Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34202211
PubMed Central
PMC8272018
DOI
10.3390/polym13132099
PII: polym13132099
Knihovny.cz E-zdroje
- Klíčová slova
- basalt, composites, concrete, geopolymers, glass, jute,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper discusses the influence of fiber reinforcement on the properties of geopolymer concrete composites, based on fly ash, ground granulated blast furnace slag and metakaolin. Traditional concrete composites are brittle in nature due to low tensile strength. The inclusion of fibrous material alters brittle behavior of concrete along with a significant improvement in mechanical properties i.e., toughness, strain and flexural strength. Ordinary Portland cement (OPC) is mainly used as a binding agent in concrete composites. However, current environmental awareness promotes the use of alternative binders i.e., geopolymers, to replace OPC because in OPC production, significant quantity of CO2 is released that creates environmental pollution. Geopolymer concrete composites have been characterized using a wide range of analytical tools including scanning electron microscopy (SEM) and elemental detection X-ray spectroscopy (EDX). Insight into the physicochemical behavior of geopolymers, their constituents and reinforcement with natural polymeric fibers for the making of concrete composites has been gained. Focus has been given to the use of sisal, jute, basalt and glass fibers.
Zobrazit více v PubMed
Huntzinger D.N., Eatmon T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009;17:668–675. doi: 10.1016/j.jclepro.2008.04.007. DOI
Shehata N., Sayed E.T., Abdelkareem M.A. Recent progress in environmentally friendly geopolymers: A review. Sci. Total Environ. 2020;762:143166. doi: 10.1016/j.scitotenv.2020.143166. PubMed DOI
El-Salamony A.-H.R., Mahmoud H.M., Shehata N. Enhancing the efficiency of a cement plant kiln using modified alternative fuel. Environ. Nanotechnol. Monit. Manag. 2020;14:100310.
Hasanbeigi A., Morrow W., Masanet E., Sathaye J., Xu T. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China. Energy Policy. 2013;57:287–297. doi: 10.1016/j.enpol.2013.01.053. DOI
Shafeek A.M., Khedr M.H., El-Dek S.I., Shehata N. Influence of ZnO nanoparticle ratio and size on mechanical properties and whiteness of White Portland Cement. Appl. Nanosci. 2020;10:3603–3615. doi: 10.1007/s13204-020-01444-5. DOI
Bajpai R., Choudhary K., Srivastava A., Sangwan K.S., Singh M. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 2020;254:120147. doi: 10.1016/j.jclepro.2020.120147. DOI
Amran Y.M., Alyousef R., Alabduljabbar H., El-Zeadani M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020;251:119679. doi: 10.1016/j.jclepro.2019.119679. DOI
Verma M., Dev N. Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete. Struct. Concr. 2021 doi: 10.1002/suco.202000068. DOI
Shekhawat P., Sharma G., Singh R.M. Microstructural and morphological development of eggshell powder and flyash-based geopolymers. Constr. Build. Mater. 2020;260:119886. doi: 10.1016/j.conbuildmat.2020.119886. DOI
McLellan B.C., Williams R.P., Lay J., Van Riessen A., Corder G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011;19:1080–1090. doi: 10.1016/j.jclepro.2011.02.010. DOI
Kathirvel P., Sreekumaran S. Sustainable development of ultra high performance concrete using geopolymer technology. J. Build. Eng. 2021;39:102267. doi: 10.1016/j.jobe.2021.102267. DOI
Matalkah F., Ababneh A., Aqel R. Efflorescence Control in Calcined Kaolin-Based Geopolymer Using Silica Fume and OPC. J. Mater. Civ. Eng. 2021;33:04021119. doi: 10.1061/(ASCE)MT.1943-5533.0003764. DOI
Tchadjie L.N., Ekolu S.O. Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. J. Mater. Sci. 2018;53:4709–4733. doi: 10.1007/s10853-017-1907-7. DOI
Ribeiro R.A.S., Ribeiro M.S., Kriven W.M. A review of particle-and fiber-reinforced metakaolin-based geopolymer composites. J. Ceram. Sci. Technol. 2017;8:307.
