Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
European Union (European Structural and Investment Funds - Operational Programme Research, Development and Education)
PubMed
33920272
PubMed Central
PMC8070503
DOI
10.3390/polym13081227
PII: polym13081227
Knihovny.cz E-zdroje
- Klíčová slova
- cotton, nZnO, photocatalytic activity, polymeric fibres, stabilization,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Zinc oxide (ZnO) in various nano forms (nanoparticles, nanorods, nanosheets, nanowires and nanoflowers) has received remarkable attention worldwide for its functional diversity in different fields i.e., paints, cosmetics, coatings, rubber and composites. The purpose of this article is to investigate the role of photocatalytic activity (role of photogenerated radical scavengers) of nano ZnO (nZnO) for the surface activation of polymeric natural fibres especially cotton and their combined effect in photocatalytic applications. Photocatalytic behaviour is a crucial property that enables nZnO as a potential and competitive candidate for commercial applications. The confirmed features of nZnO were characterised by different analytical tools, i.e., scanning electron microscopy (SEM), field emission SEM (FESEM) and elemental detection spectroscopy (EDX). These techniques confirm the size, morphology, structure, crystallinity, shape and dimensions of nZnO. The morphology and size play a crucial role in surface activation of polymeric fibres. In addition, synthesis methods, variables and some of the critical aspects of nZnO that significantly affect the photocatalytic activity are also discussed in detail. This paper delineates a vivid picture to new comers about the significance of nZnO in photocatalytic applications.
Zobrazit více v PubMed
Ilager D., Shetti N.P., Malladi R.S., Shetty N.S., Reddy K.R., Aminabhavi T.M. Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. J. Mol. Liq. 2020;322:114552. doi: 10.1016/j.molliq.2020.114552. DOI
Kulkarni D.R., Malode S.J., Prabhu K.K., Ayachit N.H., Kulkarni R.M., Shetti N.P. Development of a novel nanosensor using Ca-doped ZnO for antihistamine drug. Mater. Chem. Phys. 2020;246:122791. doi: 10.1016/j.matchemphys.2020.122791. DOI
Shanbhag M.M., Shetti N.P., Kulkarni R.M., Chandra P. Nanostructured Ba/ZnO modified electrode as a sensor material for detection of organosulfur thiosalicylic acid. Microchem. J. 2020;159:105409. doi: 10.1016/j.microc.2020.105409. DOI
Wasim M., Ashraf M., Tayyaba S., Nazir A. Simulation and synthesis of ZnO nanorods on AAO nano porous template for use in a mems devices. Dig. J. Nanomater. Biostruct. 2019;14:559–567.
Liu H., Liu J., Xie X., Li X. Development of photo-magnetic drug delivery system by facile-designed dual stimuli-responsive modified biopolymeric chitosan capped nano-vesicle to improve efficiency in the anesthetic effect and its biological investigations. J. Photochem. Photobiol. B Biol. 2020;202:111716. doi: 10.1016/j.jphotobiol.2019.111716. PubMed DOI
Andryukov B.G., Besednova N.N., Romashko R.V., Zaporozhets T.S., Efimov T.A. Label-free biosensors for laboratory-based diagnostics of infections: Current achievements and new trends. Biosensors. 2020;10:11. doi: 10.3390/bios10020011. PubMed DOI PMC
Souza J.M.T., de Araujo A.R., de Carvalho A.M.A., Amorim A.d.G.N., Daboit T.C., de Almeida J.R.d.S., da Silva D.A., Eaton P. Sustainably produced cashew gum-capped zinc oxide nanoparticles show antifungal activity against Candida parapsilosis. J. Clean. Prod. 2020;247:119085. doi: 10.1016/j.jclepro.2019.119085. DOI
