Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres

. 2021 Apr 10 ; 13 (8) : . [epub] 20210410

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33920272

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293 European Union (European Structural and Investment Funds - Operational Programme Research, Development and Education)

Zinc oxide (ZnO) in various nano forms (nanoparticles, nanorods, nanosheets, nanowires and nanoflowers) has received remarkable attention worldwide for its functional diversity in different fields i.e., paints, cosmetics, coatings, rubber and composites. The purpose of this article is to investigate the role of photocatalytic activity (role of photogenerated radical scavengers) of nano ZnO (nZnO) for the surface activation of polymeric natural fibres especially cotton and their combined effect in photocatalytic applications. Photocatalytic behaviour is a crucial property that enables nZnO as a potential and competitive candidate for commercial applications. The confirmed features of nZnO were characterised by different analytical tools, i.e., scanning electron microscopy (SEM), field emission SEM (FESEM) and elemental detection spectroscopy (EDX). These techniques confirm the size, morphology, structure, crystallinity, shape and dimensions of nZnO. The morphology and size play a crucial role in surface activation of polymeric fibres. In addition, synthesis methods, variables and some of the critical aspects of nZnO that significantly affect the photocatalytic activity are also discussed in detail. This paper delineates a vivid picture to new comers about the significance of nZnO in photocatalytic applications.

Zobrazit více v PubMed

Ilager D., Shetti N.P., Malladi R.S., Shetty N.S., Reddy K.R., Aminabhavi T.M. Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. J. Mol. Liq. 2020;322:114552. doi: 10.1016/j.molliq.2020.114552. DOI

Kulkarni D.R., Malode S.J., Prabhu K.K., Ayachit N.H., Kulkarni R.M., Shetti N.P. Development of a novel nanosensor using Ca-doped ZnO for antihistamine drug. Mater. Chem. Phys. 2020;246:122791. doi: 10.1016/j.matchemphys.2020.122791. DOI

Shanbhag M.M., Shetti N.P., Kulkarni R.M., Chandra P. Nanostructured Ba/ZnO modified electrode as a sensor material for detection of organosulfur thiosalicylic acid. Microchem. J. 2020;159:105409. doi: 10.1016/j.microc.2020.105409. DOI

Wasim M., Ashraf M., Tayyaba S., Nazir A. Simulation and synthesis of ZnO nanorods on AAO nano porous template for use in a mems devices. Dig. J. Nanomater. Biostruct. 2019;14:559–567.

Liu H., Liu J., Xie X., Li X. Development of photo-magnetic drug delivery system by facile-designed dual stimuli-responsive modified biopolymeric chitosan capped nano-vesicle to improve efficiency in the anesthetic effect and its biological investigations. J. Photochem. Photobiol. B Biol. 2020;202:111716. doi: 10.1016/j.jphotobiol.2019.111716. PubMed DOI

Andryukov B.G., Besednova N.N., Romashko R.V., Zaporozhets T.S., Efimov T.A. Label-free biosensors for laboratory-based diagnostics of infections: Current achievements and new trends. Biosensors. 2020;10:11. doi: 10.3390/bios10020011. PubMed DOI PMC

Souza J.M.T., de Araujo A.R., de Carvalho A.M.A., Amorim A.d.G.N., Daboit T.C., de Almeida J.R.d.S., da Silva D.A., Eaton P. Sustainably produced cashew gum-capped zinc oxide nanoparticles show antifungal activity against Candida parapsilosis. J. Clean. Prod. 2020;247:119085. doi: 10.1016/j.jclepro.2019.119085. DOI

Manjula N., Chen S.-M. One-pot synthesis of rod-shaped gadolinia doped zinc oxide decorated on graphene oxide composite as an efficient electrode material for isoprenaline sensor. Compos. Part B Eng. 2021;211:108631. doi: 10.1016/j.compositesb.2021.108631. DOI

Chen Z., Zhang D., Zhang Y., Zhang H., Zhang S. Influence of multi-dimensional nanomaterials composite form on thermal and ultraviolet oxidation aging resistances of SBS modified asphalt. Constr. Build. Mater. 2021;273:122054. doi: 10.1016/j.conbuildmat.2020.122054. DOI