Ali A., Sattar M., Riaz T., Alam Khan B., Awais M., Militky J., Noman M.T. Highly stretchable durable electro-thermal conductive yarns made by deposition of carbon nanotubes. J. Text. Inst. 2021:1–10. doi: 10.1080/00405000.2020.1863569. DOI
Ashraf M.A., Wiener J., Farooq A., Saskova J., Noman M.T. Development of Maghemite Glass Fibre Nanocomposite for Adsorptive Removal of Methylene Blue. Fibers Polym. 2018;19:1735–1746. doi: 10.1007/s12221-018-8264-2. DOI
Behera P., Noman M.T., Petrů M. Enhanced Mechanical Properties of Eucalyptus-Basalt-Based Hybrid-Reinforced Cement Composites. Polymers. 2020;12:2837. doi: 10.3390/polym12122837. PubMed DOI PMC
Noman M.T., Amor N., Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2021:1–43. doi: 10.1080/10408436.2021.1886041. DOI
Davidovits J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991;37:1633–1656. doi: 10.1007/BF01912193. DOI
Duxson P., Fernández-Jiménez A., Provis J.L., Lukey G.C., Palomo A., Van Deventer J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007;42:2917–2933. doi: 10.1007/s10853-006-0637-z. DOI
Nawaz M., Heitor A., Sivakumar M. Geopolymers in construction—Recent developments. Constr. Build. Mater. 2020;260:120472. doi: 10.1016/j.conbuildmat.2020.120472. DOI
Wong V., Jervis W., Fishburn B., Numata T., Joe W., Rawal A., Sorrell C.C., Koshy P. Long-Term Strength Evolution in Ambient-Cured Solid-Activator Geopolymer Compositions. Minerals. 2021;11:143. doi: 10.3390/min11020143. DOI
Ng C., Alengaram U.J., Wong L.S., Mo K.H., Jumaat M.Z., Ramesh S. A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr. Build. Mater. 2018;186:550–576. doi: 10.1016/j.conbuildmat.2018.07.075. DOI
Liew Y.-M., Heah C.-Y., Mustafa A.B.M., Kamarudin H. Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci. 2016;83:595–629. doi: 10.1016/j.pmatsci.2016.08.002. DOI
Toniolo N., Boccaccini A.R. Fly ash-based geopolymers containing added silicate waste. A review. Ceram. Int. 2017;43:14545–14551. doi: 10.1016/j.ceramint.2017.07.221. DOI
Mousavinejad S.H.G., Sammak M. Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete. Structures. 2021;32:1420–1427. doi: 10.1016/j.istruc.2021.03.112. DOI
Silva G., Kim S., Aguilar R., Nakamatsu J. Natural fibers as reinforcement additives for geopolymers—A review of potential eco-friendly applications to the construction industry. Sustain. Mater. Technol. 2020;23:e00132. doi: 10.1016/j.susmat.2019.e00132. DOI
Noman M., Petrů M. Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites. Nanomaterials. 2020;10:1661. doi: 10.3390/nano10091661. PubMed DOI PMC
Noman M.T., Petru M., Amor N., Louda P. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci. Rep. 2020;10:21080. doi: 10.1038/s41598-020-78305-2. PubMed DOI PMC
Sturm P., Gluth G., Jäger C., Brouwers H., Kühne H.-C. Sulfuric acid resistance of one-part alkali-activated mortars. Cem. Concr. Res. 2018;109:54–63. doi: 10.1016/j.cemconres.2018.04.009. DOI
Liu H., He H., Li Y., Hu T., Ni H., Zhang H. Coupling effect of steel slag in preparation of calcium-containing geopolymers with spent fluid catalytic cracking (FCC) catalyst. Constr. Build. Mater. 2021;290:123194. doi: 10.1016/j.conbuildmat.2021.123194. DOI
Singh B., Ishwarya G., Gupta M., Bhattacharyya S. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015;85:78–90. doi: 10.1016/j.conbuildmat.2015.03.036. DOI
Kriven W.M., Bell J.L., Gordon M. Microstructure and Microchemistry of Fully-Reacted Geopolymers and Geopolymer Matrix Composites. Ceram. Transact. 2003;153:1994.
Peng X., Shuai Q., Li H., Ding Q., Gu Y., Cheng C., Xu Z. Fabrication and Fireproofing Performance of the Coal Fly Ash-Metakaolin-Based Geopolymer Foams. Materials. 2020;13:1750. doi: 10.3390/ma13071750. PubMed DOI PMC
Değirmenci F.N. Utilization of Natural and Waste Pozzolans as an Alternative Resource of Geopolymer Mortar. Int. J. Civ. Eng. 2018;16:179–188. doi: 10.1007/s40999-016-0115-1. DOI
Król M., Rożek P., Mozgawa W. Synthesis of the Sodalite by Geopolymerization Process Using Coal Fly Ash. Pol. J. Environ. Stud. 2017;26:2611–2617. doi: 10.15244/pjoes/70231. DOI
Andini S., Cioffi R., Colangelo F., Grieco T., Montagnaro F., Santoro L. Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manag. 2008;28:416–423. doi: 10.1016/j.wasman.2007.02.001. PubMed DOI
Zafar I., Rashid K., Ju M. Synthesis and characterization of lightweight aggregates through geopolymerization and microwave irradiation curing. J. Build. Eng. 2021;42:102454. doi: 10.1016/j.jobe.2021.102454. DOI
Nuaklong P., Wongsa A., Boonserm K., Ngohpok C., Jongvivatsakul P., Sata V., Sukontasukkul P., Chindaprasirt P. Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. J. Build. Eng. 2021;41:102403. doi: 10.1016/j.jobe.2021.102403. DOI
Muraleedharan M., Nadir Y. Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: A review. Ceram. Int. 2021;47:13257–13279. doi: 10.1016/j.ceramint.2021.02.009. DOI
Amran M., Debbarma S., Ozbakkaloglu T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021;270:121857. doi: 10.1016/j.conbuildmat.2020.121857. DOI