Manjula N., Chen S.-M. One-pot synthesis of rod-shaped gadolinia doped zinc oxide decorated on graphene oxide composite as an efficient electrode material for isoprenaline sensor. Compos. Part B Eng. 2021;211:108631. doi: 10.1016/j.compositesb.2021.108631. DOI
Chen Z., Zhang D., Zhang Y., Zhang H., Zhang S. Influence of multi-dimensional nanomaterials composite form on thermal and ultraviolet oxidation aging resistances of SBS modified asphalt. Constr. Build. Mater. 2021;273:122054. doi: 10.1016/j.conbuildmat.2020.122054. DOI
Islam S.E., Hang D.-R., Chen C.-H., Chou M.M., Liang C.-T., Sharma K.H. Rational design of hetero-dimensional C-ZnO/MoS2 nanocomposite anchored on 3D mesoporous carbon framework towards synergistically enhanced stability and efficient visible-light-driven photocatalytic activity. Chemosphere. 2021;266:129148. doi: 10.1016/j.chemosphere.2020.129148. PubMed DOI
Aaryashree A., Mandal B., Biswas A., Bhardwaj R., Agarwal A., Das A.K., Mukherjee S. Mesoporous Tyrosine Functionalized BTC-ZnO Composite for Highly Selective Capacitive CO Sensor. IEEE Sens. J. 2020;21:2610–2617. doi: 10.1109/JSEN.2020.3027786. DOI
Gadisa B.T., Appiah-Ntiamoah R., Kim H. In-situ derived hierarchical ZnO/Zn-C nanofiber with high photocatalytic activity and recyclability under solar light. Appl. Surf. Sci. 2019;491:350–359. doi: 10.1016/j.apsusc.2019.06.159. DOI
He J., Zhang Y., Guo Y., Rhodes G., Yeom J., Li H., Zhang W. Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms. Environ. Int. 2019;132:105105. doi: 10.1016/j.envint.2019.105105. PubMed DOI
Messih M.A., Shalan A.E., Sanad M.F., Ahmed M. Facile approach to prepare ZnO@ SiO2 nanomaterials for photocatalytic degradation of some organic pollutant models. J. Mater. Sci. Mater. Electron. 2019;30:14291–14299. doi: 10.1007/s10854-019-01798-9. DOI
Ahmad R., Majhi S.M., Zhang X., Swager T.M., Salama K.N. Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Colloid Interface Sci. 2019;270:1–27. doi: 10.1016/j.cis.2019.05.006. PubMed DOI
Azeem M., Noman M.T., Wiener J., Petru M., Louda P. Structural design of efficient fog collectors: A review. Environ. Technol. Innov. 2020;20:101169. doi: 10.1016/j.eti.2020.101169. DOI
Ali A., Sattar M., Riaz T., Khan B.A., Awais M., Militky J., Noman M.T. Highly stretchable durable electro-thermal conductive yarns made by deposition of carbon nanotubes. J. Text. Inst. 2020 doi: 10.1080/00405000.2020.1863569. DOI
Noman M.T., Amor N., Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2021 doi: 10.1080/10408436.2021.1886041. DOI
Zhang Q., Dandeneau C.S., Zhou X., Cao G. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009;21:4087–4108. doi: 10.1002/adma.200803827. DOI
Aditya A., Chattopadhyay S., Jha D., Gautam H.K., Maiti S., Ganguli M. Zinc oxide nanoparticles dispersed in ionic liquids show high antimicrobial efficacy to skin-specific bacteria. ACS Appl. Mater. Interfaces. 2018;10:15401–15411. doi: 10.1021/acsami.8b01463. PubMed DOI
Yang T., Hu L., Xiong X., Petrů M., Noman M.T., Mishra R., Militký J. Sound Absorption Properties of Natural Fibers: A Review. Sustainability. 2020;12:8477. doi: 10.3390/su12208477. DOI
Ali A., Nguyen N.H., Baheti V., Ashraf M., Militky J., Mansoor T., Noman M.T., Ahmad S. Electrical conductivity and physiological comfort of silver coated cotton fabrics. J. Text. Inst. 2018;109:620–628. doi: 10.1080/00405000.2017.1362148. DOI