Islam S.E., Hang D.-R., Chen C.-H., Chou M.M., Liang C.-T., Sharma K.H. Rational design of hetero-dimensional C-ZnO/MoS2 nanocomposite anchored on 3D mesoporous carbon framework towards synergistically enhanced stability and efficient visible-light-driven photocatalytic activity. Chemosphere. 2021;266:129148. doi: 10.1016/j.chemosphere.2020.129148. PubMed DOI

Aaryashree A., Mandal B., Biswas A., Bhardwaj R., Agarwal A., Das A.K., Mukherjee S. Mesoporous Tyrosine Functionalized BTC-ZnO Composite for Highly Selective Capacitive CO Sensor. IEEE Sens. J. 2020;21:2610–2617. doi: 10.1109/JSEN.2020.3027786. DOI

Gadisa B.T., Appiah-Ntiamoah R., Kim H. In-situ derived hierarchical ZnO/Zn-C nanofiber with high photocatalytic activity and recyclability under solar light. Appl. Surf. Sci. 2019;491:350–359. doi: 10.1016/j.apsusc.2019.06.159. DOI

He J., Zhang Y., Guo Y., Rhodes G., Yeom J., Li H., Zhang W. Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms. Environ. Int. 2019;132:105105. doi: 10.1016/j.envint.2019.105105. PubMed DOI

Messih M.A., Shalan A.E., Sanad M.F., Ahmed M. Facile approach to prepare ZnO@ SiO2 nanomaterials for photocatalytic degradation of some organic pollutant models. J. Mater. Sci. Mater. Electron. 2019;30:14291–14299. doi: 10.1007/s10854-019-01798-9. DOI

Ahmad R., Majhi S.M., Zhang X., Swager T.M., Salama K.N. Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Colloid Interface Sci. 2019;270:1–27. doi: 10.1016/j.cis.2019.05.006. PubMed DOI

Azeem M., Noman M.T., Wiener J., Petru M., Louda P. Structural design of efficient fog collectors: A review. Environ. Technol. Innov. 2020;20:101169. doi: 10.1016/j.eti.2020.101169. DOI

Ali A., Sattar M., Riaz T., Khan B.A., Awais M., Militky J., Noman M.T. Highly stretchable durable electro-thermal conductive yarns made by deposition of carbon nanotubes. J. Text. Inst. 2020 doi: 10.1080/00405000.2020.1863569. DOI

Noman M.T., Amor N., Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2021 doi: 10.1080/10408436.2021.1886041. DOI

Zhang Q., Dandeneau C.S., Zhou X., Cao G. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009;21:4087–4108. doi: 10.1002/adma.200803827. DOI

Aditya A., Chattopadhyay S., Jha D., Gautam H.K., Maiti S., Ganguli M. Zinc oxide nanoparticles dispersed in ionic liquids show high antimicrobial efficacy to skin-specific bacteria. ACS Appl. Mater. Interfaces. 2018;10:15401–15411. doi: 10.1021/acsami.8b01463. PubMed DOI

Yang T., Hu L., Xiong X., Petrů M., Noman M.T., Mishra R., Militký J. Sound Absorption Properties of Natural Fibers: A Review. Sustainability. 2020;12:8477. doi: 10.3390/su12208477. DOI

Ali A., Nguyen N.H., Baheti V., Ashraf M., Militky J., Mansoor T., Noman M.T., Ahmad S. Electrical conductivity and physiological comfort of silver coated cotton fabrics. J. Text. Inst. 2018;109:620–628. doi: 10.1080/00405000.2017.1362148. DOI

Noman M.T., Petrů M. Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. Nanomaterials. 2020;10:1661. doi: 10.3390/nano10091661. PubMed DOI PMC

Noman M.T., Petru M., Amor N., Yang T., Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Sci. Rep. 2020;10:17204. doi: 10.1038/s41598-020-74357-6. PubMed DOI PMC

