belmans A., Schöffski P., Paridaens R., et al. Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) Ann. Oncol. 2013;24:1513–1525. doi: 10.1093/annonc/mdt008. PubMed DOI

McLeod H.L., Sargent D., Marsh S., Green E.M., King C.R., Fuchs C.S., Ramanathan R.K., Williamson S.K., Findlay B.P., Thibodeau S.N., et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: Results from north american gastrointestinal intergroup trial N9741. J. Clin. Oncol. 2010;28:3227–3233. doi: 10.1200/JCO.2009.21.7943. PubMed DOI PMC

Cremolini C., Del Re M., Antoniotti C., Lonardi S., Bergamo F., Loupakis F., Borelli B., Marmorino F., Citi V., Cortesi E., et al. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer. Oncotarget. 2017;9:7859–7866. doi: 10.18632/oncotarget.23559. PubMed DOI PMC

Yamaguchi T., Iwasa S., Shoji H., Honma Y., Takashima A., Kato K., Hamaguchi T., Higuchi K., Boku N. Association between UGT1A1 gene polymorphism and safety and efficacy of irinotecan monotherapy as the third-line treatment for advanced gastric cancer. Gastric Cancer. 2019;22:778–784. doi: 10.1007/s10120-018-00917-5. PubMed DOI

Wood A.J., Pizzo P.A. Management of fever in patients with cancer and treatment-induced neutropenia. N. Engl. J. Med. 1993;328:1323–1332. doi: 10.1056/NEJM199305063281808. PubMed DOI

DiNubile M.J. Fever and neutropenia: Still a challenge. Contemp. Intern. Med. 1995;7:35–41. PubMed

Zell J.A., Chang J.C. Neoplastic fever: A neglected paraneoplastic syndrome. Support. Care Cancer. 2005;13:870–877. doi: 10.1007/s00520-005-0825-4. PubMed DOI

Kasuga I., Makino S., Kiyokawa H., Katoh H., Ebihara Y., Ohyashiki K. Tumor-Related leukocytosis is linked with poor prognosis in patients with lung carcinoma. Cancer. 2001;92:2399–2405. doi: 10.1002/1097-0142(20011101)92:9<2399::AID-CNCR1588>3.0.CO;2-W. PubMed DOI

Hart P.C., Rajab I.M., Alebraheem M., Potempa L.A. C-Reactive protein and cancer—Diagnostic and therapeutic insights. Front. Immunol. 2020;11:595835. doi: 10.3389/fimmu.2020.595835. PubMed DOI PMC

Vincenzi B., Fioroni I., Pantano F., Angeletti S., Dicuonzo G., Zoccoli A., Santini D., Tonini G. Procalcitonin as diagnostic marker of infection in solid tumors patients with fever. Sci. Rep. 2016;6:28090. doi: 10.1038/srep28090. PubMed DOI PMC

Palmore T.N., Parta M., Cuellar-Rodriguez J., Gea-Banacloche J.C. Infections in the Cancer Patient. In: Vincent T.D. Jr., Theodore S.L., Steven A.R., editors. DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 10th ed. Lippincott Williams and Wilkins; Philadelphia, PA, USA: 2011. pp. 1931–1959.

Gao Y., Shang Q., Li W., Guo W., Stojadinovic A., Mannion C., Man Y.-G., Chen T. Antibiotics for cancer treatment: A double-edged sword. J. Cancer. 2020;11:5135–5149. doi: 10.7150/jca.47470. PubMed DOI PMC

Hecker M.T., Aron D.C., Patel N.P., Lehmann M.K., Donskey C.J. Unnecessary use of antimicrobials in hospitalized patients: Current patterns of misuse with an emphasis on the antianaerobic spectrum of activity. Arch. Intern. Med. 2003;163:972–978. doi: 10.1001/archinte.163.8.972. PubMed DOI

Fridkin S., Baggs J., Fagan R., Magill S., Pollack L.A., Malpiedi P., Slayton R., Khader K., Rubin M.A., Jones M., et al. Vital signs: Improving antibiotic use among hospitalized patients. MMWR. Morb. Mortal. Wkly. Rep. 2014;63:194–200. PubMed PMC

