Enhanced Mechanical Properties of Eucalyptus-Basalt-Based Hybrid-Reinforced Cement Composites

. 2020 Nov 28 ; 12 (12) : . [epub] 20201128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33260529

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293 European Union (European Structural and Investment Funds-Operational Programme Research, Development and Education)

The present study describes the manufacturing of flat sheets of eucalyptus-basalt based hybrid reinforced cement composites (EB-HRCC). The potential of basalt fibrous waste (BFW) as a reinforcement agent in cement matrices and its effects on mechanical and interfacial properties were evaluated in detail. Significantly enhanced bending (flexural) strength and ductility were observed for all developed composite samples. BFW and eucalyptus pulp (EP) were utilized as reinforcement and filling agents respectively for EB-HRCC samples. Mechanical, microstructural and physical properties of EB-HRCC samples were investigated with different formulations of BFW with EP in cement matrices. The results showed that physical properties of the composite samples were more influenced by fiber content. For standard mechanical analysis, the composite samples were placed in sealed bags for two days, thermally cured at 60 °C for five days and immersed in water in ambient conditions for one day. The obtained results showed that samples prepared under optimized conditions (4% EP and 2% BFW) had significantly higher flexural strength and bulk density with lower water absorption and apparent void volume (porosity). Moreover, the higher percentage of BFW significantly enhanced the values of modulus of rupture (MOR), modulus of elasticity (MOE), specific energy (SE) and limit of proportionality (LOP). The effects of entrapped air under the four-point bending test on the mechanical behavior of hybrid composites were also investigated in this thematic study. The composites were designed to be used as roofing tile alternatives.

Zobrazit více v PubMed

Sun X., Hou Y. Experimental Investigation of the Macroscopic Behavior and Microstructure Property Evolution of Hardened Cement Consolidated Tailings. Minerals. 2020;10:6. doi: 10.3390/min10010006. DOI

Musaddaq A., Lubos H., Jakub W., Tayyab N.M., Azam A., Tariq M. Comfort properties of nano-filament polyester fabrics: Thermo-physiological evaluation. Ind. Textila. 2018;69:315–321. doi: 10.35530/IT.069.04.1529. DOI

Azeem M., Javed A., Morikawa H., Noman M.T., Khan M.Q., Shahid M., Wiener J. Hydrophilization of Polyester Textiles by Nonthermal Plasma. Autex Res. J. 2019;1 doi: 10.2478/aut-2019-0059. DOI

Mármol G., Savastano H., Jr. Study of the degradation of non-conventional MgO-SiO2 cement reinforced with lignocellulosic fibers. Cem. Concr. Compos. 2017;80:258–267. doi: 10.1016/j.cemconcomp.2017.03.015. DOI

Ardanuy M., Claramunt J., Filho R.D.T. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015;79:115–128. doi: 10.1016/j.conbuildmat.2015.01.035. DOI

Arslan M.E. Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Constr. Build. Mater. 2016;114:383–391. doi: 10.1016/j.conbuildmat.2016.03.176. DOI

Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI

Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI

Teixeira J.N., Silva D.W., Vilela A.P., Savastano J.H., Vaz L.E.V.D.S.B., Mendes R.F. Lignocellulosic Materials for Fiber Cement Production. Waste Biomass Valorization. 2018;11:2193–2200. doi: 10.1007/s12649-018-0536-y. DOI

Xie X., Chen X., Jiang M., Xu X., Wang Z., Hui D. Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos. Part B Eng. 2015;78:153–161. doi: 10.1016/j.compositesb.2015.03.086. DOI

Yoo D.-Y., Lee J.-H., Yoon Y.-S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Compos. Struct. 2013;106:742–753. doi: 10.1016/j.compstruct.2013.07.033. DOI

Jin C., Zhao W., Normani S.D., Zhao P., Emelko M.B. Synergies of media surface roughness and ionic strength on particle deposition during filtration. Water Res. 2017;114:286–295. doi: 10.1016/j.watres.2017.02.010. PubMed DOI

Tonoli G., Rodrigues Filho U., Savastano H., Jr., Bras J., Belgacem M., Lahr F.R. Cellulose modified fibres in cement based composites. Compos. Part A Appl. Sci. Manuf. 2009;40:2046–2053. doi: 10.1016/j.compositesa.2009.09.016. DOI

Tonoli G., Savastano H., Jr., Santos S., Dias C., John V., Lahr F.R. Hybrid reinforcement of sisal and polypropylene fibers in cement-based composites. J. Mater. Civ. Eng. 2011;23:177–187. doi: 10.1061/(ASCE)MT.1943-5533.0000152. DOI

Azeem M., Noman M.T., Wiener J., Petru M., Louda P. Structural design of efficient fog collectors: A review. Environ. Technol. Innov. 2020;20:101169. doi: 10.1016/j.eti.2020.101169. DOI

Mansoor T., Hes L., Bajzik V., Noman M.T. Novel method on thermal resistance prediction and thermo-physiological comfort of socks in a wet state. Text. Res. J. 2020;90:1987–2006. doi: 10.1177/0040517520902540. DOI

Noman M.T., Petru M., Amor N., Yang T., Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-74357-6. PubMed DOI PMC

Yang T., Hu L., Xiong X., Petrů M., Noman M.T., Mishra R., Militký J. Sound Absorption Properties of Natural Fibers: A Review. Sustainability. 2020;12:8477. doi: 10.3390/su12208477. DOI

Jongvisuttisun P., Leisen J., Kurtis K. Key mechanisms controlling internal curing performance of natural fibers. Cem. Concr. Res. 2018;107:206–220. doi: 10.1016/j.cemconres.2018.02.007. DOI

Machado P.J.C., Ferreira R.A.D.R., Motta L.A.D.C. Study of the effect of silica fume and latex dosages in cementitious composites reinforced with cellulose fibers. J. Build. Eng. 2020;31:101442. doi: 10.1016/j.jobe.2020.101442. DOI

Marzuki A., Rahim S., Hamidah M., Ruslan R.A. Effects of wood: Cement ratio on mechanical and physical properties of three-layered cement-bonded particleboards from Leucaena leucocephala. J. Trop. For. Sci. 2011;31:67–72.