Behera P., Noman M.T., Petrů M. Enhanced Mechanical Properties of Eucalyptus-Basalt-Based Hybrid-Reinforced Cement Composites. Polymers. 2020;12:2837. doi: 10.3390/polym12122837. PubMed DOI PMC

Jamshaid H., Mishra R., Militky J., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI

Shetti N.P., Malode S.J., Nayak D.S., Bagihalli G.B., Kalanur S.S., Malladi R.S., Reddy C.V., Aminabhavi T.M., Reddy K.R. Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl. Surf. Sci. 2019;496:143656. doi: 10.1016/j.apsusc.2019.143656. DOI

Zhang D., Yang Z., Li P., Zhou X. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens. Actuators B Chem. 2019;301:127081. doi: 10.1016/j.snb.2019.127081. DOI

Jamshaid H., Mishra R., Militký J., Noman M.T. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2018;109:879–890. doi: 10.1080/00405000.2017.1381394. DOI

Mansoor T., Hes L., Bajzik V., Noman M.T. Novel method on thermal resistance prediction and thermo-physiological comfort of socks in a wet state. Text. Res. J. 2020;90:1987–2006. doi: 10.1177/0040517520902540. DOI

Kim D., Yong K. Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production. Appl. Catal. B Environ. 2021;282:119538. doi: 10.1016/j.apcatb.2020.119538. DOI

Xiao B., Huang Q., Chen H., Chen X., Long G. A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media. Fractals. 2021;29:2150017. doi: 10.1142/S0218348X21500171. DOI

Xiao B., Zhang Y., Wang Y., Jiang G., Liang M., Chen X., Long G. A fractal model for Kozeny–Carman constant and dimensionless permeability of fibrous porous media with roughened surfaces. Fractals. 2019;27:1950116. doi: 10.1142/S0218348X19501160. DOI

Maharjan B., Park J., Kaliannagounder V.K., Awasthi G.P., Joshi M.K., Park C.H., Kim C.S. Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering. Carbohydr. Polym. 2021;251:117023. doi: 10.1016/j.carbpol.2020.117023. PubMed DOI

Zhang Z., Fang Z., Xiang Y., Liu D., Xie Z., Qu D., Sun M., Tang H., Li J. Cellulose-based material in lithium-sulfur batteries: A Review. Carbohydr. Polym. 2020;255:117469. doi: 10.1016/j.carbpol.2020.117469. PubMed DOI

Sun Y., Chu Y., Wu W., Xiao H. Nanocellulose-based Lightweight Porous Materials: A Review. Carbohydr. Polym. 2020;255:117489. doi: 10.1016/j.carbpol.2020.117489. PubMed DOI

Ulu A., Birhanlı E., Köytepe S., Ateş B. Chitosan/polypropylene glycol hydrogel composite film designed with TiO2 nanoparticles: A promising scaffold of biomedical applications. Int. J. Biol. Macromol. 2020;163:529–540. doi: 10.1016/j.ijbiomac.2020.07.015. PubMed DOI

Ahmed M., Hameed B., Hummadi E. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydr. Polym. 2020;247:116690. doi: 10.1016/j.carbpol.2020.116690. PubMed DOI

Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr. Polym. 2020;251:116986. doi: 10.1016/j.carbpol.2020.116986. PubMed DOI PMC

Theerthagiri J., Salla S., Senthil R., Nithyadharseni P., Madankumar A., Arunachalam P., Maiyalagan T., Kim H.-S. A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology. 2019;30:392001. doi: 10.1088/1361-6528/ab268a. PubMed DOI

Nada A.A., El Aref A.T., Sharaf S.S. The synthesis and characterization of zinc-containing electrospun chitosan/gelatin derivatives with antibacterial properties. Int. J. Biol. Macromol. 2019;133:538–544. doi: 10.1016/j.ijbiomac.2019.04.047. PubMed DOI

Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI

Abramova A.V., Abramov V.O., Bayazitov V.M., Voitov Y., Straumal E.A., Lermontov S.A., Cherdyntseva T.A., Braeutigam P., Weiße M., Günther K. A sol-gel method for applying nanosized antibacterial particles to the surface of textile materials in an ultrasonic field. Ultrason. Sonochem. 2020;60:104788. doi: 10.1016/j.ultsonch.2019.104788. PubMed DOI

