Enhanced Mechanical Properties of Eucalyptus-Basalt-Based Hybrid-Reinforced Cement Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
European Union (European Structural and Investment Funds-Operational Programme Research, Development and Education)
PubMed
33260529
PubMed Central
PMC7761080
DOI
10.3390/polym12122837
PII: polym12122837
Knihovny.cz E-zdroje
- Klíčová slova
- basalt fibrous waste, bending strength, eucalyptus pulp, hybrid reinforced cement composites, zeta potential,
- Publikační typ
- časopisecké články MeSH
The present study describes the manufacturing of flat sheets of eucalyptus-basalt based hybrid reinforced cement composites (EB-HRCC). The potential of basalt fibrous waste (BFW) as a reinforcement agent in cement matrices and its effects on mechanical and interfacial properties were evaluated in detail. Significantly enhanced bending (flexural) strength and ductility were observed for all developed composite samples. BFW and eucalyptus pulp (EP) were utilized as reinforcement and filling agents respectively for EB-HRCC samples. Mechanical, microstructural and physical properties of EB-HRCC samples were investigated with different formulations of BFW with EP in cement matrices. The results showed that physical properties of the composite samples were more influenced by fiber content. For standard mechanical analysis, the composite samples were placed in sealed bags for two days, thermally cured at 60 °C for five days and immersed in water in ambient conditions for one day. The obtained results showed that samples prepared under optimized conditions (4% EP and 2% BFW) had significantly higher flexural strength and bulk density with lower water absorption and apparent void volume (porosity). Moreover, the higher percentage of BFW significantly enhanced the values of modulus of rupture (MOR), modulus of elasticity (MOE), specific energy (SE) and limit of proportionality (LOP). The effects of entrapped air under the four-point bending test on the mechanical behavior of hybrid composites were also investigated in this thematic study. The composites were designed to be used as roofing tile alternatives.
Zobrazit více v PubMed
Sun X., Hou Y. Experimental Investigation of the Macroscopic Behavior and Microstructure Property Evolution of Hardened Cement Consolidated Tailings. Minerals. 2020;10:6. doi: 10.3390/min10010006. DOI
Musaddaq A., Lubos H., Jakub W., Tayyab N.M., Azam A., Tariq M. Comfort properties of nano-filament polyester fabrics: Thermo-physiological evaluation. Ind. Textila. 2018;69:315–321. doi: 10.35530/IT.069.04.1529. DOI
Azeem M., Javed A., Morikawa H., Noman M.T., Khan M.Q., Shahid M., Wiener J. Hydrophilization of Polyester Textiles by Nonthermal Plasma. Autex Res. J. 2019;1 doi: 10.2478/aut-2019-0059. DOI
Mármol G., Savastano H., Jr. Study of the degradation of non-conventional MgO-SiO2 cement reinforced with lignocellulosic fibers. Cem. Concr. Compos. 2017;80:258–267. doi: 10.1016/j.cemconcomp.2017.03.015. DOI
Ardanuy M., Claramunt J., Filho R.D.T. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015;79:115–128. doi: 10.1016/j.conbuildmat.2015.01.035. DOI
Arslan M.E. Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Constr. Build. Mater. 2016;114:383–391. doi: 10.1016/j.conbuildmat.2016.03.176. DOI
Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI
Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI
Teixeira J.N., Silva D.W., Vilela A.P., Savastano J.H., Vaz L.E.V.D.S.B., Mendes R.F. Lignocellulosic Materials for Fiber Cement Production. Waste Biomass Valorization. 2018;11:2193–2200. doi: 10.1007/s12649-018-0536-y. DOI
Xie X., Chen X., Jiang M., Xu X., Wang Z., Hui D. Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos. Part B Eng. 2015;78:153–161. doi: 10.1016/j.compositesb.2015.03.086. DOI
Yoo D.-Y., Lee J.-H., Yoon Y.-S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Compos. Struct. 2013;106:742–753. doi: 10.1016/j.compstruct.2013.07.033. DOI
Jin C., Zhao W., Normani S.D., Zhao P., Emelko M.B. Synergies of media surface roughness and ionic strength on particle deposition during filtration. Water Res. 2017;114:286–295. doi: 10.1016/j.watres.2017.02.010. PubMed DOI
Tonoli G., Rodrigues Filho U., Savastano H., Jr., Bras J., Belgacem M., Lahr F.R. Cellulose modified fibres in cement based composites. Compos. Part A Appl. Sci. Manuf. 2009;40:2046–2053. doi: 10.1016/j.compositesa.2009.09.016. DOI
Tonoli G., Savastano H., Jr., Santos S., Dias C., John V., Lahr F.R. Hybrid reinforcement of sisal and polypropylene fibers in cement-based composites. J. Mater. Civ. Eng. 2011;23:177–187. doi: 10.1061/(ASCE)MT.1943-5533.0000152. DOI
Azeem M., Noman M.T., Wiener J., Petru M., Louda P. Structural design of efficient fog collectors: A review. Environ. Technol. Innov. 2020;20:101169. doi: 10.1016/j.eti.2020.101169. DOI
Mansoor T., Hes L., Bajzik V., Noman M.T. Novel method on thermal resistance prediction and thermo-physiological comfort of socks in a wet state. Text. Res. J. 2020;90:1987–2006. doi: 10.1177/0040517520902540. DOI
Noman M.T., Petru M., Amor N., Yang T., Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-74357-6. PubMed DOI PMC
Yang T., Hu L., Xiong X., Petrů M., Noman M.T., Mishra R., Militký J. Sound Absorption Properties of Natural Fibers: A Review. Sustainability. 2020;12:8477. doi: 10.3390/su12208477. DOI
Jongvisuttisun P., Leisen J., Kurtis K. Key mechanisms controlling internal curing performance of natural fibers. Cem. Concr. Res. 2018;107:206–220. doi: 10.1016/j.cemconres.2018.02.007. DOI
Machado P.J.C., Ferreira R.A.D.R., Motta L.A.D.C. Study of the effect of silica fume and latex dosages in cementitious composites reinforced with cellulose fibers. J. Build. Eng. 2020;31:101442. doi: 10.1016/j.jobe.2020.101442. DOI
Marzuki A., Rahim S., Hamidah M., Ruslan R.A. Effects of wood: Cement ratio on mechanical and physical properties of three-layered cement-bonded particleboards from Leucaena leucocephala. J. Trop. For. Sci. 2011;31:67–72.