Dellit T.H., Owens R.C., McGowan J.E., Jr., Gerding D.N., Weinstein R.A., Burke J.P., Huskins W.C., Paterson D.L., Fishman N.O., Carpenter C.F., et al. Infectious diseases society of america and the society for healthcare epidemiology of america guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis. 2007;44:159–177. doi: 10.1086/510393. PubMed DOI

Islas-Muñoz B., Volkow-Fernández P., Ibanes-Gutiérrez C., Villamar-Ramírez A., Vilar-Compte D., Cornejo-Juárez P. Bloodstream infections in cancer patients. Risk factors associated with mortality. Int. J. Infect. Dis. 2018;71:59–64. doi: 10.1016/j.ijid.2018.03.022. PubMed DOI

Baur D., Gladstone B.P., Burkert F., Carrara E., Foschi F., Döbele S., Tacconelli E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017;17:990–1001. doi: 10.1016/S1473-3099(17)30325-0. PubMed DOI

Nathwani D., Varghese D., Stephens J., Ansari W., Martin S., Charbonneau C. Value of hospital antimicrobial stewardship programs [ASPs]: A systematic review. Antimicrob. Resist. Infect. Control. 2019;8:35. doi: 10.1186/s13756-019-0471-0. PubMed DOI PMC

Ramos-Casals M., Brahmer J.R., Callahan M.K., Flores-Chávez A., Keegan N., Khamashta M.A., Lambotte O., Mariette X., Prat A., Suárez-Almazor M.E. Immune-Related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 2020;6:38. doi: 10.1038/s41572-020-0160-6. PubMed DOI PMC

Del Castillo M., Romero F.A., Argüello E., Kyi C., Postow M.A., Redelman-Sidi G. The spectrum of serious infections among patients receiving immune checkpoint blockade for the treatment of melanoma. Clin. Infect. Dis. 2016;63:1490–1493. doi: 10.1093/cid/ciw539. PubMed DOI PMC

Elkrief A., DeRosa L., Kroemer G., Zitvogel L., Routy B. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: A new independent prognostic factor? Ann. Oncol. 2019;30:1572–1579. doi: 10.1093/annonc/mdz206. PubMed DOI

Freifeld A.G., Bow E.J., Sepkowitz K.A., Boeckh M.J., Ito J.I., Mullen C.A., Raad I.I., Rolston K.V., Young J.-A.H., Wingard J.R. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. 2011;52:e56–e93. doi: 10.1093/cid/cir073. PubMed DOI

Carmona-Bayonas A., Jiménez-Fonseca P., Echaburu J.V., Cánovas M.S., De La Peña F.A. The time has come for new models in febrile neutropenia: A practical demonstration of the inadequacy of the MASCC score. Clin. Transl. Oncol. 2017;19:1084–1090. doi: 10.1007/s12094-017-1644-z. PubMed DOI

Peyrony O., Gerlier C., Barla I., Ellouze S., Legay L., Azoulay E., Chevret S., Fontaine J.-P. Antibiotic prescribing and outcomes in cancer patients with febrile neutropenia in the emergency department. PLoS ONE. 2020;15:e0229828. doi: 10.1371/journal.pone.0229828. PubMed DOI PMC

Elting L.S., Lu C., Escalante C.P., Giordano S.H., Trent J.C., Cooksley C., Avritscher E.B., Shih Y.-C.T., Ensor J., Bekele B.N., et al. Outcomes and cost of outpatient or inpatient management of 712 patients with febrile neutropenia. J. Clin. Oncol. 2008;26:606–611. doi: 10.1200/JCO.2007.13.8222. PubMed DOI

AJMC Guidelines in the Management of Febrile Neutropenia for Clinical Practice. [(accessed on 20 November 2021)]. Available online: https://www.ajmc.com/view/guidelines-in-the-management-of-febrile-neutropenia-for-clinical-practice.