Barreto G.P., Morales G., Quintanilla M.L.L. Microwave assisted synthesis of ZnO nanoparticles: Effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. J. Mater. 2013;2013:478681. doi: 10.1155/2013/478681. DOI

Noman M.T., Petru M., Amor N., Louda P. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci. Rep. 2020;10:21080. doi: 10.1038/s41598-020-78305-2. PubMed DOI PMC

Król A., Pomastowski P., Rafińska K., Railean-Plugaru V., Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017;249:37–52. doi: 10.1016/j.cis.2017.07.033. PubMed DOI

Pala R.G.S., Metiu H. The structure and energy of oxygen vacancy formation in clean and doped, very thin films of ZnO. J. Phys. Chem. C. 2007;111:12715–12722. doi: 10.1021/jp073424p. DOI

Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018;81:536–551. doi: 10.1016/j.rser.2017.08.020. DOI

Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI

Hassan N., Hashim M., Bououdina M. One-dimensional ZnO nanostructure growth prepared by thermal evaporation on different substrates: Ultraviolet emission as a function of size and dimensionality. Ceram. Int. 2013;39:7439–7444. doi: 10.1016/j.ceramint.2013.02.088. DOI

Ju D., Xu H., Zhang J., Guo J., Cao B. Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing. Sens. Actuators B Chem. 2014;201:444–451. doi: 10.1016/j.snb.2014.04.072. DOI

Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI

Yue S., Lu J., Zhang J. Synthesis of three-dimensional ZnO superstructures by a one-pot solution process. Mater. Chem. Phys. 2009;117:4–8. doi: 10.1016/j.matchemphys.2009.05.010. DOI

Smijs T.G., Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotech. Sci. Appl. 2011;4:95. doi: 10.2147/NSA.S19419. PubMed DOI PMC

Rasmussen J.W., Martinez E., Louka P., Wingett D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert. Opin. Drug. Deliv. 2010;7:1063–1077. doi: 10.1517/17425247.2010.502560. PubMed DOI PMC

Mishra P.K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today. 2017;22:1825–1834. doi: 10.1016/j.drudis.2017.08.006. PubMed DOI

Zhang Z.-Y., Xiong H.-M. Photoluminescent ZnO nanoparticles and their biological applications. Materials. 2015;8:3101–3127. doi: 10.3390/ma8063101. DOI

Jiang J., Pi J., Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018;2018:1062562. doi: 10.1155/2018/1062562. PubMed DOI PMC

Ashraf M.A., Wiener J., Farooq A., Saskova J., Noman M.T. Development of maghemite glass fibre nanocomposite for adsorptive removal of methylene blue. Fibers Polym. 2018;19:1735–1746. doi: 10.1007/s12221-018-8264-2. DOI

Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI

Haque F.Z., Nandanwar R., Singh P., Dharavath K., Syed F.F. Effect of Different Acids and Solvents on Optical Properties of SiO2 Nanoparticles Prepared by the Sol-Gel Process. Silicon. 2018;10:413–419. doi: 10.1007/s12633-016-9464-2. DOI

Khodadadi A., Farahmandjou M., Yaghoubi M. Investigation on synthesis and characterization of Fe-doped Al2O3 nanocrystals by new sol–gel precursors. Mater. Res. Exp. 2018;6:025029. doi: 10.1088/2053-1591/aaef70. DOI

Abebe B., Murthy H.A., Zerefa E., Adimasu Y. PVA assisted ZnO based mesoporous ternary metal oxides nanomaterials: Synthesis, optimization, and evaluation of antibacterial activity. Mater. Res. Exp. 2020;7:045011. doi: 10.1088/2053-1591/ab87d5. DOI

Sui R., Charpentier P. Synthesis of metal oxide nanostructures by direct sol–gel chemistry in supercritical fluids. Chem. Rev. 2012;112:3057–3082. doi: 10.1021/cr2000465. PubMed DOI