Tonoli G., Savastano H., Jr., Fuente E., Negro C., Blanco A., Lahr F.R. Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind. Crops Prod. 2010;31:225–232. doi: 10.1016/j.indcrop.2009.10.009. DOI
Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI
Behera P., Baheti V., Militky J., Louda P. Elevated temperature properties of basalt microfibril filled geopolymer composites. Constr. Build. Mater. 2018;163:850–860. doi: 10.1016/j.conbuildmat.2017.12.152. DOI
Jamshaid H., Mishra R., Militký J., Noman M.T. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2017;109:879–890. doi: 10.1080/00405000.2017.1381394. DOI
Jamshaid H., Mishra R., Militky J., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI
Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A Novel Green Stabilization of TiO2 Nanoparticles onto Cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI
Noman M.T., Petrů M. Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites. Nanomaterials. 2020;10:1661. doi: 10.3390/nano10091661. PubMed DOI PMC
Yonggui W., Shuaipeng L., Hughes P., Yuhui F. Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures. Constr. Build. Mater. 2020;247:118561. doi: 10.1016/j.conbuildmat.2020.118561. DOI
Katkhuda H., Shatarat N. Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment. Constr. Build. Mater. 2017;140:328–335. doi: 10.1016/j.conbuildmat.2017.02.128. DOI
Zhang C., Wang Y., Zhang X., Ding Y., Xu P. Mechanical properties and microstructure of basalt fiber-reinforced recycled concrete. J. Clean. Prod. 2021;278:123252. doi: 10.1016/j.jclepro.2020.123252. DOI
Özkan Ş., Demir F. The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites. Constr. Build. Mater. 2020;263:120564. doi: 10.1016/j.conbuildmat.2020.120564. DOI
Liu Y., Guan M., Chen X., Zhang Y., Zhou M. Flexural properties evaluation of carbon-fiber fabric reinforced poplar/eucalyptus composite plywood formwork. Compos. Struct. 2019;224:111073. doi: 10.1016/j.compstruct.2019.111073. DOI
Ojo E.B., Bello K.O., Mustapha K., Teixeira R.S., Santos S.F., Savastano H., Jr. Effects of fibre reinforcements on properties of extruded alkali activated earthen building materials. Constr. Build. Mater. 2019;227:116778. doi: 10.1016/j.conbuildmat.2019.116778. DOI
De Souza A.G., Cesco C.T., De Lima G.F., Artifon S.E., Rosa D.D.S., Paulino A.T. Arabic gum-based composite hydrogels reinforced with eucalyptus and pinus residues for controlled phosphorus release. Int. J. Biol. Macromol. 2019;140:33–42. doi: 10.1016/j.ijbiomac.2019.08.106. PubMed DOI
Noman M.T., Petru M. Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC
Noman M.T., Petrů M., Militký J., Azeem M., Ashraf M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Materials. 2019;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC
Dutra J.R., Ribeiro Filho S.L.M., Christoforo A.L., Panzera T.H., Scarpa F. Investigations on sustainable honeycomb sandwich panels containing eucalyptus sawdust, Piassava and cement particles. Thin Walled Struct. 2019;143:106191. doi: 10.1016/j.tws.2019.106191. DOI
Guan M., Liu Y., Zhang Z. Evaluation of bending performance of carbon fiber-reinforced eucalyptus/poplar composite plywood by digital image correlation and FEA analysis. J. Mater. Sci. 2020;55:8388–8402. doi: 10.1007/s10853-020-04584-9. DOI
Lisboa F.J.N., Scatolino M.V., de Paula Protásio T., Júnior J.B.G., Marconcini J.M., Mendes L.M. Lignocellulosic materials for production of cement composites: Valorization of the alkali treated soybean pod and eucalyptus wood particles to obtain higher value-added products. Waste Biomass Valorization. 2020;11:2235–2245. doi: 10.1007/s12649-018-0488-2. DOI
da Costa Correia V., Santos S.F., Mármol G., da Silva Curvelo A.A., Savastano H., Jr. Potential of bamboo organosolv pulp as a reinforcing element in fiber–cement materials. Constr. Build. Mater. 2014;72:65–71. doi: 10.1016/j.conbuildmat.2014.09.005. DOI
Schabowicz K., Jóźwiak-Niedźwiedzka D., Ranachowski Z., Kudela S., Dvorak T. Microstructural characterization of cellulose fibres in reinforced cement boards. Arch. Civ. Mech. Eng. 2018;18:1068–1078. doi: 10.1016/j.acme.2018.01.018. DOI
Júnior J.A.A., Baldo J.B. The Behavior of Zeta Potential of Silica Suspensions. New J. Glas. Ceram. 2014;4:29–37. doi: 10.4236/njgc.2014.42004. DOI