Simão L., De Rossi A., Hotza D., Ribeiro M.J., Novais R.M., Montedo O.R.K., Raupp-Pereira F. Zeolites-containing geopolymers obtained from biomass fly ash: Influence of temperature, composition, and porosity. J. Am. Ceram. Soc. 2020;104:803–815. doi: 10.1111/jace.17512. DOI
Yip C.K., Van Deventer J.S.J. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J. Mater. Sci. 2003;38:3851–3860. doi: 10.1023/A:1025904905176. DOI
van Jaarsveld J., van Deventer J., Lukey G. The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem. Eng. J. 2002;89:63–73. doi: 10.1016/S1385-8947(02)00025-6. DOI
Nguyen T.T., Goodier C.I., Austin S.A. Factors affecting the slump and strength development of geopolymer concrete. Constr. Build. Mater. 2020;261:119945. doi: 10.1016/j.conbuildmat.2020.119945. DOI
Zhang H., Li L., Sarker P.K., Long T., Shi X., Wang Q., Cai G. Investigating Various Factors Affecting the Long-Term Compressive Strength of Heat-Cured Fly Ash Geopolymer Concrete and the Use of Orthogonal Experimental Design Method. Int. J. Concr. Struct. Mater. 2019;13:63. doi: 10.1186/s40069-019-0375-7. DOI
Zhang B., MacKenzie K.J.D., Brown I.W.M. Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate. J. Mater. Sci. 2009;44:4668–4676. doi: 10.1007/s10853-009-3715-1. DOI
De Vargas A.S., Molin D.C.D., Vilela A., da Silva F.J., Pavão B., Veit H.M. The effects of Na2O/SiO2molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem. Concr. Compos. 2011;33:653–660. doi: 10.1016/j.cemconcomp.2011.03.006. DOI
Noman M.T., Petru M., Militký J., Azeem M., Ashraf M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Materials. 2019;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC
Phair J., Van Deventer J. Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Process. 2002;66:121–143. doi: 10.1016/S0301-7516(02)00013-3. DOI
Kusbiantoro A., Ibrahim M.S., Muthusamy K., Alias A. Development of Sucrose and Citric Acid as the Natural based Admixture for Fly Ash based Geopolymer. Proc. Environ. Sci. 2013;17:596–602. doi: 10.1016/j.proenv.2013.02.075. DOI
Nematollahi B., Sanjayan J. Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater. Des. 2014;57:667–672. doi: 10.1016/j.matdes.2014.01.064. DOI
Jang J., Lee N., Lee H. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Constr. Build. Mater. 2014;50:169–176. doi: 10.1016/j.conbuildmat.2013.09.048. DOI
Palomo A., Grutzeck M., Blanco-Varela M.T. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999;29:1323–1329. doi: 10.1016/S0008-8846(98)00243-9. DOI
Heah C., Kamarudin H., Al Bakri A.M., Binhussain M., Luqman M., Nizar I.K., Ruzaidi C., Liew Y. Effect of Curing Profile on Kaolin-based Geopolymers. Phys. Proc. 2011;22:305–311. doi: 10.1016/j.phpro.2011.11.048. DOI
Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010;24:1176–1183. doi: 10.1016/j.conbuildmat.2009.12.023. DOI
Zuhua Z., Xiao Y., Huajun Z., Yue C. Role of water in the synthesis of calcined kaolin-based geopolymer. Appl. Clay Sci. 2009;43:218–223. doi: 10.1016/j.clay.2008.09.003. DOI
Van Jaarsveld J., van Deventer J., Lukey G. The characterisation of source materials in fly ash-based geopolymers. Mater. Lett. 2003;57:1272–1280. doi: 10.1016/S0167-577X(02)00971-0. DOI
Isaia G.C., Gastaldini A.L.G. Concrete sustainability with very high amount of fly ash and slag. Rev. IBRACON Estrut. Mater. 2009;2:244–253. doi: 10.1590/S1983-41952009000300003. DOI
Panias D., Giannopoulou I.P., Perraki T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007;301:246–254. doi: 10.1016/j.colsurfa.2006.12.064. DOI
Belviso C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 2018;65:109–135. doi: 10.1016/j.pecs.2017.10.004. DOI
Yao Z., Ji X., Sarker P., Tang J., Ge L., Xia M., Xi Y. A comprehensive review on the applications of coal fly ash. Earth Sci. Rev. 2015;141:105–121. doi: 10.1016/j.earscirev.2014.11.016. DOI
Ahmaruzzaman M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010;36:327–363. doi: 10.1016/j.pecs.2009.11.003. DOI
Cho Y.K., Jung S.H., Choi Y.C. Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Constr. Build. Mater. 2019;204:255–264. doi: 10.1016/j.conbuildmat.2019.01.208. DOI
Temuujin J., Van Riessen A., Williams R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 2009;167:82–88. doi: 10.1016/j.jhazmat.2008.12.121. PubMed DOI
Sarkar A., Rano R., Udaybhanu G., Basu A. A comprehensive characterisation of fly ash from a thermal power plant in Eastern India. Fuel Process. Technol. 2006;87:259–277. doi: 10.1016/j.fuproc.2005.09.005. DOI
Papadakis V.G. Effect of fly ash on Portland cement systems: Part II. High-calcium fly ash. Cem. Concr. Res. 2000;30:1647–1654. doi: 10.1016/S0008-8846(00)00388-4. DOI
Çiçek T., Çinçin Y. Use of fly ash in production of light-weight building bricks. Constr. Build. Mater. 2015;94:521–527. doi: 10.1016/j.conbuildmat.2015.07.029. DOI
Bendapudi S.C.K., Saha P. Contribution of fly ash to the properties of mortar and concrete. Int. J. Earth Sci. Eng. 2011;4:1017–1023.