Alias S., Ismail A., Mohamad A. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J. Alloys Compd. 2010;499:231–237. doi: 10.1016/j.jallcom.2010.03.174. DOI

Gupta S., Chang C., Anbalagan A.K., Lee C.-H., Tai N.-H. Reduced graphene oxide/zinc oxide coated wearable electrically conductive cotton textile for high microwave absorption. Compos. Sci. Technol. 2020;188:107994. doi: 10.1016/j.compscitech.2020.107994. DOI

Gong B., Shi T., Liao G., Li X., Huang J., Zhou T., Tang Z. UV irradiation assisted growth of ZnO nanowires on optical fiber surface. Appl. Surf. Sci. 2017;406:294–300. doi: 10.1016/j.apsusc.2017.02.153. DOI

Koutavarapu R., Reddy C.V., Syed K., Reddy K.R., Shetti N.P., Aminabhavi T.M., Shim J. Ultra-small zinc oxide nanosheets anchored onto sodium bismuth sulfide nanoribbons as solar-driven photocatalysts for removal of toxic pollutants and phtotoelectrocatalytic water oxidation. Chemosphere. 2020;267:128559. doi: 10.1016/j.chemosphere.2020.128559. PubMed DOI

Shetti N.P., Malode S.J., Ilager D., Raghava Reddy K., Shukla S.S., Aminabhavi T.M. A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode. Electroanalysis. 2019;31:1040–1049. doi: 10.1002/elan.201800775. DOI

Noman M.T., Petru M., Militký J., Azeem M., Ashraf M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Materials. 2020;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC

Ezeh C.I., Yang X., He J., Snape C., Cheng X.M. Correlating ultrasonic impulse and addition of ZnO promoter with CO2 conversion and methanol selectivity of CuO/ZrO2 catalysts. Ultrason. Sonochem. 2018;42:48–56. doi: 10.1016/j.ultsonch.2017.11.013. PubMed DOI

Salmeri M., Ognibene G., Saitta L., Lombardo C., Genovese C., Barcellona M., D’Urso A., Spitaleri L., Blanco I., Cicala G. Optimization of ZnO Nanorods Growth on Polyetheresulfone Electrospun Mats to Promote Antibacterial Properties. Molecules. 2020;25:1696. doi: 10.3390/molecules25071696. PubMed DOI PMC

Gnaneshwar P.V., Sudakaran S.V., Abisegapriyan S., Sherine J., Ramakrishna S., Rahim M.H.A., Yusoff M.M., Jose R., Venugopal J.R. Ramification of zinc oxide doped hydroxyapatite biocomposites for the mineralization of osteoblasts. Mater. Sci. Eng. C. 2019;96:337–346. doi: 10.1016/j.msec.2018.11.033. PubMed DOI

Wang M., Zhang M., Pang L., Yang C., Zhang Y., Hu J., Wu G. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance. J. Colloid Interface Sci. 2019;537:91–100. doi: 10.1016/j.jcis.2018.10.105. PubMed DOI

Priya A., Arumugam M., Arunachalam P., Al-Mayouf A.M., Madhavan J., Theerthagiri J., Choi M.Y. Fabrication of visible-light active BiFeWO6/ZnO nanocomposites with enhanced photocatalytic activity. Colloids Surf. Phys. Eng. Asp. 2020;586:124294.

Jellal I., Nouneh K., Toura H., Boutamart M., Briche S., Naja J., Soucase B.M., Touhami M.E. Enhanced photocatalytic activity of supported Cu-doped ZnO nanostructures prepared by SILAR method. Opt. Mater. 2021;111:110669. doi: 10.1016/j.optmat.2020.110669. DOI

Sbardella F., Rivilla I., Bavasso I., Russo P., Vitiello L., Tirillò J., Sarasini F. Zinc oxide nanostructures and stearic acid as surface modifiers for flax fabrics in polylactic acid biocomposites. Int. J. Biol. Macromol. 2021;177:495–504. doi: 10.1016/j.ijbiomac.2021.02.171. PubMed DOI