Taplitz R.A., Kennedy E.B., Bow E.J., Crews J., Gleason C., Hawley D.K., Langston A.A., Nastoupil L.J., Rajotte M., Rolston K., et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American society of clinical oncology and infectious diseases society of america clinical practice guideline update. J. Clin. Oncol. 2018;36:1443–1453. doi: 10.1200/JCO.2017.77.6211. PubMed DOI

Anatoliotaki M., Valatas V., Mantadakis E., Apostolakou H., Mavroudis D., Georgoulias V., Rolston K.V., Kontoyiannis D.P., Galanakis E., Samonis G. Bloodstream infections in patients with solid tumors: Associated factors, microbial spectrum and outcome. Infection. 2004;32:65–71. doi: 10.1007/s15010-004-3049-5. PubMed DOI

Marín M., Gudiol C., Garcia-Vidal C., Ardanuy C., Carratala J. Bloodstream Infections in patients with solid tumors: Epidemiology, antibiotic therapy, and outcomes in 528 episodes in a single cancer center. Medicine. 2014;93:143–149. doi: 10.1097/MD.0000000000000026. PubMed DOI PMC

Seifert H., Cornely O., Seggewiss K., Decker M., Stefanik D., Wisplinghoff H., Fätkenheuer G. Bloodstream infection in neutropenic cancer patients related to short-term nontunnelled catheters determined by quantitative blood cultures, differential time to positivity, and molecular epidemiological typing with pulsed-field gel electrophoresis. J. Clin. Microbiol. 2003;41:118–123. doi: 10.1128/JCM.41.1.118-123.2003. PubMed DOI PMC

Mermel L.A., Allon M., Bouza E., Craven D.E., Flynn P., O’Grady N.P., Raad I.I., Rijnders B.J.A., Sherertz R.J., Warren D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the infectious diseases society of america. Clin. Infect. Dis. 2009;49:1–45. doi: 10.1086/599376. PubMed DOI PMC

Cantón-Bulnes M.L., Garnacho-Montero J. Practical approach to the management of catheter-related bloodstream infection. Rev. Esp. Quimioter. 2019;32:38–41. PubMed PMC

Muff S., Tabah A., Que Y.-A., Timsit J.-F., Mermel L., Harbarth S., Buetti N. Short-Course versus long-course systemic antibiotic treatment for uncomplicated intravascular catheter-related bloodstream infections due to gram-negative bacteria, enterococci or coagulase-negative staphylococci: A systematic review. Infect. Dis. Ther. 2021;10:1591–1605. doi: 10.1007/s40121-021-00464-0. PubMed DOI PMC

Chaves F., Garnacho-Montero J., Del Pozo J.L., Bouza E., Capdevila J., de Cueto M., Domínguez M., Esteban J., Fernández-Hidalgo N., Sampedro M.F., et al. Diagnosis and treatment of catheter-related bloodstream infection: Clinical guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology and (SEIMC) and the Spanish Society of Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC) Med. Intensiv. 2018;42:5–36. doi: 10.1016/j.medin.2017.09.012. PubMed DOI

Norris L.B., Kablaoui F., Brilhart M.K., Bookstaver P.B. Systematic review of antimicrobial lock therapy for prevention of central-line-associated bloodstream infections in adult and pediatric cancer patients. Int. J. Antimicrob. Agents. 2017;50:308–317. doi: 10.1016/j.ijantimicag.2017.06.013. PubMed DOI

Pliakos E.E., Andreatos N., Ziakas P., Mylonakis E. The cost-effectiveness of antimicrobial lock solutions for the prevention of central line–associated bloodstream infections. Clin. Infect. Dis. 2019;68:419–425. doi: 10.1093/cid/ciy511. PubMed DOI

Robinson J.L., Tawfik G., Saxinger L., Stang L., Etches W., Lee B. Stability of heparin and physical compatibility of heparin/antibiotic solutions in concentrations appropriate for antibiotic lock therapy. J. Antimicrob. Chemother. 2005;56:951–953. doi: 10.1093/jac/dki311. PubMed DOI

Luther M.K., Mermel L.A., Laplante K.L. Comparison of linezolid and vancomycin lock solutions with and without heparin against biofilm-producing bacteria. Am. J. Health Pharm. 2017;74:e193–e201. doi: 10.2146/ajhp150804. PubMed DOI

Del Pozo J.L. Role of antibiotic lock therapy for the treatment of catheter-related bloodstream infections. Int. J. Artif. Organs. 2009;32:678–688. doi: 10.1177/039139880903200918. PubMed DOI