Malhotra V. Durability of concrete incorporating high-volume of low-calcium (ASTM Class F) fly ash. Cem. Concr. Compos. 1990;12:271–277. doi: 10.1016/0958-9465(90)90006-J. DOI
Johari M.A.M., Brooks J., Kabir S., Rivard P. Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 2011;25:2639–2648. doi: 10.1016/j.conbuildmat.2010.12.013. DOI
Hemalatha T., Ramaswamy A. A review on fly ash characteristics—Towards promoting high volume utilization in developing sustainable concrete. J. Clean. Prod. 2017;147:546–559. doi: 10.1016/j.jclepro.2017.01.114. DOI
Cheah C.B., Tan L.E., Ramli M. Recent advances in slag-based binder and chemical activators derived from industrial by-products—A review. Constr. Build. Mater. 2020;272:121657. doi: 10.1016/j.conbuildmat.2020.121657. DOI
Kumar V.P., Gunasekaran K., Shyamala T. Characterization study on coconut shell concrete with partial replacement of cement by GGBS. J. Build. Eng. 2019;26:100830. doi: 10.1016/j.jobe.2019.100830. DOI
Siddique R., Bennacer R. Use of iron and steel industry by-product (GGBS) in cement paste and mortar. Resour. Conserv. Recycl. 2012;69:29–34. doi: 10.1016/j.resconrec.2012.09.002. DOI
Pal S., Mukherjee A., Pathak S. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cem. Concr. Res. 2003;33:1481–1486. doi: 10.1016/S0008-8846(03)00062-0. DOI
Özbay E., Erdemir M., Durmuş H.I. Utilization and efficiency of ground granulated blast furnace slag on concrete properties—A review. Constr. Build. Mater. 2016;105:423–434. doi: 10.1016/j.conbuildmat.2015.12.153. DOI
Barnett S., Soutsos M., Millard S., Bungey J. Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cem. Concr. Res. 2006;36:434–440. doi: 10.1016/j.cemconres.2005.11.002. DOI
Oner A., Akyuz S. An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem. Concr. Compos. 2007;29:505–514. doi: 10.1016/j.cemconcomp.2007.01.001. DOI
Sabir B., Wild S., Bai J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001;23:441–454. doi: 10.1016/S0958-9465(00)00092-5. DOI
Murray H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000;17:207–221. doi: 10.1016/S0169-1317(00)00016-8. DOI
Siddique R., Klaus J. Influence of metakaolin on the properties of mortar and concrete: A review. Appl. Clay Sci. 2009;43:392–400. doi: 10.1016/j.clay.2008.11.007. DOI
Zulkifly K., Cheng-Yong H., Yun-Ming L., Abdullah M.M.A.B., Shee-Ween O., Bin Khalid M.S. Effect of phosphate addition on room-temperature-cured fly ash-metakaolin blend geopolymers. Constr. Build. Mater. 2021;270:121486. doi: 10.1016/j.conbuildmat.2020.121486. DOI
Cai R., He Z., Tang S., Wu T., Chen E. The early hydration of metakaolin blended cements by non-contact impedance measurement. Cem. Concr. Compos. 2018;92:70–81. doi: 10.1016/j.cemconcomp.2018.06.001. DOI
Rashad A.M. Metakaolin as cementitious material: History, scours, production and composition—A comprehensive overview. Constr. Build. Mater. 2013;41:303–318. doi: 10.1016/j.conbuildmat.2012.12.001. DOI
Paiva H., Yliniemi J., Illikainen M., Rocha F., Ferreira V.M. Mine Tailings Geopolymers as a Waste Management Solution for A More Sustainable Habitat. Sustainability. 2019;11:995. doi: 10.3390/su11040995. DOI
Wang M.-R., Jia D.-C., He P.-G., Zhou Y. Microstructural and mechanical characterization of fly ash cenosphere/metakaolin-based geopolymeric composites. Ceram. Int. 2011;37:1661–1666. doi: 10.1016/j.ceramint.2011.02.010. DOI
Poon C.-S., Azhar S., Anson M., Wong Y.-L. Performance of metakaolin concrete at elevated temperatures. Cem. Concr. Compos. 2003;25:83–89. doi: 10.1016/S0958-9465(01)00061-0. DOI
Khatib J., Wild S. Sulphate Resistance of Metakaolin Mortar. Cem. Concr. Res. 1998;28:83–92. doi: 10.1016/S0008-8846(97)00210-X. DOI
Khatib J., Hibbert J. Selected engineering properties of concrete incorporating slag and metakaolin. Constr. Build. Mater. 2005;19:460–472. doi: 10.1016/j.conbuildmat.2004.07.017. DOI
Neupane K. Fly ash and GGBFS based powder-activated geopolymer binders: A viable sustainable alternative of portland cement in concrete industry. Mech. Mater. 2016;103:110–122. doi: 10.1016/j.mechmat.2016.09.012. DOI
Assi L.N., Carter K., Deaver E., Ziehl P. Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 2020;263:121477. doi: 10.1016/j.jclepro.2020.121477. DOI
Görhan G., Kürklü G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos. Part. B Eng. 2014;58:371–377. doi: 10.1016/j.compositesb.2013.10.082. DOI