Tonoli G., Savastano H., Jr., Fuente E., Negro C., Blanco A., Lahr F.R. Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind. Crops Prod. 2010;31:225–232. doi: 10.1016/j.indcrop.2009.10.009. DOI

Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI

Behera P., Baheti V., Militky J., Louda P. Elevated temperature properties of basalt microfibril filled geopolymer composites. Constr. Build. Mater. 2018;163:850–860. doi: 10.1016/j.conbuildmat.2017.12.152. DOI

Jamshaid H., Mishra R., Militký J., Noman M.T. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2017;109:879–890. doi: 10.1080/00405000.2017.1381394. DOI

Jamshaid H., Mishra R., Militky J., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI

Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A Novel Green Stabilization of TiO2 Nanoparticles onto Cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI

Noman M.T., Petrů M. Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites. Nanomaterials. 2020;10:1661. doi: 10.3390/nano10091661. PubMed DOI PMC

Yonggui W., Shuaipeng L., Hughes P., Yuhui F. Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures. Constr. Build. Mater. 2020;247:118561. doi: 10.1016/j.conbuildmat.2020.118561. DOI

Katkhuda H., Shatarat N. Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment. Constr. Build. Mater. 2017;140:328–335. doi: 10.1016/j.conbuildmat.2017.02.128. DOI

Zhang C., Wang Y., Zhang X., Ding Y., Xu P. Mechanical properties and microstructure of basalt fiber-reinforced recycled concrete. J. Clean. Prod. 2021;278:123252. doi: 10.1016/j.jclepro.2020.123252. DOI

Özkan Ş., Demir F. The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites. Constr. Build. Mater. 2020;263:120564. doi: 10.1016/j.conbuildmat.2020.120564. DOI

Liu Y., Guan M., Chen X., Zhang Y., Zhou M. Flexural properties evaluation of carbon-fiber fabric reinforced poplar/eucalyptus composite plywood formwork. Compos. Struct. 2019;224:111073. doi: 10.1016/j.compstruct.2019.111073. DOI

Ojo E.B., Bello K.O., Mustapha K., Teixeira R.S., Santos S.F., Savastano H., Jr. Effects of fibre reinforcements on properties of extruded alkali activated earthen building materials. Constr. Build. Mater. 2019;227:116778. doi: 10.1016/j.conbuildmat.2019.116778. DOI

De Souza A.G., Cesco C.T., De Lima G.F., Artifon S.E., Rosa D.D.S., Paulino A.T. Arabic gum-based composite hydrogels reinforced with eucalyptus and pinus residues for controlled phosphorus release. Int. J. Biol. Macromol. 2019;140:33–42. doi: 10.1016/j.ijbiomac.2019.08.106. PubMed DOI

Noman M.T., Petru M. Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC

Noman M.T., Petrů M., Militký J., Azeem M., Ashraf M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Materials. 2019;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC

Dutra J.R., Ribeiro Filho S.L.M., Christoforo A.L., Panzera T.H., Scarpa F. Investigations on sustainable honeycomb sandwich panels containing eucalyptus sawdust, Piassava and cement particles. Thin Walled Struct. 2019;143:106191. doi: 10.1016/j.tws.2019.106191. DOI

Guan M., Liu Y., Zhang Z. Evaluation of bending performance of carbon fiber-reinforced eucalyptus/poplar composite plywood by digital image correlation and FEA analysis. J. Mater. Sci. 2020;55:8388–8402. doi: 10.1007/s10853-020-04584-9. DOI

Lisboa F.J.N., Scatolino M.V., de Paula Protásio T., Júnior J.B.G., Marconcini J.M., Mendes L.M. Lignocellulosic materials for production of cement composites: Valorization of the alkali treated soybean pod and eucalyptus wood particles to obtain higher value-added products. Waste Biomass Valorization. 2020;11:2235–2245. doi: 10.1007/s12649-018-0488-2. DOI

da Costa Correia V., Santos S.F., Mármol G., da Silva Curvelo A.A., Savastano H., Jr. Potential of bamboo organosolv pulp as a reinforcing element in fiber–cement materials. Constr. Build. Mater. 2014;72:65–71. doi: 10.1016/j.conbuildmat.2014.09.005. DOI

Schabowicz K., Jóźwiak-Niedźwiedzka D., Ranachowski Z., Kudela S., Dvorak T. Microstructural characterization of cellulose fibres in reinforced cement boards. Arch. Civ. Mech. Eng. 2018;18:1068–1078. doi: 10.1016/j.acme.2018.01.018. DOI

Júnior J.A.A., Baldo J.B. The Behavior of Zeta Potential of Silica Suspensions. New J. Glas. Ceram. 2014;4:29–37. doi: 10.4236/njgc.2014.42004. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...