Bookstaver P.B., Rokas K.E.E., Norris L.B., Edwards J.M., Sherertz R.J. Stability and compatibility of antimicrobial lock solutions. Am. J. Health Syst. Pharm. 2013;70:2185–2198. doi: 10.2146/ajhp120119. PubMed DOI

LaPlante K.L., Mermel L.A. In Vitro activity of daptomycin and vancomycin lock solutions on staphylococcal biofilms in a central venous catheter model. Nephrol. Dial. Transpl. 2007;22:2239–2246. doi: 10.1093/ndt/gfm141. PubMed DOI

Krishnasami Z., Carlton D., Bimbo L., Taylor M.E., Balkovetz D.F., Barker J., Allon M. Management of hemodialysis catheter-related bacteremia with an adjunctive antibiotic lock solution. Kidney Int. 2002;61:1136–1142. doi: 10.1046/j.1523-1755.2002.00201.x. PubMed DOI

Vercaigne L.M., Sitar D.S., Penner S.B., Bernstein K., Wang G.Q., Burczynski F. Antibiotic-Heparin lock: In Vitro antibiotic stability combined with heparin in a central venous catheter. Pharmacotherapy. 2000;20:394–399. doi: 10.1592/phco.20.5.394.35063. PubMed DOI

Justo J.A., Bookstaver P.B. Antibiotic lock therapy: Review of technique and logistical challenges. Infect. Drug Resist. 2014;7:343–363. doi: 10.2147/idr.s51388. PubMed DOI PMC

Rijnders B.J., Van Wijngaerden E., Vandecasteele S.J., Stas M., Peetermans W.E. Treatment of long-term intravascular catheter-related bacteraemia with antibiotic lock: Randomized, placebo-controlled trial. J. Antimicrob. Chemother. 2005;55:90–94. doi: 10.1093/jac/dkh488. PubMed DOI

Lee J.-Y., Ko K.S., Peck K.R., Oh W.S., Song J.-H. In Vitro evaluation of the antibiotic lock technique (ALT) for the treatment of catheter-related infections caused by staphylococci. J. Antimicrob. Chemother. 2006;57:1110–1115. doi: 10.1093/jac/dkl098. PubMed DOI

Droste J.C., Jeraj H.A., Macdonald A., Farrington K. Stability and in vitro efficacy of antibiotic-heparin lock solutions potentially useful for treatment of central venous catheter-related sepsis. J. Antimicrob. Chemother. 2003;51:849–855. doi: 10.1093/jac/dkg179. PubMed DOI

Lee M.Y., Ko K.S., Song J.-H., Peck K.R. In Vitro effectiveness of the antibiotic lock technique (ALT) for the treatment of catheter-related infections by Pseudomonas aeruginosa and Klebsiella pneumoniae. J. Antimicrob. Chemother. 2007;60:782–787. doi: 10.1093/jac/dkm295. PubMed DOI

Onland W., Shin C.E., Fustar S., Rushing T., Wong W.-Y. Ethanol-Lock technique for persistent bacteremia of long-term intravascular devices in pediatric patients. Arch. Pediatr. Adolesc. Med. 2006;160:1049–1053. doi: 10.1001/archpedi.160.10.1049. PubMed DOI

EMC Ampicillin 500 mg powder for solution for injection—Summary of Product Characteristics (SPC) [(accessed on 12 November 2021)]. Available online: https://www.medicines.org.uk/emc/product/12892/smpc#gref.

Vila-Corcoles A., Ochoa-Gondar O., Rodriguez-Blanco T., Raga-Luria X., Gomez-Bertomeu F. Epidemiology of community-acquired pneumonia in older adults: A population-based study. Respir. Med. 2009;103:309–316. doi: 10.1016/j.rmed.2008.08.006. PubMed DOI

Parakh A., Krishnamurthy S., Bhattacharya M. Ertapenem. Kathmandu Univ. Med. J. (KUMJ) 2009;7:454–460. doi: 10.3126/kumj.v7i4.2774. PubMed DOI

Kalil A.C., Metersky M.L., Klompas M., Muscedere J., Sweeney D.A., Palmer L.B., Napolitano L.M., O’Grady N.P., Bartlett J.G., Carratala J., et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of america and the american thoracic society. Clin. Infect. Dis. 2016;63:e61–e111. doi: 10.1093/cid/ciw353. PubMed DOI PMC