Noman M.T., Petrů M. Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. Nanomaterials. 2020;10:1661. doi: 10.3390/nano10091661. PubMed DOI PMC
Noman M.T., Petru M., Amor N., Yang T., Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Sci. Rep. 2020;10:17204. doi: 10.1038/s41598-020-74357-6. PubMed DOI PMC
Behera P., Noman M.T., Petrů M. Enhanced Mechanical Properties of Eucalyptus-Basalt-Based Hybrid-Reinforced Cement Composites. Polymers. 2020;12:2837. doi: 10.3390/polym12122837. PubMed DOI PMC
Jamshaid H., Mishra R., Militky J., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI
Shetti N.P., Malode S.J., Nayak D.S., Bagihalli G.B., Kalanur S.S., Malladi R.S., Reddy C.V., Aminabhavi T.M., Reddy K.R. Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl. Surf. Sci. 2019;496:143656. doi: 10.1016/j.apsusc.2019.143656. DOI
Zhang D., Yang Z., Li P., Zhou X. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens. Actuators B Chem. 2019;301:127081. doi: 10.1016/j.snb.2019.127081. DOI
Jamshaid H., Mishra R., Militký J., Noman M.T. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2018;109:879–890. doi: 10.1080/00405000.2017.1381394. DOI
Mansoor T., Hes L., Bajzik V., Noman M.T. Novel method on thermal resistance prediction and thermo-physiological comfort of socks in a wet state. Text. Res. J. 2020;90:1987–2006. doi: 10.1177/0040517520902540. DOI
Kim D., Yong K. Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production. Appl. Catal. B Environ. 2021;282:119538. doi: 10.1016/j.apcatb.2020.119538. DOI
Xiao B., Huang Q., Chen H., Chen X., Long G. A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media. Fractals. 2021;29:2150017. doi: 10.1142/S0218348X21500171. DOI
Xiao B., Zhang Y., Wang Y., Jiang G., Liang M., Chen X., Long G. A fractal model for Kozeny–Carman constant and dimensionless permeability of fibrous porous media with roughened surfaces. Fractals. 2019;27:1950116. doi: 10.1142/S0218348X19501160. DOI
Maharjan B., Park J., Kaliannagounder V.K., Awasthi G.P., Joshi M.K., Park C.H., Kim C.S. Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering. Carbohydr. Polym. 2021;251:117023. doi: 10.1016/j.carbpol.2020.117023. PubMed DOI
Zhang Z., Fang Z., Xiang Y., Liu D., Xie Z., Qu D., Sun M., Tang H., Li J. Cellulose-based material in lithium-sulfur batteries: A Review. Carbohydr. Polym. 2020;255:117469. doi: 10.1016/j.carbpol.2020.117469. PubMed DOI
Sun Y., Chu Y., Wu W., Xiao H. Nanocellulose-based Lightweight Porous Materials: A Review. Carbohydr. Polym. 2020;255:117489. doi: 10.1016/j.carbpol.2020.117489. PubMed DOI
Ulu A., Birhanlı E., Köytepe S., Ateş B. Chitosan/polypropylene glycol hydrogel composite film designed with TiO2 nanoparticles: A promising scaffold of biomedical applications. Int. J. Biol. Macromol. 2020;163:529–540. doi: 10.1016/j.ijbiomac.2020.07.015. PubMed DOI
Ahmed M., Hameed B., Hummadi E. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydr. Polym. 2020;247:116690. doi: 10.1016/j.carbpol.2020.116690. PubMed DOI
Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr. Polym. 2020;251:116986. doi: 10.1016/j.carbpol.2020.116986. PubMed DOI PMC
Theerthagiri J., Salla S., Senthil R., Nithyadharseni P., Madankumar A., Arunachalam P., Maiyalagan T., Kim H.-S. A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology. 2019;30:392001. doi: 10.1088/1361-6528/ab268a. PubMed DOI