Sanchindapong S., Narattha C., Piyaworapaiboon M., Sinthupinyo S., Chindaprasirt P., Chaipanich A. Microstructure and phase characterizations of fly ash cements by alkali activation. J. Therm. Anal. Calorim. 2020;142:1–8. doi: 10.1007/s10973-020-10021-5. DOI
Rahim R.A., Rahmiati T., Azizli K.A., Man Z., Nuruddin M.F., Ismail L. Comparison of Using NaOH and KOH Activated Fly Ash-Based Geopolymer on the Mechanical Properties. Mater. Sci. Forum. 2014;803:179–184. doi: 10.4028/www.scientific.net/MSF.803.179. DOI
Zhang F., Zhang L., Liu M., Mu C., Liang Y.N., Hu X. Role of alkali cation in compressive strength of metakaolin based geopolymers. Ceram. Int. 2017;43:3811–3817. doi: 10.1016/j.ceramint.2016.12.034. DOI
Fu C., Ye H., Zhu K., Fang D., Zhou J. Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers. Cem. Concr. Compos. 2020;114:103721. doi: 10.1016/j.cemconcomp.2020.103721. DOI
Ranjbar N., Talebian S., Mehrali M., Kuenzel C., Metselaar H.S.C., Jumaat M.Z. Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos. Sci. Technol. 2016;122:73–81. doi: 10.1016/j.compscitech.2015.11.009. DOI
Ranjbar N., Zhang M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020;107:103498. doi: 10.1016/j.cemconcomp.2019.103498. DOI
Silva G., Kim S., Bertolotti B., Nakamatsu J., Aguilar R. Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. Constr. Build. Mater. 2020;258:119697. doi: 10.1016/j.conbuildmat.2020.119697. DOI
Amor N., Noman M.T., Petru M. Prediction of functional properties of nano TiO2 coated cotton composites by artificial neural network. Sci. Rep. 2021;11:1–11. doi: 10.1038/s41598-021-91733-y. PubMed DOI PMC
Noman M.T., Petru M., Louda P., Kejzlar P. Woven textiles coated with zinc oxide nanoparticles and their thermophysiological comfort properties. J. Nat. Fiber. 2021;18:1–14. doi: 10.1080/15440478.2020.1870621. DOI
Arisoy B., Wu H.-C. Material characteristics of high performance lightweight concrete reinforced with PVA. Constr. Build. Mater. 2008;22:635–645. doi: 10.1016/j.conbuildmat.2006.10.010. DOI
Shaikh F.U.A. Review of mechanical properties of short fibre reinforced geopolymer composites. Constr. Build. Mater. 2013;43:37–49. doi: 10.1016/j.conbuildmat.2013.01.026. DOI
Jamshaid H., Mishra R., Militký J., Noman M.T. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2017;109:879–890. doi: 10.1080/00405000.2017.1381394. DOI
Jamshaid H., Mishra R., Militky J., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI
Yang T., Hu L., Xiong X., Petrů M., Noman M.T., Mishra R., Militký J. Sound Absorption Properties of Natural Fibers: A Review. Sustainability. 2020;12:8477. doi: 10.3390/su12208477. DOI
Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI
Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A Novel Green Stabilization of TiO2 Nanoparticles onto Cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI
Yan L., Kasal B., Huang L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part. B Eng. 2016;92:94–132. doi: 10.1016/j.compositesb.2016.02.002. DOI
Savastano H., Jr., Warden P.G., Coutts R. Mechanically pulped sisal as reinforcement in cementitious matrices. Cem. Concr. Compos. 2003;25:311–319. doi: 10.1016/S0958-9465(02)00055-0. DOI
Morton J., Cooke T., Akers S. Performance of slash pine fibers in fiber cement products. Constr. Build. Mater. 2010;24:165–170. doi: 10.1016/j.conbuildmat.2007.08.015. DOI
Noman M., Amor N., Petru M., Mahmood A., Kejzlar P. Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres. Polymers. 2021;13:1227. doi: 10.3390/polym13081227. PubMed DOI PMC
Azwa Z., Yousif B., Manalo A., Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013;47:424–442. doi: 10.1016/j.matdes.2012.11.025. DOI
Ardanuy M., Claramunt J., Filho R.T. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015;79:115–128. doi: 10.1016/j.conbuildmat.2015.01.035. DOI
Al-Oraimi S., Seibi A. Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres. Compos. Struct. 1995;32:165–171. doi: 10.1016/0263-8223(95)00043-7. DOI
Ramakrishna G., Sundararajan T. Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study. Cem. Concr. Compos. 2005;27:547–553. doi: 10.1016/j.cemconcomp.2004.09.006. DOI
Naveen J., Jawaid M., Amuthakkannan P., Chandrasekar M. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier BV; Amsterdam, The Netherlands: 2019. Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites; pp. 427–440.