Metlay J.P., Waterer G.W., Long A.C., Anzueto A., Brozek J., Crothers K., Cooley L.A., Dean N.C., Fine M.J., Flanders S.A., et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the american thoracic society and infectious diseases society of America. Am. J. Respir. Crit. Care Med. 2019;200:e45–e67. doi: 10.1164/rccm.201908-1581ST. PubMed DOI PMC

Hanson K.E., Azar M.M., Banerjee R., Chou A., Colgrove R.C., Ginocchio C.C., Hayden M.K., Holodiny M., Jain S., Koo S., et al. Molecular testing for acute respiratory tract infections: Clinical and diagnostic recommendations from the IDSA’s diagnostics committee. Clin. Infect. Dis. 2020;71:2744–2751. doi: 10.1093/cid/ciaa508. PubMed DOI PMC

Sartelli M., Chichom-Mefire A., Labricciosa F.M., Hardcastle T., Abu-Zidan F.M., Adesunkanmi A.K., Ansaloni L., Bala M., Balogh Z.J., Beltrán M.A., et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J. Emerg. Surg. 2017;12:29. doi: 10.1186/s13017-017-0141-6. PubMed DOI PMC

Solomkin J.S., Mazuski J.E., Bradley J.S., Rodvold K.A., Goldstein E.J., Baron E.J., O’Neill P.J., Chow A.W., Dellinger E.P., Eachempati S.R., et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the surgical infection society and the infectious diseases society of america. Clin. Infect. Dis. 2010;50:133–164. doi: 10.1086/649554. PubMed DOI

Guevara E.A.Y., Aitken S.L., Olvera A.V., Carlin L., Fernandes K.E., Bhatti M.M., Garey K.W., Adachi J., Okhuysen P.C. Clostridioides difficile infection in cancer and immunocompromised patients: Relevance of a two-step diagnostic algorithm and infecting ribotypes on clinical outcomes. Clin. Infect. Dis. 2020;72:e460–e465. doi: 10.1093/cid/ciaa1184. PubMed DOI

Abughanimeh O., Qasrawi A., Kaddourah O., Al Momani L., Abu Ghanimeh M. Clostridium difficileinfection in oncology patients: Epidemiology, pathophysiology, risk factors, diagnosis, and treatment. Hosp. Pract. 2018;46:266–277. doi: 10.1080/21548331.2018.1533673. PubMed DOI

Johnson S., Lavergne V., Skinner A.M., Gonzales-Luna A.J., Garey K.W., Kelly C.P., Wilcox M.H. Clinical practice guideline by the infectious diseases society of america (idsa) and society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of clostridioides difficile infection in adults. Clin. Infect. Dis. 2021;73:e1029–e1044. doi: 10.1093/cid/ciab549. PubMed DOI

Kirkpatrick I.D.C., Greenberg H.M. Gastrointestinal complications in the neutropenic patient: Characterization and differentiation with abdominal CT. Radiology. 2003;226:668–674. doi: 10.1148/radiol.2263011932. PubMed DOI

Song H.K., Kreisel D., Canter R., Krupnick A.S., Stadtmauer E.A., Buzby G. Changing presentation and management of neutropenic enterocolitis. Arch. Surg. 1998;133:979–982. doi: 10.1001/archsurg.133.9.979. PubMed DOI

Tigabu A., Ferede W., Belay G., Gelaw B. Prevalence of asymptomatic bacteriuria and antibiotic susceptibility patterns of bacterial isolates among cancer patients and healthy blood donors at the University of Gondar Specialized Hospital. Int. J. Microbiol. 2020;2020:3091564. doi: 10.1155/2020/3091564. PubMed DOI PMC

Shrestha G., Wei X., Hann K., Soe K., Satyanarayana S., Siwakoti B., Bastakoti S., Mulmi R., Rana K., Lamichhane N. Bacterial profile and antibiotic resistance among cancer patients with urinary tract infection in a national tertiary cancer hospital of Nepal. Trop. Med. Infect. Dis. 2021;6:49. doi: 10.3390/tropicalmed6020049. PubMed DOI PMC

Parikh P., Bhat V. Urinary tract infection in cancer patients in a tertiary cancer setting in India: Microbial spectrum and antibiotic susceptibility pattern. Antimicrob. Resist. Infect. Control. 2015;4:221. doi: 10.1186/2047-2994-4-S1-P221. DOI

Khaparkuntikar M., Siddiqui N., Bhirud P. Urinary tract infection in cancer patients at Government Cancer Hospital Aurangabad, India. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:2259–2263. doi: 10.20546/ijcmas.2017.605.251. DOI

Bonkat G., Bartoletti R., Bruyère F., Cai T., Geerlings S.E., Köves B., Schubert S., Wagenlehner F. EAU Guidelines on Urological Infections. EAU Guidelines Office; Arnhem, The Netherlands: 2020.