Nada A.A., El Aref A.T., Sharaf S.S. The synthesis and characterization of zinc-containing electrospun chitosan/gelatin derivatives with antibacterial properties. Int. J. Biol. Macromol. 2019;133:538–544. doi: 10.1016/j.ijbiomac.2019.04.047. PubMed DOI
Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI
Abramova A.V., Abramov V.O., Bayazitov V.M., Voitov Y., Straumal E.A., Lermontov S.A., Cherdyntseva T.A., Braeutigam P., Weiße M., Günther K. A sol-gel method for applying nanosized antibacterial particles to the surface of textile materials in an ultrasonic field. Ultrason. Sonochem. 2020;60:104788. doi: 10.1016/j.ultsonch.2019.104788. PubMed DOI
Barreto G.P., Morales G., Quintanilla M.L.L. Microwave assisted synthesis of ZnO nanoparticles: Effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. J. Mater. 2013;2013:478681. doi: 10.1155/2013/478681. DOI
Noman M.T., Petru M., Amor N., Louda P. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci. Rep. 2020;10:21080. doi: 10.1038/s41598-020-78305-2. PubMed DOI PMC
Król A., Pomastowski P., Rafińska K., Railean-Plugaru V., Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017;249:37–52. doi: 10.1016/j.cis.2017.07.033. PubMed DOI
Pala R.G.S., Metiu H. The structure and energy of oxygen vacancy formation in clean and doped, very thin films of ZnO. J. Phys. Chem. C. 2007;111:12715–12722. doi: 10.1021/jp073424p. DOI
Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018;81:536–551. doi: 10.1016/j.rser.2017.08.020. DOI
Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI
Hassan N., Hashim M., Bououdina M. One-dimensional ZnO nanostructure growth prepared by thermal evaporation on different substrates: Ultraviolet emission as a function of size and dimensionality. Ceram. Int. 2013;39:7439–7444. doi: 10.1016/j.ceramint.2013.02.088. DOI
Ju D., Xu H., Zhang J., Guo J., Cao B. Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing. Sens. Actuators B Chem. 2014;201:444–451. doi: 10.1016/j.snb.2014.04.072. DOI
Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI
Yue S., Lu J., Zhang J. Synthesis of three-dimensional ZnO superstructures by a one-pot solution process. Mater. Chem. Phys. 2009;117:4–8. doi: 10.1016/j.matchemphys.2009.05.010. DOI
Smijs T.G., Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotech. Sci. Appl. 2011;4:95. doi: 10.2147/NSA.S19419. PubMed DOI PMC
Rasmussen J.W., Martinez E., Louka P., Wingett D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert. Opin. Drug. Deliv. 2010;7:1063–1077. doi: 10.1517/17425247.2010.502560. PubMed DOI PMC
Mishra P.K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today. 2017;22:1825–1834. doi: 10.1016/j.drudis.2017.08.006. PubMed DOI
Zhang Z.-Y., Xiong H.-M. Photoluminescent ZnO nanoparticles and their biological applications. Materials. 2015;8:3101–3127. doi: 10.3390/ma8063101. DOI
Jiang J., Pi J., Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018;2018:1062562. doi: 10.1155/2018/1062562. PubMed DOI PMC
Ashraf M.A., Wiener J., Farooq A., Saskova J., Noman M.T. Development of maghemite glass fibre nanocomposite for adsorptive removal of methylene blue. Fibers Polym. 2018;19:1735–1746. doi: 10.1007/s12221-018-8264-2. DOI
Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI
Haque F.Z., Nandanwar R., Singh P., Dharavath K., Syed F.F. Effect of Different Acids and Solvents on Optical Properties of SiO2 Nanoparticles Prepared by the Sol-Gel Process. Silicon. 2018;10:413–419. doi: 10.1007/s12633-016-9464-2. DOI