Rabani I., Lee S.-H., Kim H.-S., Yoo J., Park Y.-R., Maqbool T., Bathula C., Jamil Y., Hussain S., Seo Y.-S. Suppressed photocatalytic activity of ZnO based Core@ Shell and RCore@ Shell nanostructure incorporated in the cellulose nanofiber. Chemosphere. 2021;269:129311. doi: 10.1016/j.chemosphere.2020.129311. PubMed DOI

Raja A., Ashokkumar S., Marthandam R.P., Jayachandiran J., Khatiwada C.P., Kaviyarasu K., Raman R.G., Swaminathan M. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochem. Photobiol. B Biol. 2018;181:53–58. doi: 10.1016/j.jphotobiol.2018.02.011. PubMed DOI

Khan S.A., Noreen F., Kanwal S., Iqbal A., Hussain G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater. Sci. Eng. C. 2018;82:46–59. doi: 10.1016/j.msec.2017.08.071. PubMed DOI

Ghayempour S., Montazer M. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrason. Sonochem. 2017;34:458–465. doi: 10.1016/j.ultsonch.2016.06.019. PubMed DOI

Chakrabarti S., Banerjee P. Preparation and characterization of multifunctional cotton fabric by coating with sonochemically synthesized zinc oxide nanoparticle-flakes and a novel approach to monitor its self-cleaning property. J. Text. Inst. 2015;106:963–969. doi: 10.1080/00405000.2014.955962. DOI

Noman M.T., Petru M. Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC

Nair M.G., Nirmala M., Rekha K., Anukaliani A. Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 2011;65:1797–1800. doi: 10.1016/j.matlet.2011.03.079. DOI

Kaur J., Singhal S. Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of Methyl Orange. Ceram. Int. 2014;40:7417–7424. doi: 10.1016/j.ceramint.2013.12.088. DOI

Bukkitgar S.D., Shetti N.P., Kulkarni R.M., Reddy K.R., Shukla S.S., Saji V.S., Aminabhavi T.M. Electro-catalytic behavior of Mg-doped ZnO nano-flakes for oxidation of anti-inflammatory drug. J. Electrochem. Soc. 2019;166:B3072. doi: 10.1149/2.0131909jes. DOI

Bukkitgar S., Shetti N., Kulkarni R., Nandibewoor S. Electro-sensing base for mefenamic acid on a 5% barium-doped zinc oxide nanoparticle modified electrode and its analytical application. RSC Adv. 2015;5:104891–104899. doi: 10.1039/C5RA22581G. DOI

Karthikeyan C., Arunachalam P., Ramachandran K., Al-Mayouf A.M., Karuppuchamy S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd. 2020;828:154281. doi: 10.1016/j.jallcom.2020.154281. DOI

Shouli B., Liangyuan C., Dianqing L., Wensheng Y., Pengcheng Y., Zhiyong L., Aifan C., Liu C.C. Different morphologies of ZnO nanorods and their sensing property. Sens. Actuators B Chem. 2010;146:129–137. doi: 10.1016/j.snb.2010.02.011. DOI

Al-Gaashani R., Radiman S., Daud A., Tabet N., Al-Douri Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013;39:2283–2292. doi: 10.1016/j.ceramint.2012.08.075. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model

. 2022 Apr 15 ; 12 (1) : 6350. [epub] 20220415

Aerogels for Biomedical, Energy and Sensing Applications

. 2021 Dec 14 ; 7 (4) : . [epub] 20211214

Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network

. 2021 Sep 15 ; 13 (18) : . [epub] 20210915

Classification of Textile Polymer Composites: Recent Trends and Challenges

. 2021 Aug 04 ; 13 (16) : . [epub] 20210804

Combined Use of Modal Analysis and Machine Learning for Materials Classification

. 2021 Jul 30 ; 14 (15) : . [epub] 20210730

Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites

. 2021 Jul 01 ; 11 (1) : 13649. [epub] 20210701

Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering

. 2021 Jun 25 ; 13 (13) : . [epub] 20210625

Prediction of functional properties of nano [Formula: see text] coated cotton composites by artificial neural network

. 2021 Jun 10 ; 11 (1) : 12235. [epub] 20210610

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...