Nicolle L. Complicated urinary tract infection in adults. Can. J. Infect. Dis. Med. Microbiol. 2005;16:349–360. doi: 10.1155/2005/385768. PubMed DOI PMC

Lopes M.S.M., Machado L.M., Silva P.A.I.A., Uchiyama A.A.T., Yen C.T., Ricardo E.D., Mutao T.S., Pimenta J.R., Shimba D.S., Hanriot R.M., et al. Antibiotics, cancer risk and oncologic treatment efficacy: A practical review of the literature. Ecancermedicalscience. 2020;14:1106. PubMed PMC

Shui L., Yang X., Li J., Yi C., Sun Q., Zhu H. Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front. Immunol. 2020;10:2989. doi: 10.3389/fimmu.2019.02989. PubMed DOI PMC

Ma W., Mao Q., Xia W., Dong G., Yu C., Jiang F. Gut microbiota shapes the efficiency of cancer therapy. Front. Microbiol. 2019;10:1050. doi: 10.3389/fmicb.2019.01050. PubMed DOI PMC

Reed J.P., Devkota S., Figlin R.A. Gut microbiome, antibiotic use, and immunotherapy responsiveness in cancer. Ann. Transl. Med. 2019;7:S309. doi: 10.21037/atm.2019.10.27. PubMed DOI PMC

Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C., et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103. doi: 10.1126/science.aan4236. PubMed DOI PMC

Matson V., Fessler J., Bao R., Chongsuwat T., Zha Y., Alegre M.-L., Luke J.J., Gajewski T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–108. doi: 10.1126/science.aao3290. PubMed DOI PMC

Routy B., Le Chatelier E., DeRosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359:91–97. doi: 10.1126/science.aan3706. PubMed DOI

Vétizou M., Pitt J.M., Daillère R., Lepage P., Waldschmitt N., Flament C., Rusakiewicz S., Routy B., Roberti M.P., Duong C.P.M., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–1084. doi: 10.1126/science.aad1329. PubMed DOI PMC

Sivan A., Corrales L., Hubert N., Williams J.B., Aquino-Michaels K., Earley Z.M., Benyamin F.W., Lei Y.M., Jabri B., Alegre M.-L., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–1089. doi: 10.1126/science.aac4255. PubMed DOI PMC

Chaput N., Lepage P., Coutzac C., Soularue E., Le Roux K., Monot C., Boselli L., Routier E., Cassard L., Collins M., et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 2017;28:1368–1379. doi: 10.1093/annonc/mdx108. PubMed DOI

Tinsley N., Zhou C., Tan G., Rack S., Lorigan P., Blackhall F., Krebs M., Carter L., Thistlethwaite F., Graham D., et al. Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. Oncologist. 2020;25:55–63. doi: 10.1634/theoncologist.2019-0160. PubMed DOI PMC

Mohiuddin J.J., Chu B., Facciabene A., Poirier K., Wang X., Doucette A., Zheng C., Xu W., Anstadt E.J., Amaravadi R.K., et al. Association of antibiotic exposure with survival and toxicity in patients with melanoma receiving immunotherapy. J. Natl. Cancer Inst. 2020;113:162–170. doi: 10.1093/jnci/djaa057. PubMed DOI PMC

Derosa L., Hellmann M., Spaziano M., Halpenny D., Fidelle M., Rizvi H., Long N., Plodkowski A., Arbour K., Chaft J., et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 2018;29:1437–1444. doi: 10.1093/annonc/mdy103. PubMed DOI PMC

