Use of an Artificial Neural Network for Tensile Strength Prediction of Nano Titanium Dioxide Coated Cotton
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
the Ministry of Education, Youth and Sports of the Czech Republic and the European Union (European Structural and Investment Funds-Operational Programme Research, Development and Education)
PubMed
35267760
PubMed Central
PMC8912627
DOI
10.3390/polym14050937
PII: polym14050937
Knihovny.cz E-zdroje
- Klíčová slova
- artificial neural network, tensile strength, titanium dioxide nanoparticles,
- Publikační typ
- časopisecké články MeSH
In this study, an artificial neural network (ANN) is used for the prediction of tensile strength of nano titanium dioxide (TiO2) coated cotton. The coating process was performed by ultraviolet (UV) radiations. Later on, a backpropagation ANN algorithm trained with Bayesian regularization was applied to predict the tensile strength. For a comparative study, ANN results were compared with traditional methods including multiple linear regression (MLR) and polynomial regression analysis (PRA). The input conditions for the experiment were dosage of TiO2, UV irradiation time and temperature of the system. Simulation results elucidated that ANN model provides high performance accuracy than MLR and PRA. In addition, statistical analysis was also performed to check the significance of this study. The results show a strong correlation between predicted and measured tensile strength of nano TiO2-coated cotton with small error values.
Zobrazit více v PubMed
Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2018;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI
Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI
Noman M.T., Wiener J., Šašková J., Ashraf M.A., Viková M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Pt AUltrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI
Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A Novel Green Stabilization of TiO2 Nanoparticles onto Cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI
Liu X., Gasco F., Goodsell J., Yu W. Initial failure strength prediction of woven composites using a new yarn failure criterion constructed by deep learning. Compos. Struct. 2019;230:111505. doi: 10.1016/j.compstruct.2019.111505. DOI
Balram D., Lian K.Y., Sebastian N., Al-Mubaddel F.S., Noman M.T. Bi-functional renewable biopolymer wrapped CNFs/Ag doped spinel cobalt oxide as a sensitive platform for highly toxic nitroaromatic compound detection and degradation. Chemosphere. 2022;291:132998. doi: 10.1016/j.chemosphere.2021.132998. PubMed DOI
Chen R., Mihaylova L., Zhu H., Bouaynaya N. A Deep Learning Framework for Joint Image Restoration and Recognition. Circuits Syst. Signal Process. 2020;39:1561–1580. doi: 10.1007/s00034-019-01222-x. DOI
Zazoum B., Triki E., Bachri A. Modeling of Mechanical Properties of Clay-Reinforced Polymer Nanocomposites Using Deep Neural Network. Materials. 2020;13:4266. doi: 10.3390/ma13194266. PubMed DOI PMC
Sebastian N., Yu W.C., Balram D., Al-Mubaddel F.S., Noman M.T. Functionalization of CNFs surface with β-cyclodextrin and decoration of hematite nanoparticles for detection and degradation of toxic fungicide carbendazim. Appl. Surf. Sci. 2022;586:152666. doi: 10.1016/j.apsusc.2022.152666. DOI
Vahid A., Mückschel M., Stober S., Stock A., Beste C. Applying deep learning to single-trial EEG data provides evidence for complementary theories on action control. Commun. Biol. 2020;3:112. doi: 10.1038/s42003-020-0846-z. PubMed DOI PMC
Balram D., Lian K.Y., Sebastian N., Al-Mubaddel F.S., Noman M.T. A sensitive and economical electrochemical platform for detection of food additive tert-butylhydroquinone based on porous Co3O4 nanorods embellished chemically oxidized carbon black. Food Control. 2022;136:108844. doi: 10.1016/j.foodcont.2022.108844. DOI
Sebastian N., Yu W.C., Balram D., Al-Mubaddel F.S., Noman M.T. Nanomolar detection of food additive tert-butylhydroquinone in edible oils based on novel ternary metal oxide embedded β-cyclodextrin functionalized carbon black. Food Chem. 2022;377:131867. doi: 10.1016/j.foodchem.2021.131867. PubMed DOI
Daniel G.G. Artificial Neural Network. In: Runehov A.L.C., Oviedo L., editors. Encyclopedia of Sciences and Religions. Springer; Dordrecht, The Netherlands: 2013. p. 143. DOI
Amor N., Noman M.T., Petrů M. Prediction of functional properties of nano TiO2 coated cotton composites by artificial neural network. Sci. Rep. 2021;11:12235. doi: 10.1038/s41598-021-91733-y. PubMed DOI PMC
Amor N., Noman M.T., Petrů M., Mahmood A., Ismail A. Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites. Sci. Rep. 2021;11:13649. doi: 10.1038/s41598-021-93108-9. PubMed DOI PMC
Lu D., Yu W. Predicting the tensile strength of single wool fibers using artificial neural network and multiple linear regression models based on acoustic emission. Text. Res. J. 2021;91:533–542. doi: 10.1177/0040517520948200. DOI
Gayatri Vineela M., Dave A., Kiran Chaganti P. Artificial Neural Network based Prediction of Tensile Strength of Hybrid Composites. Mater. Today Proc. 2018;5:19908–19915. doi: 10.1016/j.matpr.2018.06.356. DOI
Mishra S. Prediction of Yarn Strength Utilization in Cotton Woven Fabrics using Artificial Neural Network. J. Inst. Eng. (India) Ser. E. 2015;96:151–157. doi: 10.1007/s40034-014-0049-6. DOI
Malik S.A., Farooq A., Gereke T., Cherif C. Prediction of Blended Yarn Evenness and Tensile Properties by Using Artificial Neural Network and Multiple Linear Regression. Autex Res. J. 2016;16:43–50. doi: 10.1515/aut-2015-0018. DOI
Altarazi S., Allaf R., Alhindawi F. Machine Learning Models for Predicting and Classifying the Tensile Strength of Polymeric Films Fabricated via Different Production Processes. Materials. 2019;12:1475. doi: 10.3390/ma12091475. PubMed DOI PMC
Erbil Y., Babaarslan O., İlhami I. A comparative prediction for tensile properties of ternary blended open-end rotor yarns using regression and neural network models. J. Text. Inst. 2018;109:560–568. doi: 10.1080/00405000.2017.1361164. DOI
Breuer K., Stommel M. Prediction of Short Fiber Composite Properties by an Artificial Neural Network Trained on an RVE Database. Fibers. 2021;9:8. doi: 10.3390/fib9020008. DOI
Wang F., Chen Z., Wu C., Yang Y., Zhang D., Li S. A model for predicting the tensile strength of ultrafine glass fiber felts with mathematics and artificial neural network. J. Text. Inst. 2021;112:783–791. doi: 10.1080/00405000.2020.1779167. DOI
Liu F., Ding W., Qiao Y., Wang L. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power. Front. Struct. Civ. Eng. 2020;14:1299–1315. doi: 10.1007/s11709-020-0712-6. DOI
Amor N., Noman M.T., Petrů M. Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network. Polymers. 2021;13:3104. doi: 10.3390/polym13183104. PubMed DOI PMC
Amor N., Noman M.T., Petrů M. Classification of Textile Polymer Composites: Recent Trends and Challenges. Polymers. 2021;13:2592. doi: 10.3390/polym13162592. PubMed DOI PMC
Mahmood A., Noman M.T., Pechočiaková M., Amor N., Petrů M., Abdelkader M., Militký J., Sozcu S., Hassan S.Z.U. Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering. Polymers. 2021;13:2099. doi: 10.3390/polym13132099. PubMed DOI PMC
Noman M.T., Petrů M. Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites. Nanomaterials. 2020;10:1661. doi: 10.3390/nano10091661. PubMed DOI PMC
Jeon J.H., Yang S.S., Kang Y.J. Estimation of sound absorption coefficient of layered fibrous material using artificial neural networks. Appl. Acoust. 2020;169:107476. doi: 10.1016/j.apacoust.2020.107476. DOI
Doran E.C., Sahin C. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and support vector machines. Text. Res. J. 2020;90:1558–1580. doi: 10.1177/0040517519896761. DOI
Jierula A., Wang S., OH T.M., Wang P. Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep Piles Using Artificial Neural Networks with Acoustic Emission Data. Appl. Sci. 2021;11:2314. doi: 10.3390/app11052314. DOI
Briot J.P. From artificial neural networks to deep learning for music generation: History, concepts and trends. Neural Comput. Appl. 2021;33:39–65. doi: 10.1007/s00521-020-05399-0. DOI
Ayres L., Gomez F., Linton J., Silva M., Garcia C. Taking the leap between analytical chemistry and artificial intelligence: A tutorial review. Anal. Chim. Acta. 2021;1161:338403. doi: 10.1016/j.aca.2021.338403. PubMed DOI
Xiao Q., Wang R., Zhang S., Li D., Sun H., Wang L. Prediction of pilling of polyester–cotton blended woven fabric using artificial neural network models. J. Eng. Fibers Fabr. 2020;15:1558925019900152. doi: 10.1177/1558925019900152. DOI
Noman M.T., Petrů M., Amor N., Louda P. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci. Rep. 2020;10:21080. doi: 10.1038/s41598-020-78305-2. PubMed DOI PMC
Meddeb A., Amor N., Abbes M., Chebbi S. A Novel Approach Based on Crow Search Algorithm for Solving Reactive Power Dispatch Problem. Energies. 2018;11:3321. doi: 10.3390/en11123321. DOI
Noman M.T., Amor N., Petrů M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2021;2:1–44. doi: 10.1080/10408436.2021.1886041. DOI
Balram D., Lian K.Y., Sebastian N., Al-Mubaddel F.S., Noman M.T. Ultrasensitive detection of food colorant sunset yellow using nickel nanoparticles promoted lettuce-like spinel Co3O4 anchored GO nanosheets. Food Chem. Toxicol. 2022;159:112725. doi: 10.1016/j.fct.2021.112725. PubMed DOI