Kumre A., Rana R., Purohit R. A Review on mechanical property of sisal glass fiber reinforced polymer composites. Mater. Today Proc. 2017;4:3466–3476. doi: 10.1016/j.matpr.2017.02.236. DOI
Senthilkumar K., Saba N., Rajini N., Chandrasekar M., Jawaid M., Siengchin S., Alotman O.Y. Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Constr. Build. Mater. 2018;174:713–729. doi: 10.1016/j.conbuildmat.2018.04.143. DOI
Yan L., Chouw N., Jayaraman K. Flax fibre and its composites–A review. Compos. Part B Eng. 2014;56:296–317. doi: 10.1016/j.compositesb.2013.08.014. DOI
Kumar P.S.S., Allamraju K.V. A Review of Natural Fiber Composites [Jute, Sisal, Kenaf] Mater. Today Proc. 2019;18:2556–2562. doi: 10.1016/j.matpr.2019.07.113. DOI
Wei J., Meyer C. Degradation mechanisms of natural fiber in the matrix of cement composites. Cem. Concr. Res. 2015;73:1–16. doi: 10.1016/j.cemconres.2015.02.019. DOI
Idicula M., Neelakantan N.R., Oommen Z., Joseph K., Thomas S. A study of the mechanical properties of randomly oriented short banana and sisal hybrid fiber reinforced polyester composites. J. Appl. Polym. Sci. 2005;96:1699–1709. doi: 10.1002/app.21636. DOI
Liang Z., Wu H., Liu R., Wu C. Preparation of Long Sisal Fiber-Reinforced Polylactic Acid Biocomposites with Highly Improved Mechanical Performance. Polymers. 2021;13:1124. doi: 10.3390/polym13071124. PubMed DOI PMC
Prasad A.R., Rao K.M. Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater. Des. 2011;32:4658–4663. doi: 10.1016/j.matdes.2011.03.015. DOI
Hashmi S., Rajput R.S., Naik A., Chand N., Singh R. Investigations on weld joining of sisal CSM-thermoplastic composites. Polym. Compos. 2014;36:214–220. doi: 10.1002/pc.22932. DOI
De Castro B.D., Fotouhi M., Vieira L.M.G., De Faria P.E., Rubio J.C.C. Mechanical Behaviour of a Green Composite from Biopolymers Reinforced with Sisal Fibres. J. Polym. Environ. 2021;29:429–440. doi: 10.1007/s10924-020-01875-9. DOI
Rajesh G., Prasad A.R., Gupta A. Mechanical and degradation properties of successive alkali treated completely biodegradable sisal fiber reinforced poly lactic acid composites. J. Reinf. Plast. Compos. 2015;34:951–961. doi: 10.1177/0731684415584784. DOI
Savastano H., Jr., Warden P., Coutts R. Brazilian waste fibres as reinforcement for cement-based composites. Cem. Concr. Compos. 2000;22:379–384. doi: 10.1016/S0958-9465(00)00034-2. DOI
Baloyi R.B., Ncube S., Moyo M., Nkiwane L., Dzingai P. Analysis of the properties of a glass/sisal/polyester composite. Sci. Rep. 2021;11:1–10. doi: 10.1038/s41598-020-79566-7. PubMed DOI PMC
Bahja B., Elouafi A., Tizliouine A., Omari L. Morphological and structural analysis of treated sisal fibers and their impact on mechanical properties in cementitious composites. J. Build. Eng. 2021;34:102025. doi: 10.1016/j.jobe.2020.102025. DOI
Ren G., Yao B., Huang H., Gao X. Influence of sisal fibers on the mechanical performance of ultra-high performance concretes. Constr. Build. Mater. 2021;286:122958. doi: 10.1016/j.conbuildmat.2021.122958. DOI
Guerini V., Conforti A., Plizzari G., Kawashima S. Influence of Steel and Macro-Synthetic Fibers on Concrete Properties. Fibers. 2018;6:47. doi: 10.3390/fib6030047. DOI
Chalioris C.E., Panagiotopoulos T.A. Flexural analysis of steel fibre-reinforced concrete members. Comput. Concr. 2018;22:11–25.
Kytinou V.K., Chalioris C.E., Karayannis C.G. Analysis of Residual Flexural Stiffness of Steel Fiber-Reinforced Concrete Beams with Steel Reinforcement. Materials. 2020;13:2698. doi: 10.3390/ma13122698. PubMed DOI PMC
Choi S.-W., Choi J., Lee S.-C. Probabilistic Analysis for Strain-Hardening Behavior of High-Performance Fiber-Reinforced Concrete. Materials. 2019;12:2399. doi: 10.3390/ma12152399. PubMed DOI PMC
Zhang K., Pan L., Li J., Lin C. What is the mechanism of the fiber effect on the rheological behavior of cement paste with polycarboxylate superplasticizer? Constr. Build. Mater. 2021;281:122542. doi: 10.1016/j.conbuildmat.2021.122542. DOI
Okeola A.A., Mwero J., Bello A. Behavior of sisal fiber-reinforced concrete in exterior beam-column joint under monotonic loading. Asian J. Civ. Eng. 2021;22:627–636. doi: 10.1007/s42107-020-00336-x. DOI
De Andrare Silva F., Toledo Filho R.D., de Almeida Melo Filho J., Fairbairn E.D.M.R. Physical and mechanical properties of durable sisal fiber–cement composites. Constr. Build. Mater. 2010;24:777–785. doi: 10.1016/j.conbuildmat.2009.10.030. DOI
La Mantia F.P., Morreale M. Green composites: A brief review. Compos. Part A Appl. Sci. Manuf. 2011;42:579–588. doi: 10.1016/j.compositesa.2011.01.017. DOI