Rubio X.M., Chara L., Sotelo-Lezama M., Castro R.L., Rubio-Martínez J., Velastegui A., Olier-Garate C., Falagan S., Gómez-Barreda I., Bautista-Sanz P., et al. MA10.01 antibiotic use and PD-1 inhibitors: Shorter survival in lung cancer, especially when given intravenously. Type of infection also matters. J. Thorac. Oncol. 2018;13:S389. doi: 10.1016/j.jtho.2018.08.395. DOI

Galli G., Triulzi T., Proto C., Signorelli D., Imbimbo M., Poggi M., Fucà G., Ganzinelli M., Vitali M., Palmieri D., et al. Association between antibiotic-immunotherapy exposure ratio and outcome in metastatic non small cell lung cancer. Lung Cancer. 2019;132:72–78. doi: 10.1016/j.lungcan.2019.04.008. PubMed DOI

Geum M., Kim C., Kang J., Choi J., Kim J., Son E., Lim S., Rhie S. Broad-Spectrum antibiotic regimen affects survival in patients receiving nivolumab for non-small cell lung cancer. Pharmaceuticals. 2021;14:445. doi: 10.3390/ph14050445. PubMed DOI PMC

Lalani A.-K.A., Xie W., Braun D.A., Kaymakcalan M., Bossé D., Steinharter J.A., Martini D., Simantov R., Lin X., Wei X.X., et al. Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur. Urol. Oncol. 2020;3:372–381. doi: 10.1016/j.euo.2019.09.001. PubMed DOI PMC

Huang X.-Z., Gao P., Song Y.-X., Xu Y., Sun J.-X., Chen X.-W., Zhao J.-H., Wang Z.-N. Antibiotic use and the efficacy of immune checkpoint inhibitors in cancer patients: A pooled analysis of 2740 cancer patients. OncoImmunology. 2019;8:e1665973. doi: 10.1080/2162402X.2019.1665973. PubMed DOI PMC

Lurienne L., Cervesi J., Duhalde L., de Gunzburg J., Andremont A., Zalcman G., Buffet R., Bandinelli P.-A. NSCLC immunotherapy efficacy and antibiotic use: A systematic review and meta-analysis. J. Thorac. Oncol. 2020;15:1147–1159. doi: 10.1016/j.jtho.2020.03.002. PubMed DOI

Wilson B.E., Routy B., Nagrial A., Chin V.T. The effect of antibiotics on clinical outcomes in immune-checkpoint blockade: A systematic review and meta-analysis of observational studies. Cancer Immunol. Immunother. 2020;69:343–354. doi: 10.1007/s00262-019-02453-2. PubMed DOI PMC

Uribe-Herranz M., Rafail S., Beghi S., Gil-De-Gómez L., Verginadis I., Bittinger K., Pustylnikov S., Pierini S., Perales-Linares R., Blair I.A., et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Investig. 2020;130:466–479. doi: 10.1172/JCI124332. PubMed DOI PMC

Yang K., Hou Y., Zhang Y., Liang H., Sharma A., Zheng W., Wang L., Torres R., Tatebe K., Chmura S.J., et al. Suppression of local type I interferon by gut microbiota–derived butyrate impairs antitumor effects of ionizing radiation. J. Exp. Med. 2021;218 doi: 10.1084/jem.20201915. PubMed DOI PMC

Nenclares P., Bhide S.A., Sandoval-Insausti H., Pialat P., Gunn L., Melcher A., Newbold K., Nutting C.M., Harrington K.J. Impact of antibiotic use during curative treatment of locally advanced head and neck cancers with chemotherapy and radiotherapy. Eur. J. Cancer. 2020;131:9–15. doi: 10.1016/j.ejca.2020.02.047. PubMed DOI

Corty R.W., Langworthy B.W., Fine J.P., Buse J.B., Sanoff H.K., Lund J.L. Antibacterial Use Is Associated with an Increased Risk of Hematologic and Gastrointestinal Adverse Events in Patients Treated with Gemcitabine for Stage IV Pancreatic Cancer. Oncologist. 2020;25:579–584. doi: 10.1634/theoncologist.2019-0570. PubMed DOI PMC

Lee N., Kim W.-U. Microbiota in T-cell homeostasis and inflammatory diseases. Exp. Mol. Med. 2017;49:e340. doi: 10.1038/emm.2017.36. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...