Khodadadi A., Farahmandjou M., Yaghoubi M. Investigation on synthesis and characterization of Fe-doped Al2O3 nanocrystals by new sol–gel precursors. Mater. Res. Exp. 2018;6:025029. doi: 10.1088/2053-1591/aaef70. DOI
Abebe B., Murthy H.A., Zerefa E., Adimasu Y. PVA assisted ZnO based mesoporous ternary metal oxides nanomaterials: Synthesis, optimization, and evaluation of antibacterial activity. Mater. Res. Exp. 2020;7:045011. doi: 10.1088/2053-1591/ab87d5. DOI
Sui R., Charpentier P. Synthesis of metal oxide nanostructures by direct sol–gel chemistry in supercritical fluids. Chem. Rev. 2012;112:3057–3082. doi: 10.1021/cr2000465. PubMed DOI
Alias S., Ismail A., Mohamad A. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J. Alloys Compd. 2010;499:231–237. doi: 10.1016/j.jallcom.2010.03.174. DOI
Gupta S., Chang C., Anbalagan A.K., Lee C.-H., Tai N.-H. Reduced graphene oxide/zinc oxide coated wearable electrically conductive cotton textile for high microwave absorption. Compos. Sci. Technol. 2020;188:107994. doi: 10.1016/j.compscitech.2020.107994. DOI
Gong B., Shi T., Liao G., Li X., Huang J., Zhou T., Tang Z. UV irradiation assisted growth of ZnO nanowires on optical fiber surface. Appl. Surf. Sci. 2017;406:294–300. doi: 10.1016/j.apsusc.2017.02.153. DOI
Koutavarapu R., Reddy C.V., Syed K., Reddy K.R., Shetti N.P., Aminabhavi T.M., Shim J. Ultra-small zinc oxide nanosheets anchored onto sodium bismuth sulfide nanoribbons as solar-driven photocatalysts for removal of toxic pollutants and phtotoelectrocatalytic water oxidation. Chemosphere. 2020;267:128559. doi: 10.1016/j.chemosphere.2020.128559. PubMed DOI
Shetti N.P., Malode S.J., Ilager D., Raghava Reddy K., Shukla S.S., Aminabhavi T.M. A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode. Electroanalysis. 2019;31:1040–1049. doi: 10.1002/elan.201800775. DOI
Noman M.T., Petru M., Militký J., Azeem M., Ashraf M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Materials. 2020;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC
Ezeh C.I., Yang X., He J., Snape C., Cheng X.M. Correlating ultrasonic impulse and addition of ZnO promoter with CO2 conversion and methanol selectivity of CuO/ZrO2 catalysts. Ultrason. Sonochem. 2018;42:48–56. doi: 10.1016/j.ultsonch.2017.11.013. PubMed DOI
Salmeri M., Ognibene G., Saitta L., Lombardo C., Genovese C., Barcellona M., D’Urso A., Spitaleri L., Blanco I., Cicala G. Optimization of ZnO Nanorods Growth on Polyetheresulfone Electrospun Mats to Promote Antibacterial Properties. Molecules. 2020;25:1696. doi: 10.3390/molecules25071696. PubMed DOI PMC
Gnaneshwar P.V., Sudakaran S.V., Abisegapriyan S., Sherine J., Ramakrishna S., Rahim M.H.A., Yusoff M.M., Jose R., Venugopal J.R. Ramification of zinc oxide doped hydroxyapatite biocomposites for the mineralization of osteoblasts. Mater. Sci. Eng. C. 2019;96:337–346. doi: 10.1016/j.msec.2018.11.033. PubMed DOI
Wang M., Zhang M., Pang L., Yang C., Zhang Y., Hu J., Wu G. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance. J. Colloid Interface Sci. 2019;537:91–100. doi: 10.1016/j.jcis.2018.10.105. PubMed DOI
Priya A., Arumugam M., Arunachalam P., Al-Mayouf A.M., Madhavan J., Theerthagiri J., Choi M.Y. Fabrication of visible-light active BiFeWO6/ZnO nanocomposites with enhanced photocatalytic activity. Colloids Surf. Phys. Eng. Asp. 2020;586:124294.