Sever K., Sarikanat M., Seki Y., Erkan G., Erdogan U.H., Erden S. Surface treatments of jute fabric: The influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Ind. Crops Prod. 2012;35:22–30. doi: 10.1016/j.indcrop.2011.05.020. DOI
Ramamoorthy S.K., Skrifvars M., Persson A. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 2015;55:107–162. doi: 10.1080/15583724.2014.971124. DOI
Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI
Kerni L., Singh S., Patnaik A., Kumar N. A review on natural fiber reinforced composites. Mater. Today Proc. 2020;28:1616–1621. doi: 10.1016/j.matpr.2020.04.851. DOI
Faruk O., Bledzki A.K., Fink H.-P., Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI
Alshaaer M. Synthesis, Characterization, and Recyclability of a Functional Jute-Based Geopolymer Composite. Front. Built Environ. 2021;7:38. doi: 10.3389/fbuil.2021.631307. DOI
Khondker O., Ishiaku U., Nakai A., Hamada H. A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos. Part A Appl. Sci. Manuf. 2006;37:2274–2284. doi: 10.1016/j.compositesa.2005.12.030. DOI
Ramakrishnan S., Krishnamurthy K., Rajeshkumar G., Asim M. Dynamic Mechanical Properties and Free Vibration Characteristics of Surface Modified Jute Fiber/Nano-Clay Reinforced Epoxy Composites. J. Polym. Environ. 2021;29:1076–1088. doi: 10.1007/s10924-020-01945-y. DOI
Yao X., Liu K., Huang G., Wang M., Dong X. Mechanical Properties and Durability of Deep Soil–Cement Column Reinforced by Jute and PVA Fiber. J. Mater. Civ. Eng. 2021;33:04021021. doi: 10.1061/(ASCE)MT.1943-5533.0003636. DOI
Da Fonseca R.P., Rocha J.C., Cheriaf M. Mechanical Properties of Mortars Reinforced with Amazon Rainforest Natural Fibers. Materials. 2020;14:155. doi: 10.3390/ma14010155. PubMed DOI PMC
Sankar K., Kriven W.M. Sodium geopolymer reinforced with jute weave. In: Kriven W.M., Zhou D., Moon K., Hwang T., Wang J., Lewinssohn C., Zhou Y., editors. Developments in Strategic Materials and Computational Design V. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2015. pp. 39–60.
Trindade A.C., Arêas I.O., Almeida D.C., Alcamand H.A., Borges P.H., Silva F.A. Mechanical behavior of geopolymeric composites reinforced with natural fibers; Proceedings of the International Conference on Strain-Hardening Cement-Based Composites; Dresden, Germany. 18–20 September 2017; pp. 383–391.
Bheel N., Sohu S., Awoyera P., Kumar A., Abbasi S.A., Olalusi O.B. Effect of Wheat Straw Ash on Fresh and Hardened Concrete Reinforced with Jute Fiber. Adv. Civ. Eng. 2021;2021:1–11. doi: 10.1155/2021/6659125. DOI
Fonseca C.S., Scatolino M.V., Silva L.E., Martins M.A., Júnior M.G., Tonoli G.H.D. Valorization of Jute Biomass: Performance of Fiber–Cement Composites Extruded with Hybrid Reinforcement (Fibers and Nanofibrils) Waste Biomass Valorizat. 2021:19. doi: 10.1007/s12649-021-01394-1. DOI
Bernal S.A., Bejarano J., Garzón C., de Gutiérrez R.M., Delvasto S., Rodríguez E.D. Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Compos. Part B Eng. 2012;43:1919–1928. doi: 10.1016/j.compositesb.2012.02.027. DOI
Welter M., Schmücker M., MacKenzie K. Evolution of the fibre-matrix interactions in basalt-fibre-reinforced geopolymer-matrix composites after heating. J. Ceram. Sci. Technol. 2015;6:17–24.
Dhand V., Mittal G., Rhee K.Y., Park S.-J., Hui D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2015;73:166–180. doi: 10.1016/j.compositesb.2014.12.011. DOI
Colombo C., Vergani L., Burman M. Static and fatigue characterisation of new basalt fibre reinforced composites. Compos. Struct. 2012;94:1165–1174. doi: 10.1016/j.compstruct.2011.10.007. DOI
Monaldo E., Nerilli F., Vairo G. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos. Struct. 2019;214:246–263. doi: 10.1016/j.compstruct.2019.02.002. DOI
Dehkordi M.T., Nosraty H., Shokrieh M.M., Minak G., Ghelli D. The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Mater. Des. 2013;43:283–290. doi: 10.1016/j.matdes.2012.07.005. DOI
Noman M.T., Petru M., Amor N., Yang T., Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-74357-6. PubMed DOI PMC
Wei B., Cao H., Song S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010;31:4244–4250. doi: 10.1016/j.matdes.2010.04.009. DOI
Masi G., Rickard W., Bignozzi M.C., van Riessen A. The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos. Part B Eng. 2015;76:218–228. doi: 10.1016/j.compositesb.2015.02.023. DOI
Hou X., Yao S., Wang Z., Fang C., Li T. Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface. J. Mater. Sci. Technol. 2021;84:182–190. doi: 10.1016/j.jmst.2021.02.001. DOI
Le C., Louda P., Buczkowska K.E., Dufkova I. Investigation on Flexural Behavior of Geopolymer-Based Carbon Textile/Basalt Fiber Hybrid Composite. Polymers. 2021;13:751. doi: 10.3390/polym13050751. PubMed DOI PMC
Kim M., Rhee K., Park S., Hui D. Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites. Compos. Part B Eng. 2012;43:2298–2302. doi: 10.1016/j.compositesb.2011.12.007. DOI
Szabó J., Czigány T. Static fracture and failure behavior of aligned discontinuous mineral fiber reinforced polypropylene composites. Polym. Test. 2003;22:711–719. doi: 10.1016/S0142-9418(03)00005-9. DOI
Zhang Y., Yu C., Chu P.K., Lv F., Zhang C., Ji J., Zhang R., Wang H. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites. Mater. Chem. Phys. 2012;133:845–849. doi: 10.1016/j.matchemphys.2012.01.105. DOI
Punurai W., Kroehong W., Saptamongkol A., Chindaprasirt P. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Constr. Build. Mater. 2018;186:62–70. doi: 10.1016/j.conbuildmat.2018.07.115. DOI
Li W., Xu J. Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Mater. Sci. Eng. A. 2009;505:178–186. doi: 10.1016/j.msea.2008.11.063. DOI
Yang L., Xie H., Fang S., Huang C., Chao Y.J. Experimental study on mechanical properties and damage mechanism of basalt fiber reinforced concrete under uniaxial compression. Structures. 2021;31:330–340. doi: 10.1016/j.istruc.2021.01.071. DOI
Shen D., Li M., Kang J., Liu C., Li C. Experimental studies on the seismic behavior of reinforced concrete beam-column joints strengthened with basalt fiber-reinforced polymer sheets. Constr. Build. Mater. 2021;287:122901. doi: 10.1016/j.conbuildmat.2021.122901. DOI
Ashik K.P., Sharma R.S. A Review on Mechanical Properties of Natural Fiber Reinforced Hybrid Polymer Composites. J. Miner. Mater. Charact. Eng. 2015;3:420–426. doi: 10.4236/jmmce.2015.35044. DOI
Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI
Noman M.T., Petru M. Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC
Sathishkumar T., Satheeshkumar S., Naveen J. Glass fiber-reinforced polymer composites—A review. J. Reinforc. Plast. Compos. 2014;33:1258–1275. doi: 10.1177/0731684414530790. DOI
Zhang M., Matinlinna J.P. E-Glass Fiber Reinforced Composites in Dental Applications. Silicon. 2012;4:73–78. doi: 10.1007/s12633-011-9075-x. DOI
XiaoChun Q., Xiaoming L., Xiaopei C. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis. Int. J. Pavement Res. Technol. 2017;10:536–544. doi: 10.1016/j.ijprt.2017.06.003. DOI
Arslan M.E., Aykanat B., Subaşı S., Maraşlı M. Cyclic behavior of autoclaved aerated concrete block infill walls strengthened by basalt and glass fiber composites. Eng. Struct. 2021;240:112431. doi: 10.1016/j.engstruct.2021.112431. DOI
Faizal M.A., Beng Y.K., Dalimin M.N. Tensile property of hand lay-up plain-weave woven e-glass/polyester composite: Curing pressure and Ply arrangement effect. Borneo Sci. 2006;19:27–34.
Kushwaha P.K., Kumar R. The studies on performance of epoxy and polyester-based composites reinforced with bamboo and glass fibers. J. Reinforc. Plast. Compos. 2010;29:1952–1962. doi: 10.1177/0731684409342006. DOI
Devendra K., Rangaswamy T. Strength Characterization of E-glass Fiber Reinforced Epoxy Composites with Filler Materials. J. Miner. Mater. Charact. Eng. 2013;01:353–357. doi: 10.4236/jmmce.2013.16054. DOI
Etcheverry M., Barbosa S.E. Glass fiber reinforced polypropylene mechanical properties enhancement by adhesion improvement. Materials. 2012;5:1084–1113. doi: 10.3390/ma5061084. PubMed DOI PMC
Tungjitpornkull S., Chaochanchaikul K., Sombatsompop N., Tungjitpornkull S., Chaochanchaikul K., Sombatsompop N. Mechanical Characterization of E-Chopped Strand Glass Fiber Reinforced Wood/PVC Composites. J. Thermoplast. Compos. Mater. 2007;20:535–550. doi: 10.1177/0892705707084541. DOI
Chen Z., Liu X., Lü R., Li T. Mechanical and tribological properties of PA66/PPS blend. III. Reinforced with GF. J. Appl. Polym. Sci. 2006;102:523–529. doi: 10.1002/app.24253. DOI
Cheng C., He J., Zhang J., Yang Y. Study on the time-dependent mechanical properties of glass fiber reinforced cement (GRC) with fly ash or slag. Constr. Build. Mater. 2019;217:128–136. doi: 10.1016/j.conbuildmat.2019.05.063. DOI
Fang Y., Chen B., Oderji S.Y. Experimental research on magnesium phosphate cement mortar reinforced by glass fiber. Constr. Build. Mater. 2018;188:729–736. doi: 10.1016/j.conbuildmat.2018.08.153. DOI
Giese A.C.H., Giese D.N., Dutra V.F.P., Da Silva Filho L.C.P. Flexural behavior of reinforced concrete beams strengthened with textile reinforced mortar. J. Build. Eng. 2021;33:101873. doi: 10.1016/j.jobe.2020.101873. DOI
Micro- and Nanoplastics Produced from Textile Finishes: A Review
Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network
Classification of Textile Polymer Composites: Recent Trends and Challenges
Combined Use of Modal Analysis and Machine Learning for Materials Classification