Jellal I., Nouneh K., Toura H., Boutamart M., Briche S., Naja J., Soucase B.M., Touhami M.E. Enhanced photocatalytic activity of supported Cu-doped ZnO nanostructures prepared by SILAR method. Opt. Mater. 2021;111:110669. doi: 10.1016/j.optmat.2020.110669. DOI
Sbardella F., Rivilla I., Bavasso I., Russo P., Vitiello L., Tirillò J., Sarasini F. Zinc oxide nanostructures and stearic acid as surface modifiers for flax fabrics in polylactic acid biocomposites. Int. J. Biol. Macromol. 2021;177:495–504. doi: 10.1016/j.ijbiomac.2021.02.171. PubMed DOI
Rabani I., Lee S.-H., Kim H.-S., Yoo J., Park Y.-R., Maqbool T., Bathula C., Jamil Y., Hussain S., Seo Y.-S. Suppressed photocatalytic activity of ZnO based Core@ Shell and RCore@ Shell nanostructure incorporated in the cellulose nanofiber. Chemosphere. 2021;269:129311. doi: 10.1016/j.chemosphere.2020.129311. PubMed DOI
Raja A., Ashokkumar S., Marthandam R.P., Jayachandiran J., Khatiwada C.P., Kaviyarasu K., Raman R.G., Swaminathan M. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochem. Photobiol. B Biol. 2018;181:53–58. doi: 10.1016/j.jphotobiol.2018.02.011. PubMed DOI
Khan S.A., Noreen F., Kanwal S., Iqbal A., Hussain G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater. Sci. Eng. C. 2018;82:46–59. doi: 10.1016/j.msec.2017.08.071. PubMed DOI
Ghayempour S., Montazer M. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrason. Sonochem. 2017;34:458–465. doi: 10.1016/j.ultsonch.2016.06.019. PubMed DOI
Chakrabarti S., Banerjee P. Preparation and characterization of multifunctional cotton fabric by coating with sonochemically synthesized zinc oxide nanoparticle-flakes and a novel approach to monitor its self-cleaning property. J. Text. Inst. 2015;106:963–969. doi: 10.1080/00405000.2014.955962. DOI
Noman M.T., Petru M. Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC
Nair M.G., Nirmala M., Rekha K., Anukaliani A. Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 2011;65:1797–1800. doi: 10.1016/j.matlet.2011.03.079. DOI
Kaur J., Singhal S. Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of Methyl Orange. Ceram. Int. 2014;40:7417–7424. doi: 10.1016/j.ceramint.2013.12.088. DOI
Bukkitgar S.D., Shetti N.P., Kulkarni R.M., Reddy K.R., Shukla S.S., Saji V.S., Aminabhavi T.M. Electro-catalytic behavior of Mg-doped ZnO nano-flakes for oxidation of anti-inflammatory drug. J. Electrochem. Soc. 2019;166:B3072. doi: 10.1149/2.0131909jes. DOI
Bukkitgar S., Shetti N., Kulkarni R., Nandibewoor S. Electro-sensing base for mefenamic acid on a 5% barium-doped zinc oxide nanoparticle modified electrode and its analytical application. RSC Adv. 2015;5:104891–104899. doi: 10.1039/C5RA22581G. DOI
Karthikeyan C., Arunachalam P., Ramachandran K., Al-Mayouf A.M., Karuppuchamy S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd. 2020;828:154281. doi: 10.1016/j.jallcom.2020.154281. DOI
Shouli B., Liangyuan C., Dianqing L., Wensheng Y., Pengcheng Y., Zhiyong L., Aifan C., Liu C.C. Different morphologies of ZnO nanorods and their sensing property. Sens. Actuators B Chem. 2010;146:129–137. doi: 10.1016/j.snb.2010.02.011. DOI
Al-Gaashani R., Radiman S., Daud A., Tabet N., Al-Douri Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013;39:2283–2292. doi: 10.1016/j.ceramint.2012.08.075. DOI
Aerogels for Biomedical, Energy and Sensing Applications
Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network
Classification of Textile Polymer Composites: Recent Trends and Challenges
Combined Use of Modal Analysis and Machine Learning for Materials Classification
Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering